The Public Option: A non-regulatory alternative to Network Neutrality

Richard Ma
School of Computing
National University of Singapore

Joint work with Vishal Misra (Columbia University)

The 2nd Workshop on Internet Economics
Highlights

- A more realistic equilibrium model of content traffic, based on
 - User demand for content
 - System protocol/mechanism

- Game theoretic analysis on user utility under different ISP market structures:
 - Monopoly, Duopoly & Oligopoly

- Regulatory implications for all scenarios and the notion of a *Public Option*
Three-party model \((M, \mu, N)\)

- \(\mu\): capacity of a single access ISP
- \(M\): # of users of the ISP (# of active users)
- \(N\): set of all content providers (CPs)
- \(\lambda_i\): throughput rate of CP \(i \in N\)
User-side: 3 Demand Factors

- **Unconstrained throughput** $\hat{\theta}_i$
 - Upper-bound, achieved under unlimited capacity
 - E.g. 5Mbps for Netflix

- **Popularity of the content** α_i
 - Google has a larger user base than other CPs.

- **Demand function of the content** $d_i(\theta_i)$
 - Percentage of users still being active under the achievable throughput $\theta_i \leq \hat{\theta}_i$
Unconstrained Throughput $\hat{\lambda}_i$

(Max) Throughput $\hat{\theta}_i(=7Kbps)$ User size $M(=10)$

Content unconstrained throughput

$\hat{\lambda}_i = \alpha_i M\hat{\theta}_i (=42Kbps)$

Content popularity

$\alpha_i (=60\%)$
Demand Function $d_i(\theta_i)$

demanding # of users $\alpha_i M d_i(\theta_i)$

achievable throughput $\tilde{\theta}_i$
Demand Function $d_i(\theta_i)$

- Assumption 1: $d_i(\theta_i)$ is continuous and non-decreasing in θ_i with $d_i(\tilde{\theta_i}) = 1$.
- More sensitive to throughput
- Throughput of CP i:

$$\lambda_i(\theta_i) = \alpha_i M d_i(\theta_i) \theta_i$$
Axiom 1 (Throughput upper-bound)

\[\theta_i \leq \hat{\theta}_i \]

Axiom 2 (Work-conserving)

\[\lambda_N = \sum_{i \in \mathcal{N}} \lambda_i = \min \left(\mu, \sum_{i \in \mathcal{N}} \hat{\lambda}_i \right) \]

Axiom 3 (Monotonicity)

\[\theta_i(M, \mu_2, \mathcal{N}) \geq \theta_i(M, \mu_1, \mathcal{N}) \quad \forall \mu_2 \geq \mu_1 \]
Uniqueness of Rate Equilibrium

Theorem (Uniqueness): A system \((M, \mu, \mathcal{N})\) has a unique equilibrium \(\{\theta_i : i \in \mathcal{N}\}\) (and therefore \(\{\lambda_i : i \in \mathcal{N}\}\)) under Assumption 1 and Axiom 1, 2 and 3.

User demand: \(\{\theta_i\} \rightarrow \{d_i\}\)
Rate allocation: \(\mu, \{d_i\} \rightarrow \{\theta_i\}\)

\(\Rightarrow\) Rate equilibrium: \((\{\theta_i^*\}, \{d_i^*\})\)
ISP Paid Prioritization

ISP Payoff:
\[c \sum_{i \in \mathcal{P}} \lambda_i = c \lambda_p \]

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premium Class</td>
<td>Ordinary Class</td>
</tr>
<tr>
<td>((M, \kappa \mu, \mathcal{P}))</td>
<td>((M, (1 - \kappa)\mu, \emptyset))</td>
</tr>
<tr>
<td>(\kappa \mu)</td>
<td>((1 - \kappa)\mu)</td>
</tr>
<tr>
<td>($c/\text{unit traffic})</td>
<td>($0)</td>
</tr>
</tbody>
</table>
Monopolistic Analysis

- Players: monopoly ISP I and the set of CPs \mathcal{N}

- A Two-stage Game Model (M, μ, \mathcal{N}, I)
 - 1^{st} stage, ISP chooses $s_I = (\kappa, c)$ announces s_I.
 - 2^{nd} stage, CPs simultaneously choose service classes reach a joint decision $s_{\mathcal{N}} = (\mathcal{O}, \mathcal{P})$.

