Inferring Internet Server IPv4 and IPv6 Address Relationships

Robert Beverly, Arthur Berger*, Nicholas Weaver†, Larry Campbell*

Naval Postgraduate School
*Akamai
†ICSI/UCSD
rbeverly@nps.edu, awberger@mit.edu

February 7, 2013

CAIDA Active Internet Measurement 2013
Sibling Resolution

New Problem We Term “Sibling Resolution:”

Given a candidate (IPv4, IPv6) address pair, determine if these addresses are assigned to the same cluster, device, or interface.

- Lots of prior work on passive sibling associations: e.g. web-bugs, javascript, flash, etc.
- Prior work focuses on clients (adoption, performance)
- This work:
 - Targeted, active test: on-demand for any given pair
 - Infrastructure: finding server siblings
- Eventual goal: router siblings (not there yet)
Motivation

Why?

- Adoption (non-adoption):
 - IPv4 and IPv6 expected to co-exist (for a long while?) → dual-stacked devices
 - Track IPv6 evolution
- Security:
 - IPv6 is largely unsecured!
 - Inter-dependence of IPv6 on IPv4 (and vice-versa)
 - e.g. attack on IPv6 resource affecting IPv4 service
 - Correlating geolocation, reputation, etc with IPv4 host counterpart.
- Performance:
 - Getting measurements of IPv4 vs. IPv6 performance correct: isolate path vs. host performance
- Operationally deployed today in Akamai, informing Edgescape geolocation.
Techniques

3 Techniques:

1. **(Passive)** Induce DNS resolvers to use both v4 and v6 during natural resolution of Akamai resources (deployed, large set of measurements).

2. **(Active)** Force DNS to use a chain of v4 and v6 addresses to perform resolution. Allows us to validate (a subset) of the passively collected results.

3. **(Active)** Probe potentially in-common TCP stack of a candidate v4, v6 sibling pair to obtain timestamp fingerprint.
Passive DNS

- Encode IPv4 address of querying resolver into a AAAA record returned for the next-level NS.
- Subsequent query to the IPv6 authority nameserver permits linking v4 and v6 resolver addresses.
Active DNS

- Custom DNS server as authority for special domain
- Chain of alternating v6, v4 CNAME records, only available via v6 or v4, that maintain state within the dynamic name.

```
+-----------------------------------------------+
| TXT="A1 A2 A3 A4" | TXT="A1 A2 A3 A4" |
+-----------------------------------------------+
```
DNS Results

- Deployed on Akamai; gathered ≃ 675,000 v4,v6 pairs
- Importance: directing users to content in a CDN relies on properties of DNS resolution. Improves IPv6 geolocation.
- 77% of v4,v6 pairs are 1-1, the rest is messy. Most complexity due to large cluster resolvers (e.g. nominum, google DNS, openDNS, comcast, etc).
Methodology

Targeted, Active Technique

- Intuition: IPv4 and IPv6 share a common transport-layer (TCP) stack
- Leverage prior work on physical device fingerprinting using TCP timestamp clockskew [Kohno 2005]
- Note: TS clock ≠ system clock
- Note: TS clock frequently unaffected by system clock adjustments (e.g. NTP)
- **Basic Idea:** Probe over time. Fingerprint is clock skew (and remote clock resolution).
Example

- Gather 4 timestamp series:
 - www.caida.org (v4 and v6)
 - www.ripe.net (v4 and v6)
Example

- Observe different skew slopes (one negative)
- Different timestamp granularity
- $y = 0.029938x$ equates to skew of $\approx 1.8\text{ms/minute}$, or $\approx 15\text{minutes per year}$.
- False siblings!

CAIDA IPv6 vs. RIPE IPv4
Example

- **False Siblings**

- **True Siblings**

 - CAIDA IPv4 vs. CAIDA IPv6: identical slopes ($\theta = 0.0098$)
 - CAIDA IPv6 vs. RIPE IPv4: different slopes ($\theta = 31.947$)
Complications

- Not always so distinct of a difference!
- Slope angle difference: \(\theta = 2.046 \)

www.marca.com (#6 on alexa ipv6)
Complications

- Raw TCP timestamps
- Deterministically random and monotonic for a single connection
- Random across connections. Looks like noise to us.

www.apache.com
Complications

What’s going on here?

Beverly, et al. (NPS)
Complications

- Also detects load balancing among servers
- But how to deal with it?
Machine Sibling Inference Methodology:

- Analyze Alexa top 100,000 websites
- Pull A and AAAA records
- 1398 (≈ 1.4%) have IPv6 DNS
- Repeatedly fetch root HTML page via IPv4 and IPv6 via deterministic IP address
- Record all packets
Alexa 100K Targeted Machine-Sibling Inference

<table>
<thead>
<tr>
<th>Case</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>v4 and v6 non-monotonic (possible siblings)</td>
<td>109 (7.8%)</td>
</tr>
<tr>
<td>v4 or v6 non-monotonic (non-siblings)</td>
<td>140 (10.0%)</td>
</tr>
<tr>
<td>v4 and v6 no timestamps (possible siblings)</td>
<td>94 (6.7%)</td>
</tr>
<tr>
<td>v4 or v6 no timestamps (non-sibling)</td>
<td>101 (7.2%)</td>
</tr>
</tbody>
</table>

- Our technique fails when timestamps are not monotonic across TCP flows (e.g. load-balancer or BSD OS)
- Or, when timestamps are not supported (e.g. middlebox)
- Note, can disambiguate non-siblings
Machine Sibling Inference

Alexa 100K Targeted Machine-Sibling Inference

<table>
<thead>
<tr>
<th>Case</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>v4 and v6 non-monotonic (possible siblings)</td>
<td>109 (7.8%)</td>
</tr>
<tr>
<td>v4 or v6 non-monotonic (non-siblings)</td>
<td>140 (10.0%)</td>
</tr>
<tr>
<td>v4 and v6 no timestamps (possible siblings)</td>
<td>94 (6.7%)</td>
</tr>
<tr>
<td>v4 or v6 no timestamps (non-sibling)</td>
<td>101 (7.2%)</td>
</tr>
<tr>
<td>Skew-based siblings</td>
<td>839 (60.0%)</td>
</tr>
<tr>
<td>Skew-based non-siblings</td>
<td>115 (8.3%)</td>
</tr>
<tr>
<td>Total</td>
<td>1398 (100%)</td>
</tr>
</tbody>
</table>

- 25.5% (356) non-siblings
- 57% of skew-based non-siblings are in *same* AS
- 12.6% of skew-based siblings are in *different* ASes
Feedback

Thanks!

- **Viz:** Awesome scatter plot!
- **Data-Sharing:** None so far (Akamai data off-limits, web-probing can be released)
- **Feedback:**
 - Do you believe our motivation story?!?
 - Operational experience with large DNS resolvers?
 - Thoughts on router v4,v6 sibling resolution?