An Analysis of route reflector performance in I-BGP

Kengo NAGAHASHI
The University of Tokyo/WIDE Project
kenken@wide.ad.jp
Background(1)

- I-BGP
 - Requires synchronization with all I-BGP routers
 - Full mesh
 - Lack of scalability

⇒ Introduction of Route Reflector (RR)

I-BGP fullmesh

Route reflector

RR
RRC
RRC
What if RR is outage?
- RRCs lost connectivity
- single point of failure
- ISP requires 24 hours x 365
- Requirement for redundancy

Introduction of Backup RR
- RRC establishes BGP peer with both RR-1/RR-2
- RRC receives an exact routing information both from RR-1, RR-2
- Hierarchal Route Reflector Model
Problem Statement

Problem in this model:

- Possible case:
 1. PPR-1 (best path) is down
 2. Switch over the best path to PPR-2
 3. RR-1 recalculates the best path (PPR-1 -> PPR-2)
 4. Then, PR-1 sends BGP updates to all RRC despite of all exact routing information (PPR-1 = PPR-2)

- It’s due to hop by hop BGP protocol architecture
Motivation

Is this redundant route reflector architecture truly scalable?

☐ How much RRCs can RR accommodate?
 ▪ 10, 100, 1000?

☐ What is the main elements which affect a performance of scalability?
 ▪ # of routing information, e.g. fullroute (over 150,000)
 ▪ BGP attribute?
 ▪ Router implementation?
How can we figure out “scalable or not”?

- Definition of “scalable”: convergence of RR/RRCs even if # of RRCs is increased

How can we measure “convergence”?

- Convergence: all BGP routing table has been exchanged between RR/RRCs

- Measurement of TCP sequence:

\[
\text{Tcp seq#} \quad \text{converged}
\]
Measurement Strategy (2)

- Triggered event:
 1. Terminate BGP session (PRR-1<->RR-1)
 2. Best path has been changed (PRR-1-> PRR2)
 3. RR-1 recalculates best path
 4. RR-1 sends updates to each RRCs
 5. Measure TCP sequence # in RRC

- Parameters:
 1. BGP table ⇒ full route (146,955prefix/32000 attributes)
 2. RRClient ⇒ 1,30,60,170 RRCs (starbed)
 3. Implementatin ⇒ zebra (FreeBSD4.10, memory 512MB)
 Cisco(IOS12.2(24a)) 256MB FE as RR-1
Measurement Result: 1 RRC(1)
Measurement Result: 1 RRC(2)

- Convergence of zebra is much faster than Cisco
- Convergence time:
 - Cisco 125sec
 - zebra 25sec
- MSS problem?

```
cisco>show ip bgp nei | include max data
Datagrams (max data segment is 1460 bytes):
```

NO
Measurement Result: 1 RRC(3)

- BGP update packing is different
 - Zebra: packing NLRIs as much as possible in a single BGP Update packet (4096bytes, 1000NLRIs)
 - Cisco: chunk 255bytes automatically and if an attribute is same, piggy back one packet (at most 50 NLRIs)
Measurement Result: 60 RRCs (Cisco)
Measurement Result: 60 RRCs (zebra)
Measurement Result: 60 RRCs

- Convergence time comparison:
 - Cisco ⇒ 262 sec
 - Zebra ⇒ never converge...

- Why zebra does not converge?
 - Shortage of main memory (512MB)
 - Limitation of PC based router performance
 - Cisco can converge even if 256MB memory
 - Efficient memory management
Measurement Result: 170 RRCs (Cisco)
Measurement Result: 170 RRCs (Cisco)

- Convergence: 1150sec

- What if
 - Both PRR-1, PRR-2 are down
 - At the same time
 - Then, restart

Diagram:
- PRR-1
- PRR-2
- RR-1
- RR-2
- RRC

RRC

2005/3/12 5th CAIDA/WIDE Workshop
Measurement Result: 170 RRCs (Cisco)
Measurement Result: 170 RRCs (Cisco)

- Never converged:
 - high overload in RR-1
 - Why?
 - Receive from both PRR-1,2 and Send update to RRC x 170
 - Limitation of CPU processing
 - Missing BGP update packet processing
 - Never finalize sending BGP update
 - Stack output queue

<table>
<thead>
<tr>
<th>Neighbor</th>
<th>V</th>
<th>AS</th>
<th>MsgRcvd</th>
<th>MsgSent</th>
<th>InQ</th>
<th>OutQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.0.62</td>
<td>4</td>
<td>65535</td>
<td>9</td>
<td>44744</td>
<td>0</td>
<td>291</td>
</tr>
<tr>
<td>172.16.0.63</td>
<td>4</td>
<td>65535</td>
<td>9</td>
<td>46217</td>
<td>0</td>
<td>319</td>
</tr>
<tr>
<td>172.16.0.64</td>
<td>4</td>
<td>65535</td>
<td>9</td>
<td>46310</td>
<td>0</td>
<td>724</td>
</tr>
<tr>
<td>172.16.0.65</td>
<td>4</td>
<td>65535</td>
<td>9</td>
<td>37370</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>172.16.0.66</td>
<td>4</td>
<td>65535</td>
<td>9</td>
<td>46374</td>
<td>0</td>
<td>665</td>
</tr>
<tr>
<td>172.16.0.67</td>
<td>4</td>
<td>65535</td>
<td>9</td>
<td>23387</td>
<td>0</td>
<td>125</td>
</tr>
<tr>
<td>172.16.0.68</td>
<td>4</td>
<td>65535</td>
<td>9</td>
<td>19541</td>
<td>0</td>
<td>306</td>
</tr>
<tr>
<td>172.16.0.69</td>
<td>4</td>
<td>65535</td>
<td>9</td>
<td>32036</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>172.16.0.70</td>
<td>4</td>
<td>65535</td>
<td>9</td>
<td>22729</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Conclusion

Is this redundant route reflector architecture truly scalable?

☐ When physical threshold turns over, it is never converged
 ■ Hierarchal Redundant RR architecture provide poor scalability

☐ PC based router (zebra)
 ■ Performance depends upon main memory

☐ Commercial router (Cisco)
 ■ Limitation of CPU processing
Future Research Direction

1. Better Route Reflector Architecture
 - Cascade update v.s. Route Reflector

2. Further BGP related measurement
 - More complicated topology
 - Other BGP technique e.g. route flap dampening