NDN Managed Gateways and The NDN Testbed

John DeHart
Computer Science & Engineering
Washington University

www.arl.wustl.edu
NDN Nodes

- Types of NDN Nodes
 - Gateway Routers
 - End User
 - Application Nodes

- Gateway Router Nodes
 - Managed
 - Managed by Washington U. team so you don’t have to...
 - ONLY used for:
 - Gateway routing function (ndnd, OSPFN)
 - Running a repository (ndnr)
 - Operator management of site keys and certificates
 - Each member site will provide at least one managed gateway node
 - More may be provided if desired.
 - Non-member sites may provide managed node(s) also
 - Unmanaged . . .
NDN Nodes

- **Gateway Router Nodes (continued)**
 - **Unmanaged**
 - Member sites may run additional unmanaged router nodes
 - Behind the site’s managed gateway router
 - Non-member sites with a managed gateway router
 - May have additional unmanaged router nodes behind the site’s managed gateway router
 - Non-member sites without a managed gateway router
 - May have unmanaged node(s) connected through a member site
 - That member site takes on some responsibility for non-member site

- Before any unmanaged node is added to the Testbed WU team needs to be notified

- **To contact WU Testbed Management Team:**
 - Send email to: ndntestbed@arl.wustl.edu
Managed Gateway Router Nodes

Installation (Done by local Site personnel)

- OS: Ubuntu 12.04 LTS Server (Not Desktop)
 - http://www.ubuntu.com/download/server
 - Add ssh server during installation
 - Two accounts:
 - operator: For local site operator
 - ndnops: For WU team (provide us with the password so we can use sudo)
 - We will provide a public key for ssh access
 - NO OTHER USER ACCOUNTS.

- Firewall Issues
 - GRE tunnel access to/from other gateway nodes
 - ndnx access to/from clients of a gateway node
 - Port 6363
 - Broadcast/Multicast group on UDP 224.0.23.170 port 56363
 - ssh access for WU team
 - Probably some others that we’ll learn about as we bring it all up...

- Certificates and keys
 - UCLA team is working on a new set of tools.
 - Local operator will be responsible for signing keys for local users
Managed Gateway Router Nodes

- **Configuration and Maintenance (Done by WU team)**
 - **git vs. apt-get**
 - Tagged versions of packages from git repos and build on each node
 - In the future we may build Ubuntu pkgs for installation from a PPA
 - `> sudo apt-get install ndn`
 - **What NDN related packages?**
 - `ndnx`: (ndnd, ndnr, ...)
 - OSPFN3.0
 - `ndnxmli` client: generates data for ndnmap
 - NDN packages to support certificates and keys
 - Perhaps a few others...
 - **Configuration of a Node**
 - GRE Tunnels
 - OSPFN Configuration
 - Configuration files installed from git repo
 - Separate set of files for each Testbed node
 - WU team will define and maintain configuration files
 - May use a private git repo to protect configuration files
 - In the future configuration files may be installed as part of ‘apt-get’
Managed Gateway Router Nodes

- **Plan for releases**
 - 3 month cycle (11/2013, 2/2014, ...)
 - Testing of new releases
 - Unit testing of each individual package is done by owner of package
 - Integration testing to be done by WU
 - WU’s Open Network Lab (ONL) Testbed (http://onl.wustl.edu/)
 - More about this later...

- **Research Testbed vs. Reliable Managed Testbed**
 - What are we allowed to experiment with?
 - Strategy layer experimentation?
 - Caching and forwarding strategy experimentation?
 - Routing protocol experimentation?
 - ndnd development responsibilities
 - Strategy layer
 - Caching and Forwarding
 - Bug Fixes
 - Testing and Release
NDN Testbed Operations

- **Responsible Parties**
 - Washington U. Team will manage
 - Remote restarts
 - Remote updates
 - Remote configuration
 - Operator(s) at each site will be responsible for:
 - Physical Installation
 - Initial OS Installation
 - Manual interventions (power cycle, crash recovery, etc.)
 - Local user key signing
 - Testbed Root key management
NDN Testbed Operations (continued)

- **Status Monitoring**
 - We plan to consolidate and augment current status monitoring tools
 - Memphis: http://netlab.cs.memphis.edu/script/htm/status.htm
 - Arizona: http://www.cs.arizona.edu/people/yifengl/tbs.html
 - Node status
 - Link status
 - ndnd status
 - Memory size?
 - etc...
 - Routing/Prefix/FIB status
 - etc...

- **Usage Monitoring**
 - Bandwidth
 - Investigate what ndnd internals can be monitored effectively
 - PIT entries?
 - Content store?
 - Application specific monitoring?
 - etc...
Current NDN Testbed
NDN Testbed Changes

- **Removal of WU SPP Nodes**
 - Special purpose ATCA chassis that were part of the GENI project
 - Located at Internet2 Sites
 - No longer feasible time-wise to maintain
 - Will not conform to new NDN-NP Testbed policy constraints

- **Change in participating sites**

- **Re-organization of inter-node links**
 - Three general regions:
 - California (UCLA, UCLA Remap, UCSD)
 - Continental Divide (Arizona, CSU)
 - Midwest (Michigan, Memphis, UIUC, WashU)

- **We already have requests from non-members to join**
 - Beijing and other sites in China
 - Paris and other sites in Europe
 - Others?
Proposed NDN-NP Testbed: Geographic View
All IPs have the form 10.0.x.y. Last two bytes shown in above diagram.
Each Site is assigned a /24 subnet
Each link is in a /30 subnet
 » Link 10.0.x.y/10.0.x.y+1 is in a subnet of 10.0.x.y-1 – 10.0.x.y+2
NDN Testbed Changes (continued)

- **Testbed size?**
 - Are there research goals that require a larger testbed?
 - Are there any research goals that should influence link choices?
 - Rich vs. sparse interconnection

- **Alternatives for adding more nodes**
 - Extra nodes at member sites
 - Non-member sites
 - EC2 Instances
NDN Testbed Integration Testing using the Open Network Lab (ONL)

- ONL is an Internet-accessible networking lab (onl.wustl.edu)
 - built around set of extensible gigabit routers
 - intuitive Remote Lab Interface makes it easy to get started
 - extensive facilities for performance monitoring

- Current Resources:
 - 14 highly configurable five port Network Processor based Routers
 - over 100 rack-mount computers that serve as end systems
 - including multicore servers with 8 cores and 48 cores
 - Support for ccnx

- In the works:
 - Support for ndnx
 - Support for VMs
 - 84 new machines (24 12 core, 60 2 core)
 - 12 5-port software routers
 - 8 2-port 10Gb/port (or 16-port 1Gb/port) software routers
Overview of ONL

- Remote access through the Internet using a graphical user interface (called the RLI)
- Provides access to variety of hardware resources
- Experimental networks built with configuration switches
NDN Testbed Topology in ONL for Testing