Internet Resource Certification and Inter-Domain Routing Security

Eric Osterweil
Who is allowed to do what?

- BGP (the Internet’s inter-domain routing protocol) runs by rumor
 - Participants assert reachability and “gossip” about what they’ve heard from each other

- This has never been overly secure
 - Who is the rightful holder of a resource?
 - Who is allowed to assert reachability for resources?
 - What’s a “resource!?!?”

- We’ve always needed resource certification
 - A way to answer: “who is allowed to do what?”

- But what is that?
Resource certification

• Being able to verify the authorized resource holders
 • IP addresses are allocated hierarchically
 • Announcements and routing are authorized by resource holders (bilaterally)

• The Resource Public Key Infrastructure (RPKI) is one incarnation of resource certification
 • It focuses on routed resources

• The envisioned usage for RPKI has morphed from just titleship to routed resource certification
 • BGPSEC uses RPKI to sign and verify BGP updates and a new BGP path attribute
RPKI

- IP addresses are allocated hierarchically
 - IANA allocates addresses to Regional Internet Registries (RIRs) ARIN, RIPE, APNIC, LACNIC, AfriNIC
 - Each RIR allocates further (LIRs, ISPs, etc).

- RPKI envisions that an IANA trust anchor will be used to sign ``objects” that represent resource allocations it has given to RIRs
 - RIRs would then use signed objects to certify their allocations

- So… A prefix may have been allocated from IANA to ARIN to Level(3) to a customer…
Allocation

http://rpkispider.verisignlabs.com/
How does RPKI work?

• Trust anchors are certificates
 • Certs point to manifests

• Manifests (Mfts) contain a list of objects that a certificate asserts information about
 • Contains certs, ROAs, etc

• Certs ➔ CRLs, Mfts, [ROAs], [Ghostbuster records]

• ROAs contain an AS number and a set of prefixes

• All objects in the RPKI are verifiable by by certs
 • Manifests, ROAs, and CRLs all have embedded EE certs
But that’s just the way it’s laid out…

• The entire RPKI is a cryptographic delegation chain
• How many objects are we talking about?
 • We recently did some back of the envelop calculations: 601,337 (Verisign TR #1120005v2):
 http://techreports.verisignlabs.com/tr-lookup.cgi?trid=1120005&rev=2

• However, it is intended to inform BGP’s routing process
 • Routers need keys too… they have to sign/verify updates
 • This would likely balloon object counts to 2,601,377
• eBGP speakers need a way to verify data that they see, so RPKI data needs to wind up near route computation
Where are we today?
Caching

• RPKI+BGPSEC need routers to have access to the info that RPKI has certified
 • Prefix/origin + router keys

• RPKI caches (run by relying parties) uses rsync

• Our caches must run rsync to all caches for all resource holders in the whole Internet before route verification can happen
 • Currently there are 5 repos, but every resource holder can (and very well may) run their own
Should we be worried?

• RIRs face large challenges converging on a single root
 • So, we have 5 RIRs that each assert 0/0 and can override each other
 • Surgical takedowns are possible (one RIR can surgically affect reachability to another RIR’s resources)

• rsync may face scaling challenges…
 • We’ve already seen rate limiting, connection failures, sub-linear scaling, churn has interrupted, etc…
 • A few high-value targets exists to disrupt routing

• RPKI relies heavily on DNS (many objects are referred to by URIs)
How long might it take to cache from repos?
Worries…

• Today, a routing change can be globally effectuated in minutes
• With RPKI+BGPSEC, this could take days

• Real world example:
 • DDoS providers count on being able to onboard and begin scrubbing customers today
 • Re: Recent financial DDoS attacks, business is gooood…
 • RPKI would mean that it would take significantly longer to onboard
 • ``Sorry Bank of OutOf Luck, we can’t protect you for 2 weeks…”

• Research Example:
 • New measurement apparatuses like BGP-mux become infeasible
Even so...

• Even if RPKI+BGPSEC gets fully deployed, an entire class of security threat is still 100% unaddressed: Route Leaks

• Without a mechanism to learn ``intent,’’ issues like route leaks are not addressed

 • Google/Moratel leak, IETF 85 leak through China etc…

• Internet Routing Registries (IRRs) have existed for a long time, and have been used to address this problem since 1995

What we need is resource certification…

• RPKI is one option, but it doesn’t get us all the way there by itself…

• Route leaks happen at an alarming rate
 • Mauch, J., “Detecting Routing Leaks by Counting”, October 2007,

• Some solutions RPKI+IRR Blunk, NANOG 57, RPKI +RPSL sig draft, etc

• DNS has many of the integrity elements that RPKI has and some that it is missing:
 • DNS has data integrity/origin auth + a single root + is extensible to additional Internet resources (beyond routed resources)
 • DANE: s/MIME/TLS/etc

• Even without DNS, RPKI still needs a way to express routing policy
 • Why not use reverse DNS to inform IRRs and build from that?
What’s my [rambling] point?

- There seem to be a copious number of open questions about resource certification
- Attention from the measurement research community would be invaluable
- There’s a lot at stake
 - The FCC is poised to make a recommendation about secure routing and resource certification approaches
 - Vendors are investing heavily
 - etc
- Follow us on Twitter! @RPKIUpdateBot
Thank You