Industry perspectives: What they need, research-wise and code-wise

November 13, 2013
4th NDN Project Retreat
Eiichi Muramoto/ Panasonic
muramoto.eiichi@jp.panasonic.com
Content

- Who we are (Panasonic)
- What we did (L4)
- What we need
 - research-wise and code-wise
 - Crowed sensing
Panasonic is

- Panasonic (Maker with 300,000 employee)
 - Home appliance maker
 - TV, Camera, Smartphone, Refrigerator, Microwave, Air-con, Home bakery, Hair drier, Shaver, Car navigation, Laptop, home power-plugs
 - System solutions
 - AV system, Security Camera
 - Fax, Copy, white board

ProAV PA Security Camera Appliances (under HEMS)
Network Engineer of Panasonic R&D

We are L4 engineers for conferencing (real-time, low delay) of Panasonic R&D

TV conferencing

Bandwidth Estimation
Hi-Accuracy bandwidth tracing

<table>
<thead>
<tr>
<th>TX Bandwidth</th>
<th>Brand A</th>
<th>Brand B</th>
<th>Panasonic (V3.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available Bandwidth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actual Data Amount</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bandwidth Control: Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bandwidth Estimation Accuracy: Low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packet Loss: Continues</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packet Loss: Continues</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※ Packet Loss Rate (Exclude Error Correction Recovery)

- **Brand A**:
 - Available Bandwidth: Low
 - Actual Data Amount: Low
 - Bandwidth Control: Low
 - Bandwidth Estimation Accuracy: Low
 - Packet Loss: Continues

- **Brand B**:
 - Available Bandwidth: Low
 - Actual Data Amount: Low
 - Bandwidth Control: Low
 - Bandwidth Estimation Accuracy: Low
 - Packet Loss: Continues

- **Panasonic (V3.0)**:
 - Available Bandwidth: High
 - Actual Data Amount: High
 - Bandwidth Control: High
 - Bandwidth Estimation Accuracy: High
 - Packet Loss: Zero

Far Strong against Bandwidth Fluctuation

Check the actual video!
Accurate the available bandwidth estimation and high frequency rate control of encoder using TFRC + RTT variation.
What we need, research-wise and code-wise
Sensor networking as expected driving application

- Crowd sensing
 - Example
 - Waze
 - car traffic congestion
 - Nike fuelband
 - activity monitoring sportswear
 - CCNx Web-app ‘SHOUT’ @ ccnxcon2013
 - Share comments between neighbors
Features of Crowd sensing

- Collect data and make valuable “Information”
- Computing and Communication
 - of the people (crowd), by the people for the people
- by the people
 - New application is being made
 - Evolving continuously naturally if platform exist
Proposal: change the value chain

- Name will be used in terminal (application)
- To realize this, **stable open source is necessary**

Current Status
Everything on Cloud
Google is the value collector

Proposed
Make the new loop of value chain
Carriers or ISP should be the value collector

Name assignment and delegation rule

CCN/NDN Carrier, ISP
Tool kit (SDK)
Application
Power of Crowd
Deployment milestones

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **L7**
 - 2013: Deploy baseline
 - 2014: Deploy basic network
 - 2015: Deploy advanced network
 - 2016: Deploy next-generation network
 - 2017: Deploy state-of-the-art network
 - 2018: Deploy ubiquitous network
 - 2019: Deploy fully functional network

- **L6**
 - 2013: Wire packet format (CISCO, PARC, etc)
 - 2014: Router proto (R&D) (CISCO, Alcatel, etc)
 - 2015: Stable software stack (NDN project -> Linux, *BSD)
 - 2016: Global routing method (university)
 - 2017: Mobility management (carries)
 - 2018: Security camera

- **L5**
 - 2013: Deploy baseline
 - 2014: Deploy basic network
 - 2015: Deploy advanced network
 - 2016: Deploy next-generation network
 - 2017: Deploy state-of-the-art network
 - 2018: Deploy ubiquitous network
 - 2019: Deploy fully functional network

- **L4**
 - 2013: Deploy baseline
 - 2014: Deploy basic network
 - 2015: Deploy advanced network
 - 2016: Deploy next-generation network
 - 2017: Deploy state-of-the-art network
 - 2018: Deploy ubiquitous network
 - 2019: Deploy fully functional network

- **L3**
 - 2013: Deploy baseline
 - 2014: Deploy basic network
 - 2015: Deploy advanced network
 - 2016: Deploy next-generation network
 - 2017: Deploy state-of-the-art network
 - 2018: Deploy ubiquitous network
 - 2019: Deploy fully functional network

- **L2**
 - 2013: Deploy baseline
 - 2014: Deploy basic network
 - 2015: Deploy advanced network
 - 2016: Deploy next-generation network
 - 2017: Deploy state-of-the-art network
 - 2018: Deploy ubiquitous network
 - 2019: Deploy fully functional network

- **L1**
 - 2013: Deploy baseline
 - 2014: Deploy basic network
 - 2015: Deploy advanced network
 - 2016: Deploy next-generation network
 - 2017: Deploy state-of-the-art network
 - 2018: Deploy ubiquitous network
 - 2019: Deploy fully functional network

Service evolve
- 2019: Service evolve (crowd sensing)
- 2019: Service evolve (BtoC)
- 2019: Service evolve (BtoB)

Ex.
- 4K Olympic
- Security camera

Virtualization technology
- 2019: Virtualization technology

Prepare standardize
- 2019: Prepare standardize (PARC -> IRTF)

Discuss naming scheme
- 2019: Discuss naming scheme (ENC)

Standardize naming
- 2019: Standardize naming (IETF -> IANA)

SDK
- 2019: SDK Issue name, location, time.
 (Carriers + Maker)

Service platform
- 2019: Service platform (data collection + search)
 (Carriers + Maker)

File test
- 2019: File test (Fixed)
- 2019: File test (mobile)

Product develop
- 2019: Product develop

Facility investment
- 2019: Facility investment (carrier, ISPs)

Public TestBED
- 2019: Public TestBED (government)

Virtualization technology
- 2019: Virtualization technology

Global routing method
- 2019: Global routing method (university)

Congestion control/flow control
- 2019: Congestion control/flow control (maker + carries)

Prepare standardize
- 2019: Prepare standardize (NDN project -> IRTF)

Standardize
- 2019: Standardize (IETF)

Ex:
- Security camera
Conclusion & Discussion

- Crowd sensing is the expected driving application
- Currently google (or SNS provider) suck the value of “Information”
 - As the result
 - carriers becomes “pipe” provider, maker becomes looser
- Change the value chain focusing on power of crowd. Because essentially data is generated at the edge terminals. Carriers or ISPs can collect it directly
- To realize this stable open source is necessary.