ITER:

A Computational Model to Evaluate Provider and Peer Selection in the Internet Ecosystem

Amogh Dhamdhere (CAIDA) Constantine Dovrolis (Georgia Tech)

High-level questions in this research

- Networks rewire their connectivity (select providers and peers) to optimize an objective function (typically profit)
 - Distributed
 - Localized spatially and temporally
- What are the local implications of provider and peer selection strategies for the involved ASes?
- What are the global, long-term effects of these distributed optimizations for the whole Internet?
 - Topology and traffic flow
 - Economics
 - Performance (path lengths)

Our model of interdomain network formation (ITER)

• Compute the "attractors" of this dynamical system

• Point attractor: When no network has the incentive to change its connectivity

9/23/2009

 Limit cycles: an oscillation between a number of network topologies

Approach

- What is the outcome when networks use certain provider and peer selection strategies?
- Model the Internet ecosystem as a dynamic system
 - Real-world economics of transit, peering, operational costs
 - Realistic routing policies
 - Geographical constraints
 - Provider and peer selection strategies
- Compute attractors
 - Point attractors or limit cycles
- Measure properties of the steady-state
 - Topology, traffic flow, economics

Network Types

- Enterprise Customers (EC)
 - Stub networks at the edge (e.g. Georgia Tech)
 - Either sources or sinks
- Small Transit Providers (STP)
 - Provide Internet transit
 - Mostly regional in presence (e.g. France Telecom)
- Large Transit Providers (LTP)
 - Transit providers with global presence (e.g. AT&T)
- Content Providers (CP)
 Provajalencianas presenterel (egtionality STPs and LTPs)

What would happen if ..?

- The traffic matrix consists of mostly P2P traffic?
- P2P traffic benefits STPs, can make LTPs unprofitable
- LTPs peer with content providers?
- LTPs could harm STP profitability, at the expense of longer end-to-end paths
- Edge networks choose providers using path lengths?
- LTPs would be profitable and end-to-end paths shorter

Provider and Peer Selection

- Provider selection strategies
 - Minimize monetary cost (PR)
 - Minimize AS path lengths weighted by traffic (PF)
 - Avoid selecting competitors as providers (SEL)
- Peer selection strategies
 - Peer only if necessary to maintain reachability (NC)
 - Peer if traffic ratios are balanced (TR)
 - Peer by cost-benefit analysis (CB)
- Peer and provider selection are related

Provider and Peer Selection are Related

• Restrictive peering

- Peering by necessity
- Level3-Cogent peering dispute

Economics, Routing and Traffic Matrix

- Realistic transit, peering and operational costs
 - Transit prices based on data from Norton
 - Economies of scale
- BGP-like routing policies
 - No-valley, prefer customer, prefer peer routing policy
- Traffic matrix
 - Heavy-tailed content popularity and consumption by sinks
 - Predominantly client-server: Traffic from CPs to ECs
 - Predominantly peer-to-peer: Traffic between ECs

10

Algorithm for network actions

- Networks perform their actions sequentially
- Can observe the actions of previous networks
 - And the effects of those actions
- Network actions in each move
 - Pick set of preferred providers
 - Attempt to convert provider links to peering links "due to necessity"
 - Evaluate each existing peering link
 - Evaluate new peering links
- Networks make at most one change to their set of peers in a single move

Solving the Model

- Determine the outcome as each network selects providers and peers according to its strategy
- Too complex to solve analytically: Solve computationally
- Typical computation
 - Proceeds iteratively, networks act in a predefined sequence
 - Pick next node n to "play" its possible moves
 - Compute routing, traffic flow, AS fitness
 - Repeat until no player has incentive to move (point attractor)
 - Or until we have detected a limit cycle

- Do we always reach a point attractor?
 - Yes, in most cases (but see paper for some cases of limit cycles)
- Is point attractor unique?
 - No, it can depend on playing sequence and initial conditions
 - But, different attractors have statistically similar properties
- Multiple runs with different playing sequences
 - Average over different runs
 - Confidence intervals are narrow

Canonical Model

- Parameterization of the model that resembles real world
- Traffic matrix is predominantly client-server (80%)
 - Impact of streaming video, centralized file sharing services
- 20% of ECs are content sources, 80% sinks
- Heavy tailed popularity of traffic sources
- Edge networks choose providers based on price
- 5 geographical regions
- STPs cheaper than LTPs

Results - Canonical Model

• Hierarchy of STPs

•Traffic can bypass LTPs -LTPs unprofitable

•STPs should not peer with CPs

•CPs choose STPs as providers

Results - Canonical Model

•What-if: LTPs peer with CPs

•Generate revenue from downstream traffic

- •Can harm STP fitness
- Long paths

P2P traffic helps STPs Smaller traffic volume from CPs to Ecs

- More EC-EC traffic => balanced traffic ratios
- •More opportunities for STPs to peer

Peering Federation

- Traditional peering links: Not transitive
- Peering federation of A, B, C: Allows mutual transit
 - Longer chain of "free" traffic
- Incentives to join peering federation?
- What happens to tier-1 providers if smaller providers form federations?

Conclusions

- A model that captures the feedback loop between topology, traffic and fitness in the Internet
- Considers effects of
 - Economics
 - Geography
 - Heterogeneity in network types
- Predict the effects of provider and peer selection strategies
 - Topology, traffic flow, economics, and performance

- Reproduces almost constant average path length
- Activity frequency: How often do networks change their connectivity?
 - ECs less active than providers Qualitatively similar to measurement results

Previous Work

- Static graph properties
 No focus on how the graph evolves
- Descriptive" modeling
 Match graph properties
 - e.g. degree distribution
 - Homogeneity
 - Nodes and links all the same
- Game theoretic, computational
 - Restrictive assumptions

- Dynamics of the evolving graph
 - Birth/death
 - Rewiring
- "Bottom-up"
 - Model the actions of individual networks
- Heterogeneity
 - Networks with different incentives
 - Semantics of interdomain links