NDN-RTC

Peter Gusev
UCLA REMAP
9/5/2014

NDNComm 2014 Demo

* Producer 1: Live NDNComm
HD streaming (1080p 30fps,
1.5Mbps)

. Producer 2: REMAP office
webcam producer (SD, 30fps,

500Kbps)
. Demo 1:
— Consumer for 3 streams: NDN-Comm
NDNComm, REMAP and producer
Demo-2

— Producer: webcam producer
(SD, 25fps, 500Kbps)
* Demo 2:

— Consumer for 3 streams:
NDNComm, REMAP and
Demo-1

— Producer: webcam producer
(SD, 25fps, 500Kbps)

1/6/2015 2

NDN Real Time Conferencing Library

Goals:

— Real-time audio/video/text chat library which allows many-to-
many conferencing over the NDN network and requires no
direct communication between peers

— Starting point for NDN traffic congestion control algorithm
research

— Test NDN-CPP library and NFD
— Traffic generator for the testbed

Initial gains over IP:
— No load on a publisher (network does content distribution)

— Intrinsic multicast (one-to-many and many-to-many scenarios)
— On track for peer-to-peer with no STUN, TURN, etc.

NDN-RTC library

e C++ code

* Linked against NDN-CPP and
WebRTC libraries

* |nterfaces:

— Publish media (audio/video)
streams

— Fetch media (audio/video)
streams from multiple
producers

* Demo app is provided
— Publishing audio/video stream

— Fetching audio/video streams
(multiple)

1/6/2015 4

Publisher

RAW frames stream

pime

Camera

-
=
g D

-]
-]
-]

ooo

0| |O
0| |O
;\][;

0| |O

D

0| O
0| O
;\][;

0| |C
0| |C
;\][;

-]
-]
-]

o0o

v

Encoder1

v

Cache

*

interests data

Publisher. Multiple encoder threads

pime

RAW frames stream

Camera
Encoder1 Encoder2 EncoderN
v
Cache

b

interests data

Publisher. Multiple media streams

Straam N

RAW frames stream

Cu?'—»a e HEx RS mmmma _

Sy e s
RAW frames stream Erooda

, B
C;;ﬁ;—’ﬁ HoHE <« B o HE o H o HE o Eﬁ' .

RAW frames stream

Camera 1

i ==

!

Cache

o

interests data

1/6/2015

Segmentation

 Encoded frames (1Mbps):

— Key: ~“30KB (20 segments) Header | <& Frame N
— Delta: ~1-6KB (~4 segments) @
Header : i Frame N :
 Producer stores segments l l l l
i n a C a C h e Header |%00 %01 %02 %03
p p 9P 9P 9P P
— Segment size - 1000 bytes
- N D N Ove rh ea d - ~330_450 .../frames/N/delta/%00 .../frames/N/delta/%01 @ .../frames/N/delta/%02 .../frames/N/delta/%03
byt e S HdrO Header %00 r %01 r o r o

— Complete segment less
than MTU

User namespace

Root:

— User prefix (username)

Media streams:

— Maedia streams (audio/video)
— Streams meta info

Encoding threads:

— Individual encoding parameters

Frame type:

/<root>/ndnrtc/user/<producer-id>/

streams

/o

™~

— Key and Delta frames in separate branches

Packet:

— Individual media packets (audio samples,

encoded video frames)

Data type:

— Data and Parity segments in separate branches

Segments:
— Actual NDN-data objects

audio0 videoO videol stream info
/ N
threadl threadl thread2 thread3
frames
|
delta key
[N
0 1
N
data parity

e

%00

%01

%MM

%00

%01

root

media streams

encoding threads

packet_type

packet

data_type

segment

1/6/2015

Consuming

Interest pipeliner

>

\Interests\ﬁ NDN

T

(

%00%N1

Segments

%00%N?2

%00%NN

L

O
Renderer

(|

O

O Raw frame O

(|

playhead

Playout

'

Decoder

Encoded
frame

10

Frame fetching

%00 | %00... Pe00%N publishing
time
Tous(N)

NDN Consumer
| |
[} [}
: e — & treq(n,i) - request time
interests for [0,M] segments : (for i-th segment interest)
A [} [}
generation delay dgen(n) : !
| 1 RTT
frame N, timestamp T(n) !
|
[}
[}

\ 4

1 tar(n,i) - segment arrival time

assembling
time, dasm(n)

\I
\' Y~ tar(n) - frame arrival time

|
|
I

* Generation delay d_g"— time interval between recei\I/ing an interest and satisfying it
with data (producer-side)

