An Economic Perspective on IPv6 Transition

Geoff Huston
APNIC

The Fine Print: I am not an economist in terms of my professional qualifications or by virtue of my work experience. Worse still, I think I fit in to the category of amateur economic dilettante! So most of what I offer here I do so tentatively, as it probably needs a little more rigor and precision in basic economic terms than I am able to provide! Geoff
A conventional view of IPv6 transition

“The minister for communications and information technology does not believe that regulatory intervention is appropriate. Adoption of IPv6 needs to be lead by the private sector. The private sector must recognise that adopting IPv6 is in their own best interests to protect their investment in online capabilities into the future. Issues of advantages and disadvantages, costs, risks, timing, methodology etc, have to be for each enterprise to assess for itself.”

Statement by the New Zealand Minister for Communications
24 August 2009
The IPv6 Transition Plan

- IPv6 Deployment
- IPv6 Transition - Dual Stack
- IPv4 Pool Size

Size of the Internet
A Rough Census of the Edge

• Counting IPv6 in client devices:
 – Some 45% of devices run Windows Vista or Windows 7 - with IPv6 turned on
 – Some 8% of devices run Mac OS X - with IPv6 turned on
 – Some 35% of devices run Windows XP

• About half of the devices out there have IPv6 installed and active
 – And a large proportion of the other half are probably running Windows XP

A Rough Census of the Core

• 4882 ASNs originate IPv6 prefixes (out of a total of 39,535 ASNs in the IPv4 routing table)

• But 33,909 ASNs are stubs and 5,626 ASNs are transit
 – 49% of the IPv4 transit ASNs in routing space originate IPv6 prefixes
IPv6 capability, as seen by Google

IPv6 capability, as seen by APNIC, 2011

Clients who Prefer V6 in Dual Stack by V6 Address Type

http://www.potaroo.net/stats/1x1/sitec/
Ooops!

- Access – 0.4% of end clients are served with an IPv6 access service that provides the client with a native IPv6 unicast address
- Services – 0.7% of the Alexa top 1M web sites have AAAA records
The IPv6 Transition Plan - V2.0
What’s gone wrong?

• It seems that we’ve managed to achieve only 2 out of 3 objectives for IPv6 deployment
• And now the access industry has to deploy (and fund) IPv4 address extension mechanisms in addition to funding an IPv6 deployment
• What’s going wrong in this gap between core and edge?
 – Why has the access service sector been disinterested in any meaningful levels of IPv6 deployment so far?
 – Why is the content industry lagging on IPv6 deployment?
Lessons from the Past

If this transition to IPv6 is proving challenging, then how did we ever get the IPv4 Internet up and running in the first place?
IPv4 Deployment Lessons

Technology: packet switching vs circuit switching

- lower network costs though pushing of functionality and cost to end systems exposed a new demand schedule for communications services

i.e. packet switching was far cheaper than circuit switching. This drop in cost exposed new market opportunities for emergent ISPs
Circuits to Packets: The Demand Schedule Shift

Reduced cost of supply, and increased perception of value, resulting in a new equilibrium point with higher quantity and lower unit price.
IPv4 Deployment

Business: exposed new market opportunity in a market that was actively shedding many regulatory constraints

– exposed new market opportunities via arbitrage of circuits
 • buy a circuit, resell it as packets
– presence of agile high-risk entrepreneur capital willing to exploit short term market opportunities exposed through this form of arbitrage
– volume-based suppliers initially unable to redeploy capital and process to meet new demand
 • unable to cannibalize existing markets
 • unwilling to make high risk investments
IPv4 Deployment

- **Small ISP (Entrepreneur Sector)**
- **High Volume Provider Industry (Telco Sector)**

<table>
<thead>
<tr>
<th>Time</th>
<th>Size of the Internet</th>
</tr>
</thead>
<tbody>
<tr>
<td>~1990</td>
<td></td>
</tr>
<tr>
<td>~1995</td>
<td></td>
</tr>
</tbody>
</table>
IPv4 Deployment

Business: exposed new market opportunity in a market that was actively shedding many regulatory constraints

- exposed new market opportunities via arbitrage of circuits
 - buy a circuit, resell it as packets
- presence of agile high-risk entrepreneur capital willing to exploit short term market opportunities exposed through this form of arbitrage
- volume-based suppliers initially unable to redeploy capital and process to meet new demand
 - unable to cannibalize existing markets
 - unwilling to make high risk investments
- the maturing market represented an opportunity for large scale investment that could operate on even lower cost bases through economies of scale
IPv4 Deployment

Size of the Internet

Small ISP (Entrepreneur Sector)

High Volume Provider Industry (Telco Sector)

~1990

Time

~2005
What about IPv6 Transition?

