<table>
<thead>
<tr>
<th>Merit</th>
<th>APNIC</th>
<th>University of Michigan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eric Wustrow</td>
<td>George Michaelson</td>
<td>Micheal Bailey</td>
</tr>
<tr>
<td>Manish Karir</td>
<td>Geoff Huston</td>
<td>Farnam Jahanian</td>
</tr>
</tbody>
</table>
Background

• We are now down to the last 16 /8s in IPv4 for allocation
• There is a growing concern that these blocks are increasingly less desirable
 – 'Who said the water at the bottom of the barrel of IPv4 addresses will be very pure?’ – NANOG POST
 – “+1” – NANOG POST ;)
• IANA allocated 1.0.0.0/8 to APNIC in January 2010
Today’s Talk

• What is normal for an unallocated block? Is 1.0.0.0/8 any different?
 – Amount of traffic
 – Protocols used
 – Ports used
 – Source and destination distributions

• If it is different, why is it different?

• What can we do about it?
First Evidence that Something is Fishy

- 27 January 2010 RIPE NCC announces 1.1.1.0/24, 1.2.3.0/24, 1.50.0.0/22 and 1.255.0.0/16
- http://labs.ripe.net/content/pollution-18

Yes, that’s more than 10Mbps of traffic!
Routing of 1.0.0.0/8

http://albatross.ripe.net/cgi-bin/rex.pl
Ok but how much of a problem is this?

• Merit (AS237) announced 1.0.0.0/8 from 23 Feb until 1 March 2010
 – Collected 7.9Tb of packet capture data
Traffic to 1.0.0.0/8

Peak Burst at 860Mbps
Packet Rate to 1.0.0.0/8

Peak Burst at 220Kpps

Traffic Log for 1.0.0.0/8 (Pps)

Marked UDP diurnal pattern
But how abnormal is this?

• Merit (AS237) announced 1.0.0.0/8 from 23 Feb until 1 March 2010

• Merit announced 35.0.0.0/8 during the same period. Unused minus a single /17 block.
Is 1/8 Normal? No Way!

Total Volume

130-150 Mbps ≠ 15-25 Mbps

Protocol Distribution

1. UDP
2. TCP
3. ICMP

1. TCP
2. UDP
3. ICMP
Comparing Pollution Types

• 1/8 (% of packets):
 – Scanning: 17.9% (12.5B)
 – Backscatter: 1.9% (1.34B)
 – Misconfiguration (Other): 80.2%

• 35/8 (% of packets):
 – Scanning: 69.7% (15.5B)
 – Backscatter: 6.2% (1.39B)
 – Misconfiguration (Other): 24.1%
What’s going on?

Yes, that’s a Log Scale!

The “hot spots” appear to lie in the low /16s
Top 10 Contributors are 75% of Packets

<table>
<thead>
<tr>
<th>Subnet /24</th>
<th>Packets</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1.0</td>
<td>4797420185</td>
<td>44.5</td>
</tr>
<tr>
<td>1.4.0.0</td>
<td>1884458639</td>
<td>17.5</td>
</tr>
<tr>
<td>1.0.0.0</td>
<td>1069156477</td>
<td>9.9</td>
</tr>
<tr>
<td>1.2.3.0</td>
<td>199452209</td>
<td>1.8</td>
</tr>
<tr>
<td>1.1.168.0</td>
<td>62347104</td>
<td>0.5</td>
</tr>
<tr>
<td>1.10.10.0</td>
<td>26362000</td>
<td>0.2</td>
</tr>
<tr>
<td>1.0.168.0</td>
<td>18988771</td>
<td>0.1</td>
</tr>
<tr>
<td>1.1.0.0</td>
<td>18822018</td>
<td>0.1</td>
</tr>
<tr>
<td>1.0.1.0</td>
<td>14818941</td>
<td>0.1</td>
</tr>
<tr>
<td>1.2.168.0</td>
<td>12484394</td>
<td>0.1</td>
</tr>
</tbody>
</table>
For 1/8, 34.5% of all packets (and 50.1% of all bytes) received are UDP packets to 1.1.1.1, destination port 15206.

– Compare to 35/8, which on the same UDP port (across the entire /8) received a total of 4703 packets (0.00066%) in one day.
What are they?

• Most of the payloads looks like version 2 RTP packets
 – 75% of all bytes to this port have 0x8000 first 16 bits (first two bits is the version number and the next 14 all 0)
 – the majority of packets are 214 bytes in size (89.4%)
 – the vast majority (97.3%) of them are even ports (hinting at RTP data)

• Hand full of bad applications devices
 – All this coming from only 1036 /24s in 1 day of data
 – And from only 1601 source ports seemingly unrelated to the ephemeral port ranges
It turns out, the 1.0.0.0/8 traffic is mostly audio data!

