BGP update profiles and the implications for secure BGP update validation processing

Geoff Huston
APNIC

7th caida/wide measurement workshop
Nov 3-4 2006
Why?

- Secure BGP proposals all rely on some form of validation of BGP update messages
- Validation typically involves cryptographic validation, and may refer to further validation via a number resource PKI
- This validation may take considerable resources to complete.
- This implies that the overheads securing BGP updates in terms of validity of payload may contribute to:
 - Slower BGP processing
 - Slower propagation of BGP updates
 - Slower BGP convergence following withdrawal
 - Greater route instability
 - Potential implications in the stability of the forwarding plane
What is the question here?

• Validation information has some time span
 – Validation outcomes can be assumed to be valid for a period of hours

• Should BGP-related validation outcomes be locally cached?

• What size and cache lifetime would yield high hit rates for BGP update validation processing?
Method

- Use a BGP update log from a single eBGP peering session with AS 4637 over a 14 day period
- Examine time and space distributions of BGP Updates that have similar properties in terms of validation tasks
Update Statistics for the session

<table>
<thead>
<tr>
<th>Day</th>
<th>Prefix Updates</th>
<th>Duplicates: Prefix</th>
<th>Duplicates: Prefix + Origin AS</th>
<th>Duplicates: Prefix + AS Path</th>
<th>Duplicates: Prefix + Comp-Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72,934</td>
<td>60,105 (82%)</td>
<td>54,924 (75%)</td>
<td>34,822 (48%)</td>
<td>35,312 (48%)</td>
</tr>
<tr>
<td>2</td>
<td>79,361</td>
<td>71,714 (90%)</td>
<td>67,942 (86%)</td>
<td>49,290 (62%)</td>
<td>50,974 (64%)</td>
</tr>
<tr>
<td>3</td>
<td>104,764</td>
<td>93,708 (89%)</td>
<td>87,835 (84%)</td>
<td>65,510 (63%)</td>
<td>66,789 (64%)</td>
</tr>
<tr>
<td>4</td>
<td>107,576</td>
<td>94,127 (87%)</td>
<td>87,275 (81%)</td>
<td>64,335 (60%)</td>
<td>66,487 (62%)</td>
</tr>
<tr>
<td>5</td>
<td>139,483</td>
<td>110,994 (80%)</td>
<td>99,171 (71%)</td>
<td>68,096 (49%)</td>
<td>69,886 (50%)</td>
</tr>
<tr>
<td>6</td>
<td>100,444</td>
<td>92,944 (92%)</td>
<td>88,765 (88%)</td>
<td>70,759 (70%)</td>
<td>72,108 (72%)</td>
</tr>
<tr>
<td>7</td>
<td>75,519</td>
<td>71,935 (95%)</td>
<td>69,383 (92%)</td>
<td>56,743 (75%)</td>
<td>58,212 (77%)</td>
</tr>
<tr>
<td>8</td>
<td>64,010</td>
<td>60,642 (95%)</td>
<td>57,767 (90%)</td>
<td>49,151 (77%)</td>
<td>49,807 (78%)</td>
</tr>
<tr>
<td>9</td>
<td>94,944</td>
<td>89,777 (95%)</td>
<td>86,517 (91%)</td>
<td>71,118 (75%)</td>
<td>72,087 (76%)</td>
</tr>
<tr>
<td>10</td>
<td>81,576</td>
<td>78,245 (96%)</td>
<td>75,529 (93%)</td>
<td>63,607 (78%)</td>
<td>64,696 (79%)</td>
</tr>
<tr>
<td>11</td>
<td>95,062</td>
<td>91,144 (96%)</td>
<td>87,486 (92%)</td>
<td>72,678 (76%)</td>
<td>74,226 (78%)</td>
</tr>
<tr>
<td>12</td>
<td>108,987</td>
<td>103,463 (95%)</td>
<td>99,662 (91%)</td>
<td>80,720 (74%)</td>
<td>82,290 (76%)</td>
</tr>
<tr>
<td>13</td>
<td>91,732</td>
<td>87,998 (96%)</td>
<td>85,030 (93%)</td>
<td>72,660 (79%)</td>
<td>74,116 (81%)</td>
</tr>
<tr>
<td>14</td>
<td>78,407</td>
<td>76,174 (97%)</td>
<td>74,035 (94%)</td>
<td>64,994 (83%)</td>
<td>65,509 (84%)</td>
</tr>
</tbody>
</table>
CDF by Prefix and Originating AS

BGP Prefix Update Cumulative Distribution

BGP Origin AS Update Cumulative Distribution
Time Spread

Cumulative Proportion of Recurring Updates (%)

Update Recurrence Interval (Hours)

Prefixes
Prefix + Origins
Prefix + Path
Prefix + Compressed Path
Space Distribution

• Use a variable size cache simulator
• Assume 36 hour cache lifetime
• Want to know the hit rate of validation queries against cache size
Prefix Similarity

![Graph showing Prefix Similarity with validation cache hit percentage on the y-axis and cache size on the x-axis. The graph includes multiple curves representing different conditions or datasets, with the validation cache hit percentage increasing as the cache size grows.]
Prefix + Origin Similarity

![Graph showing Prefix + Origin Similarity with Cache Size on the x-axis and Validation Cache Hit % on the y-axis. The graph displays multiple curves representing different similarity metrics. The y-axis range is from 0 to 100, and the x-axis range is from 1 to 100,000. The plateau region at validation cache hit indicates a range of cache sizes where the hit percentage stabilizes.]
Prefix + Path Similarity

Validation Cache Hit % vs. Cache Size
Observations

- A large majority of BGP updates explore diverse paths for the same origination.
- True origination instability occurs relatively infrequently (1:4)?
- Validation workloads can be reduced by considering origination (prefix plus origin) and the path vector as separable validation tasks.
- Further processing reduction can be achieved by treating a AS path vector as a sequence of AS paired adjacencies.
Observations

• Validation caching appears to be a useful approach to addressing some of the potential overheads of validation of BGP updates

• Separating origination from path processing, using a 36 hour validation cache can achieve 80% validation hit rate using a cache of 10,000 Prefix + AS originations and a cache of 1,000 AS pairs
What do we want from secure BGP?

• Validation that the received BGP Update has been processed by the ASs in the AS Path, in the same order as the AS Path, and reflects a valid prefix, valid origination and valid propagation along the AS Path?

or

• Validation that the received Update reflects a valid prefix and valid origination, and that the AS Path represents a plausible sequence of validated AS peerings?
Further work?

• Heaps!
Thanks

Questions?