Packet Validation in the
Network Environments

Packet Authentication

 How fo authentficate a data packet
containing the electricity usage of @
room at certain timee

« Data is signed, but how to verity the
signature?
— How to get the signer’s public key?
— How to authenticate the signer?
— Why the signer should be trusted?
— Should the signer be trusted at this momente

Data & Certificate

Retrieved as data packets
— public keys are just another type of content

Data packets are similar to certificates

— datais sighed

Data packets are incomplete certificates
— no signature validity period

— No signature revocation information

Current solution:

— put validity period & other extensions in
content

ldeal solution:
— extend Signaturelnfo

Name: Certificate name

Metalnfo:

Content: (DER encoded)
ValidityPeriod:
NotBefore
NotAfter
PublicKeylInfo:
Extensions:

Signaturelnfo:
SignatureType:
KeyLocator:

SignatureValue:

Name: Certificate\r{ame

Metalnfo:

Content:
PublicKeylInfo: (Still X509 format)

Signaturelnfo:
SignatureType:
KeylLocator:
ValidityPeriod:
CriticalExtension?
NonCriticalExtension?

SignatureValue:

Naming

Every data is named, what is the name of certificate?¢

A certificate binds a key to a namespace (identity)

— e.g., /<namespace>/[Keyld]
« absolute Keyld: globally ungiue, e.g., key hash
+ relatfive Keyld: uniquely identify a key under the namespace, e.g, SegNo

Application interprets the namespace as some real world
identity

— in BMS, “/bms/boelter/4805/electrical” is interpreted as a sensor in
the Room 4805 of Boelter Hall at UCLA

— in openHealth, “/ucla/haitao/ndnex/dvu” is interpreted as @
health data publisher of a user */ucla/haitao”

Certificate name may include version number
— different signature versions (Key rollover)

Public Key Fetching/Provisioning

« Express an interest using the cert name in KeyLocator
— certificate name of signer’s public key (w/o version)

« Certfificate is published somewhere

— current solution:

« published as NDN DNS record
— /ndn/ucla/KEY/yingdi/ksk-123/ID-CERT/%0]1

« published through repo

— issue: prefix aggregation

« demux interest for certificate introduces extra name components
in cert name
— /ndn/KEY/ucla/yingdi/ksk-123/ID-CERT/%0]1
— /ndn/ucla/yingdi/KEY /ksk-123/ID-CERT/%0]1

« General certificate infrastructuree or app-specific
cerfificate infrastructure?

Signer Authentication

« Construct a chain of tfrust

/oms/KEY/dsk-376 <+ Trust anchor

The origin of trust

/bms/boelter/KEY/dsk-821

A

Policy

The rule to regulate Infermediate Keys

the chain of frust

/bms/boelter/4805/KEY/dsk-433 |«

The tool to verify
signature

/bms/boelter/4805/electrical/
20150101

Validation Framework

Origin Validation Request

f Info Manager h Key

Retrival

Unverified Info

Info Fetcher > Policy Checker Failure

s
|
|

Internal
Validation
Request

7

| Trusted Info Check
: C Trust Anchors) Signaturi
I

Authenticator Failure

certificate

Failure Success

Validation Framework

Origin Validation Request

Info Manager b Key *

e Retriv
Unverified Info

Info Fetcher - Policy Checker Failure

s
|
|

Inter
Validation
Request

7

'Trusted Info Check
C Trust Anchors Signatur«i

Authenticator Failure

certificate

Failure Success

Policy
Conditions on the Signaturelnfo

Signaturelype

— some data may require certain type of signature
 algorithm
« key size

KeylLocator
— some data must be signed by certain parties

ValidityPeriod
— signature must be valid at certain timestamp

Policy Rules

A rule consists of
— «qafilter
— aset of checkers

Filter

— which packet should be
checked by the rule

Checker

the conditions that the packet’s
SigInfo must meet

— could be more than one sefts of
valid conditions

— pass one checker, pass the rule
— fail all checkers, fail the policy
checking
Order of rules matters

