
NDN-RTC

Peter Gusev

UCLA REMAP

9/5/2014

NDNComm 2014 Demo

• Producer 1: Live NDNComm
HD streaming (1080p 30fps,
1.5Mbps)

• Producer 2: REMAP office
webcam producer (SD, 30fps,
500Kbps)

• Demo 1:
– Consumer for 3 streams:

NDNComm, REMAP and
Demo-2

– Producer: webcam producer
(SD, 25fps, 500Kbps)

• Demo 2:
– Consumer for 3 streams:

NDNComm, REMAP and
Demo-1

– Producer: webcam producer
(SD, 25fps, 500Kbps)

1/6/2015 2

NDN-Comm

producer

REMAP-1
producer

Demo-1
producer+consumer

Demo-2
producer+consumer

CAIDA/UCSD

REMAP

UA (arizona)

Simulated periodic
link break

Demo-1

Demo-2

NDN Real Time Conferencing Library

Goals:
– Real-time audio/video/text chat library which allows many-to-

many conferencing over the NDN network and requires no
direct communication between peers

– Starting point for NDN traffic congestion control algorithm
research

– Test NDN-CPP library and NFD

– Traffic generator for the testbed

Initial gains over IP:
– No load on a publisher (network does content distribution)

– Intrinsic multicast (one-to-many and many-to-many scenarios)

– On track for peer-to-peer with no STUN, TURN, etc.

1/6/2015 3

NDN-RTC library

• C++ code

• Linked against NDN-CPP and
WebRTC libraries

• Interfaces:
– Publish media (audio/video)

streams

– Fetch media (audio/video)
streams from multiple
producers

• Demo app is provided
– Publishing audio/video stream

– Fetching audio/video streams
(multiple)

1/6/2015 4

Publisher

1/6/2015 5

Publisher. Multiple encoder threads

1/6/2015 6

Publisher. Multiple media streams

NDN

Cache

interests data

1/6/2015 7

Segmentation

• Encoded frames (1Mbps):

– Key: ~30KB (20 segments)

– Delta: ~1-6KB (~4 segments)

• Producer stores segments
in app cache

– Segment size - 1000 bytes

– NDN overhead - ~330-450
bytes

– Complete segment less
than MTU

1/6/2015 8

User namespace

• Root:
– User prefix (username)

• Media streams:
– Media streams (audio/video)

– Streams meta info

• Encoding threads:
– Individual encoding parameters

• Frame type:
– Key and Delta frames in separate branches

• Packet:
– Individual media packets (audio samples,

encoded video frames)

• Data type:
– Data and Parity segments in separate branches

• Segments:
– Actual NDN-data objects

1/6/2015 9

/<root>/ndnrtc/user/<producer-id>/

streams

audio0 video0 video1 stream info

thread1 thread1 thread2 thread3

frames

root

media streams

encoding threads

packet_type

packet

data_type

segment

delta key

0 1 ... N

data parity

%00 %01 ... %MM %00 %01

Consuming

1/6/2015 10

Buffer

Raw frame Decoder Encoded
frame

%00%N1

%00%N2

%00%NN

...

Segments

Renderer

NDN Interest pipeliner Interests

Playoutp
la

y
h

e
a

d

Frame fetching

1/6/2015 11

• Generation delay dn
gen – time interval between receiving an interest and satisfying it

with data (producer-side)
• Assembling time dn

asm – time needed to fetch all frame segments (consumer side)
• RTTn – consumer-measured round trip time for the interest (consumer side)

Interest pipeline and retransmission

B1 >= RTT, B2 >= RTT
Minimal buffer size >= 2*RTT milliseconds

1/6/2015 12

Chase mode

• There is no direct coordination b/w consumers and producers
• Producer generates data at high rate (~20-30FPS) and this data

becomes outdated fast
• Start-up time: consumer is aware that stale data is present in the

network and tries to avoid playing it back
• Chasing mechanism:

– Cache exhaustion:
• Latest data can not arrive faster than it’s being produced – it arrives at producer’s

rate
• Cached data arrives with the same frequency it was requested

– Chase mode:
• issue interest for the RIGHTMOST segment
• upon receiving first segment – start issuing interests for the next frames with

interval dint < Producer rate
• Monitor darr – frame inter-arrival interval:

– If darr is increasing – continue fetching
– If darr is stable – switch to “Fetch“ mode

1/6/2015 13

Chase mode (cont.)

1/6/2015 14

Chase mode Fetch mode

darr

4000 200 600 800 1000 1200 1400 1600 1800 2000

10

20

30

40

50

60

70

Milliseconds

M
ill

is
e
c
o

n
d

s

Future improvement (suggested by Dave Oran):
1. piggyback video sync data on audio stream
2. use audio stream for chasing instead of video

Forward Error Correction

• OpenFEC library

• Producer publishes parity data under separate namespace:
– <frame prefix>/<frame#>/parity/<segments>

• Consumer may additionally fetch parity data for enabling FEC

• If by the playback time frame is missing any segments – FEC is
applied as the “last resort”

• Amount of parity data is configurable (currently 20%)

• Collaborated with Daisuke Ando (Exchange student from
Japan)

• Future improvement (suggested by Dave Oran): use frame-
level parity data rather than segment-level

1/6/2015 15

Demo app

• Console app
– MacOS X 10.9 and up

– Buildable from sources
github.com/remap/ndnrtc

– Redmine
redmine.named-
data.net/projects/ndnrtc

• Functionality:
– Publish audio/video stream

– Fetch multiple audio/video
streams

1/6/2015 16

Future steps

• Real-time Adaptive Rate Control:
– In collaboration with Panasonic R&D department (Muramoto-san, Yoneda-san)
– Keep low-latency transmission & best throughput
– Maintain RTT fairness (self-fairness)
– Consumer-driven
– NW bandwidth estimation based on RTT and timeouts
– Control interest rate according to bandwidth estimation

• Conference discovery (Zhehao Wang)
• Text chat (Zhehao Wang)
• Browser integration (Zhehao Wang)
• Security
• Desktop conference tool

– Adding modularity to the existing code

• Compare to existing solutions
– Can be RTC over NDN better than IP?

• Scalability tests

1/6/2015 17

Areas for future research

• Interests pipelining
– Express just enough interests to fetch needed frames and meet the

deadline, but keep low latency

• Alternatives to cache exhaustion
– How consumer can be sure that it’s getting the latest data from the

network without explicit producer-consumer signaling?

• Security
– Trust model; signing and verification; encryption approach?

• Scalability
– How many conference peers can there be?
– What are the requirements for the forwarder?
– What are the requirements for the peers?

• Relationship between forwarder strategy and application
– Best route strategy 2

1/6/2015 18

Links

• Source code
– https://github.com/remap/ndnrtc

– branches:
• master – current released version (v0.9.alpha4)

• dev – current development branch (v0.9.alpha5)

• MacOS binaries (library, demo, supporting files)
– https://github.com/peetonn/ndnrtc-archive

– Special branch for demo events:
• demo/ndncomm2014

• Redmine
– http://redmine.named-data.net/projects/ndnrtc/issues

1/6/2015 19

https://github.com/remap/ndnrtc
https://github.com/peetonn/ndnrtc-archive
http://redmine.named-data.net/projects/ndnrtc/issues

Thanks

Q&A

Peter Gusev
peter@remap.ucla.edu

1/6/2015 20