• Will the same technology, cost and regulatory factors that drove the deployment of the IPv4 Internet also drive this industry through the transition from IPv4 to IPv6?
IPv6 vs IPv4

Are there competitive differentiators?
- no cost differential
- no functionality differential
- no inherent consumer-visible difference
- no visible consumer demand
- no visible competitive differentiators other than *future risk*
IPv4 to Dual Stack: The Demand Schedule Shift

Supply side cost increase due to Dual Stack operation

Equilibrium point is at a lower quantity if Dual Stack supply costs are passed on to customers

No change in perception of value, so demand schedule is unaltered
The Transition to IPv6

Given that we’ve left it so late in terms of the scale of the transition and the degree of difficulty with IPv4 exhaustion, and given that there appears to be little motivation from some critical industry segments to embark on this transition --- will it happen at all?
The Transition to IPv6

Alternatively, is this transition an instance of a *market failure*?
“Market Failure”

Wikinomics:

“In economics, a market failure exists when the production or use of goods and services by the market is not efficient. That is, there exists another outcome where market participants' overall gains from the new outcome outweigh their losses (even if some participants lose under the new arrangement). Market failures can be viewed as scenarios where individuals' pursuit of pure self-interest leads to results that are not efficient – that can be improved upon from the societal point-of-view. The first known use of the term by economists was in 1958, but the concept has been traced back to the Victorian philosopher Henry Sidgwick.”

http://en.wikipedia.org/wiki/Market_failure
The Transition to IPv6

Alternatively, is this transition an instance of a market failure?

Individual self-interest leads to inefficient supply outcomes, as self-interest does not lead the installed based of consumers and suppliers to underwrite the cost of dual stack operation within the transition
IPv6 Transition as a Public Good?

Is the transition to IPv6 is *non-excludable* and *non-rivalrous*?
In which case this transition issue parallels that of a *public good*

With an implication that conventional market dynamics in a deregulated environment will not lead to this transition being undertaken

And a corollary that if this transition is considered to be necessary or essential then some form of public good solution needs to be considered
Public Good “solutions”

There are a number of conventional approaches to the distribution of a *public good*:

– Assurance contracts
– Coasian solutions
– Government enterprise provisioning
– Tariffs
– Subsidies
– Taxation remedies
– Regulatory impost
Regulatory Impost

• A regulatory constraint is placed on the ISP carrier licence holders that IPv6 services are to be provided by a given deadline – as has happened with digital television in many regulatory regimes.

• This regulatory constraint acts a form of a *assurance contract*, where all providers are in effect bound to produce a particular solution
Government Purchase Contracts

• Where the public sector collectively require the provision in IPv6 in all their service contracts.

• This is a form of a coasian solution where a group of potential beneficiaries pool together their willingness to pay for the public good.

 – We have seen this approach in the past with the Government OSI Profiles (GOSIP) of the late 1980's when the approach proved ineffectual.

 – There is no assurance that such collective actions on the part of the public sector have sufficient mass and momentum to create a broader sustainable market that will impel the private sector to undertake the transition.
Subsidies and Incentives

• Where the production of the good is subsidised in some fashion by public funds
 – This can be in the form of direct payments to service providers, or in the form of vouchers to consumers which can be redeemed only in exchange for the supply of a specified service.

• Related incentive measures include the use of taxation incentives related to infrastructure investment, where the investment in a certain class of infrastructure or in a certain sector can be provided with advantaged taxation treatment.
Public Provision

• Where the service is provided by a publically-owned enterprise.
• The funding for such an enterprise can be provided by government-backed investment bonds, or directly from public revenues, and operating losses are underwritten by the public purse.
 – This measure was used for most national telephone service providers for a significant part of the twentieth century, so it is not exactly a completely foreign concept for this industry.
What About IPv4 Exhaustion?

• Does IPv4 address exhaustion change this picture?
• What are the economic implications of service providers adding CGNs to the current service offering based on IPv4?
• Are CGNs and IPv6 mutually exclusive investment options for access providers?
Adding CGNs to IPv4: The Demand Schedule Shift

Supply side cost increase due to Dual Stack operation

CGNs reduce functionality and impair the performance of some applications

CGNs represent higher cost and lower value for customers
But is this all there is to CGNs?

• Will CGN’s alter the user’s experience of services?
• Does this alter the role (and location) of CDNs?
 – Or has the CDN model already evolved to accommodate this evolution?
• Do CGNs alter the leverage of the access provider with respect to service deployment?
 – Is this an instance of a forced carriage toll gate that allows the carriage sector to renegotiate their relationship with the content access model
Your Thoughts?

• Carriage vs Content
 – Currently IT and the Internet has allowed content to shed carriage mediation and negotiate directly with the end consumer
 – Will scarcity in the carriage activity enable carriage players to re-enter the content distribution function in a mediation (toll gate) role?
Thank You
Further musing...

- Do we really understand the dynamics and inter-relationships of the components of this industry?
Further musing...

• What drives the carriage sector?
• What drives the content sector?
• Is the open network architecture being offered by IPv6 fundamental to the objectives of either of these sectors?
• Will they invest in IPv6 infrastructure and service provision?
• If so, then why?
• If not, then why not?