Better routing security through concerted action

Andrei Robachevsky
robachevsky@isoc.org
• Why MANRS
• Measuring MANRS
• Routing transparency
Routing security - Why is it so hard?
Routing security - Why is it so hard?
The playing field

- Each player can contribute to routing security
 - And be the cause of an incident
- Most of them would like to have a more secure routing system
 - Routing incidents are hard to debug and fix
- Most of them have little incentive
 - One’s network security is in the hands of others

We have a typical collective action problem
Two neighbours may agree to drain a meadow, which they possess in common; because it is easy for them to know each other's mind; and each must perceive, that the immediate consequence of his failing in his part, is, the abandoning the whole project. But it is very difficult, and indeed impossible, that a thousand persons should agree in any such action; it being difficult for them to concert so complicated a design, and still more difficult for them to execute it; while each seeks a pretext to free himself of the trouble and expense, and would lay the whole burden on others.

[David Hume. A Treatise of Human Nature]
“[T]he commons […] is justifiable only under conditions of low-population density. As the human population has increased, the commons has had to be abandoned in one aspect after another”

[Garrett Hardin. The tragedy of the Commons]
Can this problem be solved without regulation?

Norms may provide a solution in such cases
• Need to agree on **values**. And **behaviors** that support these values

Common Value
• Resilient and secure global routing system

Behaviors
• Do not accept and propagate other’s mistakes (Validate what you accept from the neighbors)
• Protect your neighbors from your own mistakes (avoid policy violations)
 • Do not hijack
 • Do not leak
• Enable others to validate
From Behaviors to Norms

Widely accepted as a good practice

Not exactly a least common denominator, but not too high either

Visible and Measurable
Action – who can make an impact?

- Edge and access networks
- Transit providers
- IXPs
- CDNs and Cloud providers
Network operators

Filtering
Prevent propagation of incorrect routing information
Ensure the correctness of your own announcements and announcements from your customers to adjacent networks with prefix and AS-path granularity

Anti-spoofing
Prevent traffic with spoofed source IP addresses
Enable source address validation for at least single-homed stub customer networks, their own end-users, and infrastructure

Coordination
Facilitate global operational communication and coordination between network operators
Maintain globally accessible up-to-date contact information in common routing databases

Global Validation
Facilitate validation of routing information on a global scale
Publish your data, so others can validate
<table>
<thead>
<tr>
<th>Action 1</th>
<th>Action 2</th>
<th>Action 3</th>
<th>Action 4</th>
<th>Action 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevent propagation of incorrect routing information</td>
<td>Promote MANRS to the IXP membership</td>
<td>Protect the peering platform</td>
<td>Facilitate global operational communication and coordination</td>
<td>Provide monitoring and debugging tools to the members.</td>
</tr>
</tbody>
</table>

Action 1
Prevent propagation of incorrect routing information

This mandatory action requires IXPs to implement filtering of route announcements at the Route Server based on routing information data (IRR and/or RPKI).

Action 2
Promote MANRS to the IXP membership

IXPs joining MANRS are expected to provide encouragement or assistance for their members to implement MANRS actions.

Action 3
Protect the peering platform

This action requires that the IXP has a published policy of traffic not allowed on the peering fabric and performs filtering of such traffic.

Action 4
Facilitate global operational communication and coordination

The IXP facilitates communication among members by providing necessary mailing lists and member directories.

Action 5
Provide monitoring and debugging tools to the members.