- Took one stream, from XXX.148.35.10, source port 13464 and noticed the PT field was 00
 - PCMU, a raw-ish (compressed dynamic range) audio wave format.
- Converted this into a .au file using wireshark, and it is indeed an audio file. Take a listen for yourself:
1.4.0.0

• For 1/8, 17.5% of all packets (and 10% of all bytes) received are UDP packets to 1.4.0.0, destination port 33368, 514, 33527, 3072, 33493
 – Surprisingly most of these could be interpreted as DNS traffic of different types, A, AAAA, MX, etc.
 – Possibly sourced from ASUS ADSL modem
 – Most appear to be misdirected queries:
 • hotelnikkohimeji.co.jp.
 • x.myspacecdn.com
 • typepad.com
 • th411.photobucket.com
1.2.3.4:5001

- Traffic to 1.2.3.0 is 1.8% of all packets
- Iperf traffic to 1.2.3.4 is roughly 10Mbps of traffic from less than a 100 unique sources
- The top contributor (a single IP from 41.194.0.0/16) sent roughly 70M pkts/day
rfc1918 analysis (or is it rfc32263?)

- Some other popular destinations are 1.1.168.0, 1.0.168.0, 1.2.168.0?
- Most of the packets are going to: 1.1.168.192, 1.0.168.192, 1.2.168.192.
- These IPs are really just 192.168.x.1, in host-byte order (little-endian), someone is not doing a proper htonl(ip_addr); somewhere, and we are catching the data.
- Destination port 80, over UDP (yeah...UDP, not TCP), length = 1, and data of 0x31
What can we do about it?

• APNIC suggested that the following /24s be withheld from general allocation:
 – 1.0.0.0/24
 – 1.1.1.0/24
 – 1.2.3.0/24
 – 1.4.0.0/24
 – 1.10.10.0/24

• If further investigation reveals that the traffic to any of these /24s abates to a normal background level in the future, then these addresses would be returned to the APNIC unallocated address pool at that time.
What can we do about it (cont)?

- It is recommended that the following /16s be temporarily marked as reserved and withheld from general allocation by APNIC:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Prefix</th>
<th>Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0.0.0/16</td>
<td>1.5.0.0/16</td>
<td>1.20.0.0/16</td>
</tr>
<tr>
<td>1.1.0.0/16</td>
<td>1.6.0.0/16</td>
<td>1.32.0.0/16</td>
</tr>
<tr>
<td>1.2.0.0/16</td>
<td>1.7.0.0/16</td>
<td>1.37.0.0/16</td>
</tr>
<tr>
<td>1.3.0.0/16</td>
<td>1.8.0.0/16</td>
<td>1.187.0.0/16</td>
</tr>
<tr>
<td>1.4.0.0/16</td>
<td>1.10.0.0/16</td>
<td></td>
</tr>
</tbody>
</table>

- These /16s should be marked as allocated to APNIC R&D to allow further short term experimentation in the distribution of unsolicited background traffic to these addresses to be conducted by APNIC
Would eliminating hotspots help?

BEFORE

Cumulative Distribution Function of Destination /24s in 1.0.0.0/8 and 35.0.0.0/8

AFTER

Cumulative Distribution Function of Destination /24s in 1.0.0.0/8 with removed top 10 /24s and 35.0.0.0.
The Broader View

• Pollution is not limited to 1/8. Evidence of similar types of pollution in 50/8, 107/8, 14/8, 223/8
• Hotspots can exist in strange and unusual places
• Pollution can come from strange and unusual sources (in addition to scanning and backscatter)
 – System Misconfiguration – syslog, DNS
 – Programming errors – htonl(), bit-torrent
 – Hardcoded defaults – SIP, dsl modems
 – Experiments gone wild! – iperf testing
• Need to develop a consistent methodology for identifying these hotspots and a policy on cleanup or quarantine
A Framework for Internet Pollution Analysis

- Work with RIRs to identify upcoming allocation
- Obtain LOA
- Advertise, Collect, Analyze, Archive, Provide to research community
- Cleanup/Quarantine recommendations
Conclusions (1)

• Unchecked Internet pollution has the potential to render portions of valuable address space unusable
• In some cases cleanup is actually possible if you can identify the source (IP, application, system, protocol, document)
• Internet pollution is only one aspect of usability of an address block
 – Reclaimed address space might be on blacklists such as SPAM and botnet lists
• Current approach is to return a polluted block and request an alternate allocation, but that might not be feasible for much longer
Conclusions (2)

- Who is responsible for the quality of the address block being allocated, does this have the potential to affect pricing should an address space market emerge.
- We currently have collected data for 8 x.0.0.0/8 net blocks - 2 more in the next few weeks.
- Roughly 10TB of data collected - will be made available to researchers/community via the DHS funded PREDICT data repository.
Additional Reading

• Some additional details:
 – Tech Report:
 – http://software.merit.edu/darknet
BUT WHEN SHE TRACED THE KILLER’S IP ADDRESS... IT WAS IN THE 192.168/16 BLOCK!

[Source: http://xkcd.com/742/]