- Outcome: set \mathcal{P} of CPs shares capacity $\kappa \mu$ and set \mathcal{O} of CPs share capacity $(1 - \kappa)\mu$.
Utilities (Surplus)

- **ISP Surplus:** \(IS = c \sum_{i \in P} \lambda_i = c \lambda_P \);

- **Consumer Surplus:** \(CS = \sum_{i \in N} \phi_i \lambda_i \)
 - \(\phi_i \): per unit traffic value to the users

- **Content Provider:**
 - \(v_i \): per unit traffic profit of CP \(i \)

 \[u_i(\lambda_i) = \begin{cases}
 v_i \lambda_i & \text{if } i \in \mathcal{O}, \\
 (v_i - c)\lambda_i & \text{if } i \in \mathcal{P}.
 \end{cases} \]
Type of Content

Profitability of CP v_i

Value to users ϕ_i
Monopolistic Analysis

Players: monopoly ISP I and the set of CPs \mathcal{N}

A Two-stage Game Model (M, μ, \mathcal{N}, I)
- 1st stage, ISP chooses $s_I = (\kappa, c)$ announces s_I.
- 2nd stage, CPs simultaneously choose service classes reach a joint decision $s_\mathcal{N} = (\mathcal{O}, \mathcal{P})$.

Theorem: Given a fixed charge c, strategy $s_I = (\kappa, c)$ is dominated by $s'_I = (1, c)$.

The monopoly ISP has incentive to allocate all capacity for the premium service class.
Utility Comparison: Φ vs Ψ
Regulatory Implications

- Ordinary service can be made “damaged goods”, which hurts the user utility.

- Implication: ISP should not be allowed to use non-work-conserving policies (κ cannot be too large).

- Should we allow the ISP to charge an arbitrarily high price c?
High price c is good when

\[\text{Profitability of CP } v_i \]

\[\text{Value to users } \phi_i \]
High price c is bad when

Value to users ϕ_i

Profitability of CP v_i
Oligopolistic Analysis

- A Two-stage Game Model \((M, \mu, \mathcal{N}, \mathcal{I})\)
 - 1\(^{\text{st}}\) stage: for each ISP \(I \in \mathcal{I}\) chooses \(s_I = (\kappa_I, c_I)\) simultaneously.
 - 2\(^{\text{nd}}\) stage: at each ISP \(I \in \mathcal{I}\), CPs choose service classes with \(s^I_N = (O_I, P_I)\)

- Difference with monopolistic scenarios:
 - Users move among ISPs until the per user surplus \(\Phi_I\) is the same, which determines the market share of the ISPs
 - ISPs try to maximize their market share.
Duopolistic Analysis

ISP I with $s_I = (\kappa, c)$

ISP J with $s_J = (0, 0)$

Public Option
Duopolistic Analysis: Results

- Theorem: In the duopolistic game, where an ISP J is a Public Option, i.e. $s_J = (0, 0)$, if s_I maximizes the non-neutral ISP I’s market share, s_I also maximizes user utility.

- Regulatory implication for monopoly cases:
Oligopolistic Analysis: Results

- Theorem: Under any strategy profile s_{-I}, if s_I is a best-response to s_{-I} that maximizes market share, then s_I is an ϵ-best-response for the per user utility Φ.

- The Nash equilibrium of market share is an ϵ-Nash equilibrium of user utility.

- Oligopolistic scenarios:
Regulatory Preference

ISP market structure

Oligopoly

Monopoly

User Utility

Hands Off the Internet

Public Option

Network Neutrality
Senator, what do you think about the public option?..