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Application Sync Scenarios

• AppStore: server has millions of apps, each 
user’s phone has a (different) subset of apps 

• Facebook: each user interested in a set of feeds 
• Subscribe to New York Time news updates 
• Twitter, Google+ and etc. 

• How to achieve this synchronization efficiently? 



Problem Definition

• Data in a data stream: <prefix>/<version> 

• Producer: N data streams, P = {p1, p2, …, 
pN}, pi is a name prefix 

• Consumer: M data streams, Q = {q1, q2, …, 
qM}, qi in P & M <= N, Q is Subscription List 

• Subscription list may change over time 
• How to synchronize consumer with 

producer? 3
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Challenges

• Producer:  
• large number of data streams 
• multiple producers, e.g., replicated repos 

• Consumer:  
• any subset of producer’s data streams 

• large number of consumers
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Naive Solutions
• Consumer sends a pending Interest for each prefix 

periodically 

• Problem: too many Interests if consumer has a large 
subscription list 

• Consumer syncs all name prefixes the producer has similar to 
ChronoSync. 

• Two methods: 

• For each different consumer, generate a new sync 
group with all producers based on consumer’s dataset 

• Consumer learns whole dataset and keep all these 
information sync’ed



6

Our Solution
• Producer: finding out what has changed 

• Encodes its data streams' status in Invertible Bloom Filter 
(IBF) and sends IBF in Sync Reply 

• Consumer sends back old IBF in Sync Interest 

• Get changes by calculating difference between current 
IBF and old IBF in Sync Interest 

• Consumer: telling producer its subscription list 

• Encodes the subscribed prefixes in Bloom Filter (BF) 

• Sends BF in Sync Interest 

• Producer queries this BF and determines if an update 
should be sent to a consumer
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Protocol design
• Case 1: Producer 

generates new data 
• Check each 

consumer’s sync 
interest and 
determine whether it 
is subscribed by them 

• Case 2: Producer 
receives sync interest 
• Producer calculates 

changes = current IBF 
- old IBF 

• Sends sync reply if 
any change is in 
consumer’s 
subscription list (BF)



Experiment setup

• Topology: Sprint point of presence 

• 52 nodes, 84 links 

• 1 producer: node with the smallest maximum delay 

• 51 consumers: all nodes other than producer 

• Different sizes of subscription listen for consumer: 10, 10000 

• Different loss rate: 1%, 5% and 10% loss rate 

• Platform: mini-ndn 8



Evaluation

• Comparison methodology 

• Naive approach: for each prefix in subscription list, 
consumer sends pending Interest to fetch data with next 
version in the data stream 

• Metrics 

• Delay: 

• Delay to get update notification from producer 

• Delay to fetch new data (including notification delay) 

• Message overhead: Number of total interests in the 
network
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Results

Message Overhead Processing delay
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Results (Cont.)

Delay to get update notification

Different size of subscribe list Different loss rate
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Results (Cont.)
Delay to fetch new data  

(including notification delay) 
Different size of subscribe list Different loss rate
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Related Work
• Chronosync[1] 

• Use digest tree to synchronize participants in a group 

• geared toward full synchronization: all nodes keep 
knowledge of the whole data streams 

• CCNx Sync[2] and iSync[3,4] 

• pair-wise synchronization protocol 

• iSync uses IBF and has lower message overhead than CCNx 
Sync and ChronoSync 

• Existing approaches are not as efficient as PartialSync for large 
number of subscribers with different and overlapping interest  

• either generate many different Sync groups 

• or sync all the data streams
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Conclusion

• PartialSync has significantly lower message overhead than 
naive solution 

• Size of subscription list has little impact on delay and 
processing overhead of PartialSync 

• Under loss condition, PartialSync has similar delays as naive 
solution
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