Protecting Internet Threat Monitors: A Statistical Filtering Approach

Yoichi Shinoda
JAIST
Two papers were presented/published at the 14th USENIX Security Symposium (Aug. 2005).

- **Mapping Internet Sensors with Probe Response Attacks**
 John Bethencourt, Jason Franklin, and Mary Vernon, University of Wisconsin, Madison

- **Vulnerabilities of Passive Internet Threat Monitors**
 Yoichi Shinoda, Japan Advanced Institute of Science and Technology; Ko Ikai, National Police Agency of Japan; Motomu Itoh, Japan Computer Emergency Response Team Coordination Center (JPCERT/CC)
Mapping example: ISDAS marking & feedback

- Marking design
 - Range: Address blocks assigned to 3 IXes.
 - Marker: UDP/137
 - Was in the top-5.
 - Low dynamic range.
 - Algorithm: Time-series
 - Velocity: Each /24 block in an hour
 - Intensity: Each address were marked with 90 markers (to make 3 unit high spike in the graph of avg. count per sensor, where there are 30 sensors).

One /24 block hosting one sensor was identified
SD Filtering

- Omit counts from sensors reporting “unusual counts”:
 - \(\text{if (count} > m + \rho \times \sigma) \text{ then drop;} \) where
 - \(m = \text{avg of all sensor counts} \)
 - \(\sigma = \text{stddev of all sensor counts} \)
 - \(\rho = \text{magic multiplier} \)
 - The magic value is in the range 5.0 – 6.0 (and sometimes up to 7.0) for several different distributed architecture monitors.
SD filtering @ 6.5 σ

UDP137 Scan Count

Scan Average - Value corrected by standard deviation
SD Filtering @ 6.2 σ

UDP137 Scan Count

- Scan Average
- Value corrected by standard deviation
SD Filtering @ 4.5 σ
Quartile Filtering

- Sort the samples
- Identify the lower side (Q1), median (Q2), and upper side (Q3)
- Set the variable length to the same size
- Separate monitors based on lower cut-off and upper cut-off
Some Results

Simulated Marking Result

Quartile (cutoff = 1) Filtered

SD ($\rho = 6.0$) Filtered

Quartile (cutoff = 1) then SD ($\rho = 6.0$) Filtered