Evaluation of Anomaly Detection Method based on Pattern Recognition

- Romain Fontugne
 The Graduate University for Advanced Studies

- Yosuke Himura
 The University of Tokyo

- Kensuke Fukuda
 National Institute of Informatics
Outline

- Motivation
- Temporal-spatial structure of anomaly
- Pattern-recognition-based method
 - Hough transform
- Parameter space
- MAWI database
- Study case
- Conclusion
Motivation (1)

• Network traffic anomaly:
 – Misconfigurations, failure, network attacks

• Side effects:
 – Bandwidth consuming
 – Weaken network performance
 – Harmful traffic
 – Alter the traffic's characteristics
Motivation (2)

• Difficulties:
 – Huge amount of data
 – Variety of anomalous traffic
 – Identification of tiny flows

• Anomaly detection method:
 – Usually treated as a statistical problem
 • Evaluate the main characteristics of traffic
 • Discriminate traffic with singularities
Temporal-spatial structure of anomaly (darknet)

- Unwanted traffic
- Linear structures
- Unusual distribution of traffic feature
Temporal-spatial structure of anomaly (MAWI)

- Samplepoint-F:
 - 2009/02/21
Pattern-recognition-based method

- Identification of linear structures in pictures:
 - Generate pictures from traffic
 - Hough transform
 - Retrieve packet information
 - Report anomalies
Hough transform

• Voting procedure
 – Points elects lines
 – Polar coordinates
 \[\rho = x \cdot \cos \theta + y \cdot \sin \theta \]
 – Hough space

• Identify line means extract max in the Hough space
 – Relative threshold
Parameter space

- **Hough parameter:**
 - *Weight* for the voting procedure
 - Threshold to determine candidate line

- **Picture resolution:**
 - *Time bin*
 - Size of pictures
Evaluation of parameter space

- **Heuristics:**
 - suspected = false positive + unknown
- **Prob. of suspected** = suspected / total anomalies
 - Lower is better

![Graph showing the probability of suspected as a function of Hough Threshold and Time bin (in sec.).]
MAWI database

- Samplepoint-B:
 - From 2001/01 to 2006/06
Study case: sasser infection

- **Gamma modeling vs. Pattern recognition** (2004/08/01)
- Gamma modeling-based method tuned to detect the same number of anomalies (Includes many false positives)

![Diagram showing comparison between Statistics-based and Pattern-recognition-based methods](image)
Discussion

- Two different backgrounds
 - 50% of their results in common
- Detection of anomalies involving a tiny number of packets
- Identify easily network/port scans (dispersed distribution)
- Intensive uses of source port
- Gamma modelling = deeper analysis of the traffic's characteristics (highlight singular traffic)
Conclusion and future work

- No perfect method
- **Combination of several methods**
- Need of methods with different backgrounds

Future work
- Auto-tuning of parameters
- Sampled data
- More graphical representations
- Study good combinations
Thank you

Any questions?

romain@nii.ac.jp
Comparison (2)

Gamma only

Hough only

Both

Gamma only

Both