
Scamper

http://www.wand.net.nz/scamper/

Matthew Luckie
mjl@wand.net.nz

Introduction

• It is coming up towards the end of a year’s
contract between the University of Waikato
and WIDE that funded the development of
scamper
– 1 April 2004 – 31 March 2005

• This talk describes the core areas of
scamper’s progress over the past year

Introduction

• Expected Results (Contracted)
• Other inputs
• Core Areas of Work / Results
• Conclusions
• Collaboration Items
• Future Work

Expected Results (Contracted)

• Development of an open-source topology
probe tool including implementations of
– The skitter compatible output format
– PMTUD functionality
– Performance optimisation
– Scamper-library functions to read the existing

skitter arts files
– Updated sdcollect and sdserver using

the new scamper library

Expected Results (Contracted)

• Large scale IPv6 topology measurement
using scamper, and analysis of the obtained
data

Other Inputs

• Brad Huffaker et al (CAIDA)
– Probing of the network should be as unintrusive as

possible.
– scamper should be able to interleave and concurrently

probe different lists of destinations
– The destination lists can overlap, but at any moment of

time there should be no more than one instance of a
given IP address in the currently probed set of IPs.

– Scamper should probe lists in cycles

Source:
Brad Huffaker

Other Inputs
• Mark Crovella via kc:

– Support “some measurement technique” –
more than just traceroute

– The ability to connect to 3rd party scamper
processes and use them for measurement

• Young Hyun (CAIDA)
– Allow more than one method of traceroute

probing (more than UDP to high numbered
ports)

Other Inputs

• David Moore (CAIDA)
– Use BPF to get transmit timestamps from

datalink
• Andre Broido (CAIDA)

– Send probes with arbitrary content

Core areas of work

• File format / data API
• Process control
• Path MTU Discovery
• Privilege Separation
• Datalink-provided Transmit Timestamps
• Addition of more traceroute probe methods
• Addition of arbitrary measurement tasks
• Portability

File format / data API

• Arts (++) is fairly convoluted for traceroute
storage and access requirements, and
doesn’t speak IPv6

• Design a new file format and API to store
traceroute data that is extensible, but that is
not needlessly complex

File format
scamper_file_t *scamper_file_open(char *fn, char

mode, char *type);

void scamper_file_close(scamper_file_t *sf);

scamper_trace_t
*scamper_file_read_trace(scamper_file_t *sf);

int scamper_file_write_trace(scamper_file_t *sf,
scamper_trace_t *trace);

Trace Format
typedef struct scamper_trace
{
 scamper_list_t *list;
 scamper_cycle_t *cycle;

 scamper_addr_t *src;
 scamper_addr_t *dst;

 struct timeval start;

Trace Format
 scamper_hop_t **hops;
 uint8_t hop_count;

 uint8_t stop_reason;
 uint8_t stop_data;

 scamper_pmtu_t *pmtu;

Trace Format
 /* trace parameters */
 uint8_t type;
 uint8_t flags;
 uint8_t attempts;
 uint8_t hoplimit;
 uint16_t size;
 uint16_t sport;
 uint16_t dport;
} scamper_trace_t;

Hop Format
typedef struct scamper_hop
{
 scamper_addr_t *addr;
 uint8_t flags;
 uint8_t probe_id;
 uint8_t probe_ttl;
 uint16_t probe_size;
 uint16_t reply_size;
 int16_t reply_ttl;

Hop Format
 uint8_t icmp_type;
 uint8_t icmp_code;

 struct timeval rtt;

 scamper_tlv_t *tlvs;
 struct scamper_hop *next;

} scamper_hop_t;

Process Control

• Scamper began as a command line tool that
made its way through an address list doing
traceroute to each address
– Once it has started, you have to wait until it

finishes
– Can’t change output files midway through a run

Process Control

• Scamper’s approach to process control is a
localhost socket
– Goal to eventually have some authentication

code to enable remote control and monitoring
of scamper processes

– But also need to define how data might be
returned over a control socket

Process Control

• get [attempts | dport | hoplimit | holdtime |
pps | sport | timeout | version]

• set [attempts | holdtime | hoplimit | pps |
timeout]

• help
• exit

Process Control

• shutdown [done | flush | now | cancel]
• source [add | cycle | delete | list]
• outfile [open | close | list | swap]
• traceroute [source <name>] addr

Process Control
• Source add

[adhoc <on|off>]
[outfile <name>]
[cycle <on|off>]
[autoreload
<on|off>]