The IXP provides a looking glass for its members.
MANRS for CDN&Cloud - a draft action set

<table>
<thead>
<tr>
<th>Action 1</th>
<th>Prevent propagation of incorrect routing information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Egress filtering</td>
</tr>
<tr>
<td></td>
<td>Ingress filtering – non-transit peers, explicit whitelists</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Action 2</th>
<th>Prevent traffic with illegitimate source IP addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anti-spoofing controls to prevent packets with illegitimate source IP address</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Action 3</th>
<th>Facilitate global operational communication and coordination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contact information in PeeringDB and relevant RIR databases</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Action 4</th>
<th>Facilitate validation of routing information on a global scale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Publicly document ASNs and prefixes that are intended to be advertised to external parties.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Action 5</th>
<th>Encourage MANRS adoption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actively encourage MANRS adoption among the peers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Action 6</th>
<th>Provide monitoring and debugging tools to peering partners</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Provide monitoring tools to indicate incorrect announcements from peers that were filtered by the CDN&Cloud operator.</td>
</tr>
</tbody>
</table>
Users of the commons:
- those who always behave in a narrow, self-interested way and never cooperate (free-riders)
- those who are unwilling to cooperate with others unless assured that they will not be exploited by free-riders
- those who are willing to initiate reciprocal cooperation in the hopes that others will return their trust
- and perhaps a few genuine altruists who always try to achieve higher returns for a group

[Elinor Ostrom. Revisiting the Commons: Local Lessons, Global Challenges]
Mutually Agreed Norms for Routing Security

MANRS provides baseline recommendations in the form of Actions

- Distilled from common behaviors – BCPs, optimized for low cost and low risk of deployment
- With high potential of becoming norms

MANRS builds a visible community of security minded operators

- Social acceptance and peer pressure
Why join MANRS?

• Improve your security posture and reduce the number and impact of routing incidents

• Demonstrate that these practices are reality

• Meet the expectations of the operators community

• Join a community of security-minded operators working together to make the Internet better

• Use MANRS as a competitive differentiator
MANRS – is it getting traction?

240 ISPs

45 IXPs
GROWTH OF THE MANRS MEMBERSHIP (NETWORK OPERATORS)
Measuring MANRS

MANRS Observatory, https://observatory.manrs.org
Motivation

Inform MANRS members about their degree of commitment
• Improve reputation and transparency of the effort
• Facilitate continuous improvement and correction

Provide a factual state of routing security as it relates to MANRS
• Support the problem statement with data
• Demonstrate the impact and progress
• Network, country, region, over time

Improve robustness of the evaluation process
• Make it more comprehensive and consistent
• Reduce the load
• Allow preparation (self-assessment)
Data sources and caveats

<table>
<thead>
<tr>
<th>Action</th>
<th>Measurement</th>
<th>Data source</th>
<th>Caveats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtering $M1, M1C, M2, M2C$</td>
<td>Route hijacks and leaks</td>
<td>BGPStream.com</td>
<td>False positives, obscure algorithms, vantage points</td>
</tr>
<tr>
<td>Filtering $M3, M3C, M4, M4C$</td>
<td>“Bogon” announcements</td>
<td>CIDR report</td>
<td>Limited vantage points</td>
</tr>
<tr>
<td>Anti-spoofing $M5$</td>
<td>Negative tests</td>
<td>CAIDA Spoofer</td>
<td>Sparse, active</td>
</tr>
<tr>
<td>Coordination $M8$</td>
<td>Registered contacts</td>
<td>RIRs Whois DBs</td>
<td>Stale/non-responsive contacts not detected</td>
</tr>
<tr>
<td>Global validation $M7IRR, M7RPKI, M7RPKIN$</td>
<td>Coverage of routing announcements</td>
<td>IRRs, RPKI</td>
<td></td>
</tr>
</tbody>
</table>
How to calculate? E.g. M2 - route hijack by an AS?

Impact

• $M_2 = f(#\text{prefixes}, \text{address span}, \text{duration}, \text{propagation})$
• Not all prefixes are equal
• Type of the network matters

Conformity

• $M_2 = f(#\text{distinct incidents}, \text{resolution time})$
• # incidents and resolution time show the degree of negligence
• Incident is a sign of non-conformance
Events and incidents. E.g. M2C

Weight

- Events are weighted depending on the distance from the culprit
- $M1C\ (\text{ASPATH}-1), 0.5\times M1C(\text{ASPATH}-2), 0.25\times M1C(\text{ASPATH}-3) \ldots \text{min } 0.01$
- **NB!**: Due to the challenge of correctly defining the customer cone (and area of responsibility) currently we only measure incidents in adjacent networks (next hop)

Incident

- Events with the **same weight** that share the **same time span** are merged into an **incident**.