— packet will be checked by the
first matched rule

— rules with more specific filter
should go first

i Checker

Rule 1 Filter

: Checker

Rule 2 [Filter :Checker

Rule 3 Filter : Checker

Checker

Rule 4 Filter

Checker

TMTUMYV MUV MU TMUMU

eaudbadhadladad

R4

—_—

0

Policy Language

Configurable

— allow apps/users to specify its
own trust models

Intferpretable
— library can build the validator
according to configuration
— enfifies with the same
configuration file share the same
trust model

« if router can fetch the policy,
router knows how to validate

data

Easy to distribute
— can be published as data packet

— data name can be fixed with
implicit digest

rule {
filter {
packet-type data
packet-name <bms><>*
}
checker {
signature-type ecdsa-sha256
min-key-size 256
key-locator {
k-pattern (<>*)<KEY>(<>*)<><ID-CERT> \1\2
h-relation is-prefix-of
p-pattern (<>*) \1
}
}
checker {
signature-type ecdsa-sha256
min-key-size 256
key-locator {
k-pattern (<>*)<KEY>(<>*)<><ID-CERT> \1\2
h-relation is-prefix-of
p-pattern <bms>(<>*) \1
}
}
}

Multiple signature

 The same content object may be signed by different keys

— certificates: the same <name, key> pair may be certified by
different parties

* in openHealth, a doctor’s key may be signed by both patient & medical
board of California in order to access the patient’s data

— signature agility: different signing algorithms & key size

« Intfroduce a signature extension: OtherSignaturelLocator

v /...N1/S0 /...NN1/Sn
Signaturelnfo: Siginfo1 Siginfo7
NonCriticalExtension: SigValuet SigValue?
OtherSignatureLocator -~
g Siginfo2 Siginfo8
SigValue2 SigValue8

Validation Framework

Origin Validation Request

Key
Retrival

s
|
|

Unverified Info

Info Fetcher - Policy Checker Failure

Internal
Validation
Request

'd

'"Trusted Info heck

|
i C Trust Anchors) gnaturi

' N Authenticator Failure

certificate

Failure Success

Public key retrieval issues

Slow start
— reftrieve keys one-by-one, multiple RTTs
— may involve more data
« multiple signatures
Single point failure
— validation fail if one key is missing

 limited internet access
« key provision failure

Key Bundle: why not ask data provider to collect keys
and publish them along with the data?
— fate sharing
« if data can be fetched, so do the keys
— efficiency
 if producer collect the keys once, it can benefit many verifiers

Key Bundle Requirements

Publisher & consumer agree on the trust policy and frust
anchor

INn BMS

— single trust anchor
— hierarchical policy

/bms/boelter/KEY/dsk-821

While expressing interest for data, also
expressing interests for proofs

For data
——» | /bms/boelter/4805/eletrical/20150201

/bms/boelter/4805/electrical/
For proof 20150101
| /bms/boelter/4805/eletrical/20150201/AUTH_INFO/

hierarchy/3d4c89ef..
/bms/boelter/KEY/dsk-821

/bms/boelter/4805/KEY/dsk-433

Validation Framework

Origin Validation Request

Info Manager b Key
Retrival

s
|
|

Unverified Info

Info Fetcher - Policy Checker

Internal
Validation
Request

',Trusted Info Check
C Trust Anchors

Authenticator

certificate

Failure Success

Signature Verification

Start when reaching an
pre-authenticated key

Check signature status

— should be done after the
signature is verified

— ensure the signature has
not been revoked yet

Once an infermediate
signing key is validated
— verify the signature of
depending packets

— recursively go back fo the
original data packet

Build validation path

7

A A

D,: Original Data

A
Success Fail

K,: Signing Key of D,

>

K,: Signing Key of K,

ure
Success \\Failure
ure

- = = I
Success Fail

Kj: Signing Key of K,

| Success | | Failure |

\

| Pre-authenticate key |

Propagate validation result

\

Signature status checking

« Checkif the signature has been revoked before expiration

 Verifier may refrieve signature status data | Signaturelnfo:
— /<DataName>/[DataDigest]/[Timestamp] .

— content: (NO”)CFitiC&'EXtenSion:
- signature status: good, revoked StatusChecking:
« reasons (optional): revocation reasons ForwardingHint
AuthorizedSigner

* Introduce a signature extension StatusChecking
— ForwardingHint: where to forward the signature status interest

— é\thorizedSigner: who can be trusted for signing signature status
ata

Thanks!

