Bulk DNS Lookup Service

Josh Polterock josh@caida.org

CAIDA/WIDE Workshop
January 19, 2008
Honolulu, HI
USA

http://www.caida.org/
Overview

- Motivation
- Bulk DNS Lookup Service
- Lookups of Topology Data
- Conclusions
Motivation

- DNS information is valuable for many passive and active data analyses
- DNS information helps answer questions:
 - Is an IP address a router, home box, or web server?
 - Where is this host geographically?
 - Is the host at a corporate or an academic site?
 - What is the likely link speed (e.g., home broadband)?
CAIDA has an internal bulk DNS lookup service
 - Currently only PTR queries
Goals

- Obtain DNS information in a timely manner
- Archive DNS lookup results
- Support querying of archived results
- Be scalable to large numbers of lookups
- Be considerate of remote nameservers
Scalability

- Enables timely data collection through scalability
 - quickly performs a large number of lookups while the data is still fresh
- Achieves scalability with multiple hosts
 - run dedicated local resolver (BIND), one per host
 - distribute lookups to hosts in a pool (up to 5 hosts)
- Sustained an average of 2 million lookups/day over a month
- In the past three months, we looked up 31 million addresses
Archiving Data

- Lookup results are archived in a database
 - columns: timestamp, address, hostname, result code
 - timestamp column allows the same address to be looked up multiple times over time
- Query by (timestamp, address) and get lookup performed nearest to the requested timestamp
- In the past six months, we stored over 42 million lookup entries
Scheduling Lookups

- To avoid high load on remote nameservers, the service skips requests for addresses already queried in the past 7 days
 - a trade-off between reducing load and obtaining timely information
 - however, can force immediate lookups of addresses
 - useful for security events
- Supports prioritization of lookups on per address basis
 - user can reduce priority of frequently looked up addresses
Database Engine

Bulk DNS Lookup Service

User scheduled IP addresses

Database

Lookup Queue

Stored Results

Lookup Engine

Bind

User Query Results

The Internet

Database Engine

Bulk DNS Lookup Service

User scheduled IP addresses

Database

Lookup Queue

Stored Results

Lookup Engine

Bind

User Query Results

The Internet

Database Engine

Bulk DNS Lookup Service

User scheduled IP addresses

Database

Lookup Queue

Stored Results

Lookup Engine

Bind

User Query Results

The Internet
Our uses of DNS Lookup Service

- Security data
 - Backscatter
 - UCSD Network Telescope
 - Worm data
- Network traffic traces
- Topology data
Archipelago (Ark) Data Collection

- Ark is our next generation infrastructure supporting:
 - long-running, large scale experiments,
 - coordination via local and global tuple spaces.
- We probe a random destination in every routed /24 (IPv4) each cycle
 - about 7M /24s in RouteViews BGP table
- 13 monitors
- 2-3 days/cycle
 - Collected 41 cycles since 12 Sept 2007
Lookups of Topology Data Diagram

- We lookup IP addresses found in Ark traces
 - routers and responding destinations
We have automated daily lookups of over 600K addresses/day.

Analysis: TLD breakdown for six cycles (one month) of addresses.

Top 10 TLDs:

1. net 793,407 (42.5%)
2. com 270,259 (14.5%)
3. jp 114,167 (6.1%)
4. de 79,533 (4.3%)
5. br 53,017 (2.8%)
6. mx 45,134 (2.4%)
7. it 43,781 (2.3%)
8. cn 36,258 (1.9%)
9. edu 31,581 (1.7%)
10. pl 25,894 (1.4%)

Total Addresses: 3,176,655
success: 1,865,978 (58.7%)
failure: 1,310,677 (41.3%)
Examination of Raw DNS Queries and Responses

- Experiment examined the raw DNS query and response traffic between the local recursive resolver and remote nameservers
Raw DNS Statistics

- We collected 807MB of compressed pcap traces covering about 8 full days (Dec 12-20th); UDP only.
- 17M DNS packets were successfully captured.
 - 8.9M query packets
 - 1.0M A (of nameservers)
 - 1.3M AAAA (of nameservers); got 12.6k (1%) answers with IPv6 addresses
 - 6.5M PTR
- 8.2M response packets
 - 63% had AA bit set
 - 2.8% (233k) had AAAA glue record(s) in additional section
Conclusion

- Internally, we have implemented and deployed a scalable DNS lookup service
- The service enhances our security and topology data analyses
- Low effort required to always do DNS lookups as integral part of data collection process
- Quickly scale for large time-critical security events
Future Work

- Make lookup results available
- Make lookup service software available
Links & Thanks

- Archipelago: http://www.caida.org/projects/ark/
- Topology and (in the future) DNS lookup results: http://www.caida.org/data/

Much thanks to Young Hyun and David Moore for their feedback and assistance.