Duration

- Non-action is penalized
 - $< 30\text{min} = 0.5$
 - $< 24\text{hour} = 1$
 - $> 24\text{hour} = +1$ for each subsequent 24-hour period
Filtering: Events and incidents

\[M2C = 0.5 + 1.0 + 2.0 = 3.5 \]
Metrics and normalization

Using normalization function \(- f(x) = e^{-\alpha x^n}\)

Using 2 interpolation points corresponding to 2 thresholds (Lagging-Aspiring-Ready).

- E.g. Filtering

<table>
<thead>
<tr>
<th></th>
<th>Ready</th>
<th>Aspiring</th>
<th>Lagging</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\leq 1.5)</td>
<td></td>
<td>1.5 ÷ 5</td>
<td>>5</td>
</tr>
<tr>
<td>(\geq 90%)</td>
<td></td>
<td>60 – 90%</td>
<td><0.60%</td>
</tr>
</tbody>
</table>
Metrics and normalization

\[f(x) = e^{-ax^n} \]
Thresholds

<table>
<thead>
<tr>
<th>Metric</th>
<th>Absolute</th>
<th>Normalized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ready</td>
<td>Aspiring</td>
</tr>
<tr>
<td>Filtering</td>
<td>≤1.5</td>
<td>1.5 ÷ 5</td>
</tr>
<tr>
<td>Anti-spoofing</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>Coordination</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Global Validation IRR</td>
<td>≤0.1</td>
<td>0.1 ÷ 0.5</td>
</tr>
<tr>
<td>Global Validation RPKI</td>
<td>≤0.1</td>
<td>0.1 ÷ 0.5</td>
</tr>
</tbody>
</table>
MANRS Observatory: How does it all fit together?
MANRS Observatory

Provides a factual state of routing security as it relates to MANRS
MANRS Observatory

Provides a factual state of routing security as it relates to MANRS
Informs MANRS members about their degree of commitment
Challenges

• Quality of data
• Sustainability of data
• Normalization
Routing transparency – a more general case
Is the Internet routing system transparent?

Yes, to a certain extent. Public route collectors (RIS, RouteViews, PCH) make a lot of data available

• Some portions of the Internet and some of the relationships are not visible as they are not being exposed to these route collectors

But making sense from these data is a heavy lift, available only to few

• BGP data is very noisy
• Analysis requires assumptions about relationships between operators and other heuristics
Why do we need more transparency?

The Bitcanal case:

- "As should be blatantly self-evident to pretty much everyone who has ever looked at any of the Internet's innumeriable prior incidents of very deliberately engineered IP space hijackings, all of the routes currently being announced by AS3266 (Bitcanal, Portugal) except for the ones in 213/8 are bloody obvious hijacks." Ronald F. Guilmette, NANOG ML, June 2017.

Ability to see (and analyse) unusual/suspicious events that are happening in the Internet routing with many eyes will more clearly expose systematic abuse or gross negligence, allow to remedy anomalies quicker, and better inform research and discussions related to routing security with stable references.
Conceptual view – current situation
Conceptual view – another common layer
Conceptual view – another common layer
What answers the service like this could offer?

Were there any unusual events related to a specific prefix over last year/month/week?
Were there any unusual events potentially affecting a specific network?
What were the unusual events (if any) related to a specific networks?
With what certainty can we assume that the unusual event is a routing attack, rather than a legitimate change?
The unusual event related to my network is a false positive, how can I report and fix this?
.... ?
What are the requirements?

Open. Should be provided as a free service to the community.

Transparent. Heuristics and methodology should be open and subject to modifications.

Community driven. Impartial and responsive to community needs. Also regarding methodology improvements.
Questions?

https://www.manrs.org
Feedback: manrs@isoc.org