* Assembling time d M- time needed to fetch all frame segments (consumer side)

* RTT, - consumer-measured round trip time for the interest (consumer side)

1/6/2015 11

Interest pipeline and retransmission

new frame - no segments fetched yet

] frame being assembled (some segments fetched)

. fully fetched frame

frames move

\

re-transmit playback
pointer pomter
Lo B

| >

7}
oY)

%

interests for data interests for missing
segments issi
9 segments missing data
segments segments

B, >=RTT, B, >=RTT
Minimal buffer size >= 2*RTT milliseconds

1/6/2015

should be

assembled,

otherwise -
considered missed

12

Chase mode

There is no direct coordination b/w consumers and producers

Producer generates data at high rate (¥20-30FPS) and this data
becomes outdated fast

Start-up time: consumer is aware that stale data is present in the
network and tries to avoid playing it back

Chasing mechanism:

— Cache exhaustion:

» Latest data can not arrive faster than it’s being produced - it arrives at producer’s
rate

* Cached data arrives with the same frequency it was requested
— Chase mode:
* issue interest for the RIGHTMOST segment

* upon receiving first segment — start issuing interests for the next frames with
interval d™ < Producer rate
* Monitor d?"— frame inter-arrival interval:

— If d?"is increasing — continue fetching
— If d?"is stable — switch to “Fetch” mode

Milliseconds

70

60

50

40

30

20

10

Chase mode (cont.)

darr
thase mogde Fetch mode
—
l/
/////””’///7
/|
/nl//
200 400 600 800 1000 1200 1400 1600 1800
Milliseconds

Future improvement (suggested by Dave Oran):
1. piggyback video sync data on audio stream
2. use audio stream for chasing instead of video

1/6/2015

2000

14

Forward Error Correction

OpenFEC library

Producer publishes parity data under separate namespace:
— <frame prefix>/<frame#>/parity/<segments>
Consumer may additionally fetch parity data for enabling FEC

If by the playback time frame is missing any segments — FEC is
applied as the “last resort”

Amount of parity data is configurable (currently 20%)

Collaborated with Daisuke Ando (Exchange student from
Japan)

Future improvement (suggested by Dave Oran): use frame-
level parity data rather than segment-level

Demo app

* CO”SOle a pp . A-_E.':i.i::"fﬁ’“__,:“..:Lh_ | el Ty
— MacOS X 10.9 and up = NDNIfS.'f;d;f
— Buildable from sources e :

github.com/remap/ndnrtc

— Redmine

redmine.named-
data.net/projects/ndnrtc

e Functionality:
— Publish audio/video stream

— Fetch multiple audio/video
streams

1/6/2015 16

Future steps

Real-time Adaptive Rate Control:
— In collaboration with Panasonic R&D department (Muramoto-san, Yoneda-san)
— Keep low-latency transmission & best throughput
— Maintain RTT fairness (self-fairness)
— Consumer-driven
— NW bandwidth estimation based on RTT and timeouts
— Control interest rate according to bandwidth estimation

Conference discovery (Zhehao Wang)
Text chat (Zhehao Wang)

Browser integration (Zhehao Wang)
Security

Desktop conference tool

— Adding modularity to the existing code
Compare to existing solutions

— Can be RTC over NDN better than IP?

Scalability tests

Areas for future research

Interests pipelining

— Express just enough interests to fetch needed frames and meet the
deadline, but keep low latency

Alternatives to cache exhaustion

— How consumer can be sure that it’s getting the latest data from the
network without explicit producer-consumer signaling?

Security
— Trust model; signing and verification; encryption approach?

Scalability
— How many conference peers can there be?
— What are the requirements for the forwarder?
— What are the requirements for the peers?
Relationship between forwarder strategy and application
— Best route strategy 2

Links

e Source code
— https://github.com/remap/ndnrtc

— branches:
* master — current released version (v0.9.alpha4)
e dev - current development branch (v0.9.alpha5)

* MacOS binaries (library, demo, supporting files)
— https://github.com/peetonn/ndnrtc-archive

— Special branch for demo events:
* demo/ndncomm?2014

e Redmine
— http://redmine.named-data.net/projects/ndnrtc/issues

1/6/2015

19

https://github.com/remap/ndnrtc
https://github.com/peetonn/ndnrtc-archive
http://redmine.named-data.net/projects/ndnrtc/issues

1/6/2015

Thanks

Q&A

Peter Gusev
peter@remap.ucla.edu

20

