ANDaNA: Onion Routing for NDN

Steve DiBenedetto
Colorado State University

ANDaNA: Anonymous Named Data Networking Application
NDSS ’12

Steven DiBenedetto, Paolo Gasti, Gene Tsudik, Ersin Uzun
Information Linkage & Leakage

I: /omh/blood-pressure/steve

D: /omh/blood-pressure/steve
{ mmHg: 100 }
Information Linkage & Leakage

I: /omh/blood-pressure/steve

D: /omh/blood-pressure/steve
{ mmHg: 100 }
Information Linkage & Leakage

I: /omh/blood-pressure/steve

D: /omh/blood-pressure/steve
{ mmHg: 100 }
Information Linkage & Leakage

I: /omh/blood-pressure/steve

D: /omh/blood-pressure/steve
{ mmHg: 100 }
Information Linkage & Leakage

I: /omh/blood-pressure/steve

D: /omh/blood-pressure/steve
{ mmHg: 100 }
Information Linkage & Leakage

I: /omh/blood-pressure/steve
Information Linkage & Leakage

I: /omh/blood-pressure/steve
Information Linkage & Leakage

l: /omh/blood-pressure/steve
Information Linkage & Leakage

l: /omh/blood-pressure/steve
Information Linkage & Leakage

I: /omh/blood-pressure/steve
Information Linkage & Leakage

I: /omh/blood-pressure/steve
Information Linkage & Leakage

I: /omh/blood-pressure/steve
Nonce: <rand-int>
Lifetime: <int>
Loc: /fitbit/key
Information Linkage & Leakage

I: /omh/blood-pressure/steve
Nonce: <rand-int>
Lifetime: <int>
Loc: /fitbit/key

D: /omh/blood-pressure/steve
Loc: /fitbit/key
{ mmHg: 100 }
Information Linkage & Leakage

I: /omh/blood-pressure/steve
Nonce: <rand-int>
Lifetime: <int>
Loc: /fitbit/key

D: /omh/blood-pressure/steve
Loc: /fitbit/key
{ mmHg: 100 }
Information Linkage & Leakage

I: /omh/blood-pressure/steve
Nonce: <rand-int>
Lifetime: <int>
Loc: /fitbit/key

D: /omh/blood-pressure/steve
Loc: /fitbit/key
{ mmHg: 100 }
Information Linkage & Leakage

I: /omh/blood-pressure/steve
Nonce: <rand-int>
Lifetime: <int>
Loc: /fitbit/key

D: /omh/blood-pressure/steve
Loc: /fitbit/key
{ mmHg: 100 }
Information Linkage & Leakage

I: /omh/blood-pressure/steve
Nonce: <rand-int>
Lifetime: <int>
Loc: /fitbit/key

D: /omh/blood-pressure/steve
Loc: /fitbit/key
{ mmHg: 100 }
Information Linkage & Leakage

- Encrypted names, payloads, and header fields may link requester to sensitive content or leak information
Onion Routing in NDN

I: /omh/blood-pressure/steve
Nonce: <rand-int>
Loc: /fitbit/key

/OR-1

/OR-2
Onion Routing in NDN

I: /OR-1

I: /OR-2

I: /omh/blood-pressure/steve
Nonce: <rand-int>
Loc: /fitbit/key

/OR-1

/OR-2
Onion Routing in NDN

I: /OR-1
I: /OR-2
I: /omh/blood-pressure/steve
Nonce: <rand-int>
Loc: /fitbit/key

/OR-2
Onion Routing in NDN

I: /OR-1
Nonce: <rand-int>
Loc: /fitbit/key

I: /OR-2

I: /omh/blood-pressure/steve

/OR-1

/OR-2

/OR-2
Onion Routing in NDN

I: /omh/blood-pressure/steve
Nonce: <rand-int>
Loc: /fitbit/key
Onion Routing in NDN

I: /OR-1
Nonce: <rand-int>
Loc: /fitbit/key

I: /OR-2

I: /omh/blood-pressure/steve

/OR-1

/OR-2
Onion Routing in NDN

I: /omh/blood-pressure/steve
Nonce: <rand-int>
Loc: /fitbit/key

/OR-1

/OR-2
Onion Routing in NDN

I: /omh/blood-pressure/steve
Nonce: <rand-int>
Loc: /fitbit/key

/OR-1

/or-2
Onion Routing in NDN

I: /omh/blood-pressure/steve
Nonce: <rand-int>
Loc: /fitbit/key

/OR-1

/OR-2
Onion Routing in NDN

D: /omh/blood-pressure/steve
Loc: /fitbit/key
{ mmHg: 100 }
Onion Routing in NDN

D: /omh/blood-pressure/steve
Loc:/fitbit/key
{mmHg:100}
Onion Routing in NDN

D: /omh/blood-pressure/steve
Loc: /fitbit/key
{ mmHg: 100 }
Onion Routing in NDN

D: /omh/blood-pressure/steve
Loc: /fitbit/key
{ mmHg: 100 }

D: /OR-2

/OR-1

/OR-2
Onion Routing in NDN

D: /OR-1
Loc: /fitbit/key
{ mmHg: 100 }

D: /OR-2
Loc: /omh/blood-pressure/steve

/OR-1

/OR-2
Onion Routing in NDN

D: /omh/blood-pressure/steve
Loc: /fitbit/key
{ mmHg: 100 }
Onion Routing in NDN

D: /OR-1

Loc: /fitbit/key
{ mmHg: 100 }

D: /OR-2
D: /omh/blood-pressure/steve

/OR-1

/OR-2
Onion Routing in NDN

D: /OR-1

D: /OR-2

D: /omh/blood-pressure/steve
Loc: /fitbit/key
{ mmHg: 100 }
Improvements Over Tor

• Need fewer relays than Tor (2 vs 3)
 – Potentially 1 less Internet-wide RTT

• ANDaNA paths are Highly ephemeral
 – No path setup cost
 – Change keys and relays at will during a Data stream without interruption
 – Tor sets up much longer lived circuits in comparison (~ 10 minutes)

• Symmetric key session-based mode also available
 – Can be freely intermixed with public key crypto mode for the same Data stream.

• NDN gives us a lot for free
 – CS improves retransmission and chance for cache hit at exit node
 – OR prefixes can refer to multiple relays
 – OR directory more robust to attacks thanks to signed Data
The Exit Node Problem

I: /omh/blood-pressure/steve
Exclude: <name-comp>
Loc: /fitbit/key

D: /omh/blood-pressure/steve
Loc: /fitbit/key
{ mmHg: 100 }

/OR-1

/OR-2
The Exit Node Problem

NDN-NP environments are not the general case: both are privacy/security aware.
The Exit Node Problem

NDN-NP environments are not the general case: both are privacy/security aware.
The Exit Node Problem

NDN-NP environments are not the general case: both are privacy/security aware.
The Exit Node Problem

NDN-NP environments are not the general case:
both are privacy/security aware
The Exit Node Problem

NDN-NP environments are not the general case: both are privacy/security aware.
Summary

• ANDaNA provides a Tor-like service for NDN, but new tradeoffs to consider

• ANDaNA is fundamentally a proxy: use as many (or few) relays as needed
Thoughts

• What’s the threat model for NDN-NP?

• Tradeoffs:
 – ANDaNA provides low latency anonymity
 – Mix networks could be used if NDN-NP can tolerate latency

• Implementing confidentiality:
 – Confidentially must be left to applications.
 – Users don’t own the network, but can own overlays