[name <name>]
[descr <descr>]
[id <id>]
[file <name>]
[priority <priority>]

Path MTU Discovery

• Conducted after traceroute phase so MTU
changes can be signaled in the traceroute output

• Original goal was to help find and characterise
IPv6-in-IPv4 tunnels
– Tunnels restrict the MTU available, so infer tunnels

with PMTUD
• Now a fairly useful operational tool for

debugging PMTUD faults on the forward path

Path MTU Discovery

• If scamper cannot successfully complete
PMTUD to a destination it knows should
respond
– it tries to infer the largest packet that can get

through
– and then does a TTL search to infer the series

of hops to further investigate
• Scamper comes with a table of known

MTUs to aid in finding the largest packet
able to be sent

Path MTU Discovery

• Faults:
1. Router configured to not send ICMP
2. Router configured to send ICMP, but does

not send fragmentation required
3. Router configured to send ICMP, but does

not send a useful fragmentation required
message
– Next hop MTU of 0
– Next hop MTU larger than packet sent

Path MTU Discovery
Fault 1: PMTUD Black Hole

*
14801500 1500

Src Dst

TTL 255, 1500
TTL 255, 1500
TTL 255, 1480

attempt #1

attempt #2

TTL 255, 1481
TTL 1, 1500
TTL 3, 1500

Inferred Hops

dst unreach

ttl expired

A B D E

Path MTU Discovery
Fault 2: Mixed MTU Environment

1500
4470

9000Src Dst

TTL 255, 4470
TTL 255, 4470
TTL 255, 1500

attempt #1

attempt #2

TTL 255, 1501
TTL 3, 4470
TTL 4, 4470

Inferred Hops

dst unreach

ttl expired

9000A B C D E

attempt #1, #2

attempt #1, #2

Jumbo capable switch

Path MTU Discovery
Fault 3: Useless next-hop MTU (nhmtu) returned

4470
Src Dst

TTL 255, 4470
TTL 255, 1500, 1501, … 4352, 4353
TTL 255, 4464
TTL 255, 4458

TTL 3, 4470
TTL 4, 4470

dst unreach

ttl expired

A B C D E

frag reqd, nhmtu: 4470

4470 *4458

frag reqd, nhmtu: 4470

frag reqd, nhmtu: 4470

dst unreach

TTL 255, 4459 frag reqd, nhmtu: 4470

Privilege Separation

• Don’t want to deal with scamper being a
remote-root attack vector

• scamper does its best to contain any
damage in vulnerable code with privilege
separation

• Important to do with the source code freely
available

Privilege Separation
Everything else

chroot /var/empty
Privileged process

Prober
Control Code
Read BPF
Read ICMP
Write output

Open BPF Socket

Open Route Socket

Open File

Delete Cloned Route

fd

fd

fd

OK

Datalink-provided TX timestamps

• The sockets API provides a method to
obtain the time a packet was received by
the kernel from a NIC

• But there’s nothing corresponding to when
the kernel offloaded a packet to the NIC

• David Moore’s idea: use BPF

Addition of more traceroute
probe methods

• Scamper sends TTL limited probes to high
numbered UDP ports by default

• Scamper can also send TTL limited ICMP
echo request probes

• Some work has been done to include a TCP
traceroute with probes marked by their
sequence number, but not completed due to
barriers imposed by IPv6 TCP sockets.

Additions of arbitrary
measurement tasks

• Scamper’s design makes it fairly simple to
add additional measurement tasks

• The only measurement task I’ve added so
far is a ping implementation to aid the
initial measurement phase of Kenjiro’s dual
stack tool set.

Portability

• FreeBSD 4.X, 5.X
• NetBSD 1.6
• OpenBSD 3.4
• MacOS X
• Linux 2.4, 2.6
• Nearly done SunOS 5.8

Conclusions

• Scamper has evolved from a basic
command-line driven traceroute-in-parallel
tool to …

• … an extensible measurement tool useful
for large scale Internet measurement

Collaboration Items

• I would like to pursue the Path MTU
Discovery characterisation work I’ve done
towards publication

• Kenjiro has suggested a Freenix
publication giving an overview of scamper
itself

Future Work

• Autotools
• Non-blocking resolver

– Can only feed IP addresses to scamper
• Modularise

– Ability to load new measurement technique
modules into scamper at runtime that come
with file format logic.

• tcptraceroute6

