MAPPING INTERNET INTERDOMAIN CONGESTION

Amogh Dhamdhere, Bradley Huffaker, Young Hyun, Kc Claffy (CAIDA)
Matthew Luckie (Univ. of Waikato)
Alex Gamero-Garrido, Alex Snoeren (UCSD)
Steve Bauer, David Clark (MIT)

amogh@caida.org
INTERDOMAIN CONGESTION

• We are developing methods to measure the location and extent of interdomain congestion

• Our goals (1) a system to monitor interdomain links and their congestion state, (2) a near real-time “congestion heat map” of the Internet, (3) increasing transparency, empirical grounding of debate

• Part of a 3 year NSF-funded project on topology +congestion measurement
METHOD: TIME SERIES PING

Vantage Point

Border Routers on Interesting Link
METHOD: TIME SERIES PING

Vantage Point

Border Routers on Interesting Link

TTL: 2
METHOD: TIME SERIES PING

Vantage Point

Border Routers on Interesting Link

RTT #A

TTL: 2

RTT #B

TTL: 3
METHOD: TIME SERIES PING

Vantage Point Border Routers on Interesting Link

VP R BR #A BR #B DST

TTL: 2

RTT #A RTT #B

TTL: 3

(repeat to obtain a time series)
More congestion on weekend than weekdays. Monday 11th was Veterans Day.
CHALLENGES

• Topology: Method requires us to know the location of border link between two networks; this is very difficult

• Adaptiveness: The network changes over time; our system needs to be adaptive to changes in the underlying topology and routing

• Data mining: Need scalable techniques to find patterns in the data that indicate congestion

• Validation: Difficult to get ground-truth; most peering agreements are covered by NDAs
MAPPING INTERDOMAIN LINKS

• Identifying interdomain router links and their owners is an unsolved problem in the Internet research community

• We make a significant step forward with our tool to accurately map interdomain links (sc_bdrmap) for a given Vantage Point

 - Utilizes scamper’s traceroute and alias resolution to produce graph of routers, annotated with pt2pt links and AS owners

 - Resilient to traceroute artifacts (e.g., third-party IP addresses)
SC_BDRMAP OPERATING MODEL

Vantage Point

- sc_bdrmap
 - probing state
 - decision logic

- scamper
 - traceroute
 - alias resolution

control
BORDER MAPPING

• Running sc_bdrmap from ~60 monitors in diverse networks

• Obtained validation from a few networks; method shows good accuracy (we need more validation)

• Some findings: Comcast-Level3 connected with 45 router-level links!

 - Need VPs close to those locations to find these links
ADAPTIVE PROBING

• TSLP probing depends on up-to-date view of network

• Run bdrmap continuously on VPs

• Periodically (every day) fetch bdrmap data from VP, perform link identification, produce probe list, push new probe list to monitor, produce various meta-data (e.g., reverse DNS lookups of all interdomain link IPs)

• Order of minutes to process traces, generate probing set, and produce all meta-data for each VP
DATA!

• We probe the near and far interface of every interdomain link every 5 minutes

• TSLP data is pulled from monitors and goes into a time series database

• Not re-inventing the wheel: use InfluxDB as the time-series database. InfluxDB provides an SQL-like query interface

• InfluxDB + Grafana: Interactive querying plus visualization

• Bonus: updates in near real-time!
DATA EXPLORATION

• Demo

• (let’s hope this works)
REACTIVE MEASUREMENTS

• Use the results of time series analysis to trigger additional measurements from the VP — high-frequency probing to measure loss rate, throughput measurements, or application-specific QoE measurements

• We have built an agile, lightweight reactive measurement system to distribute measurement tasks to the VPs. The scheme is interoperable across different infrastructures

• In progress: time series analysis to feed into reactive measurement system
VP DEPLOYMENTS

• Deployments in various access networks (and other network types, see http://www.caida.org/projects/ark/)

• Currently ~60 monitors running TSLP measurements: 39 networks, 26 countries

• We continue to deploy Ark nodes using Raspberry Pi hardware in homes

• Goal: deploy our experiments on other platforms: BISmark, FCC-Samknows (thousands of vantage points)
TSLP ON CONSTRAINED DEVICES

- TSLP and sc_bdrmap are CPU, memory, and disk intensive
 - TSLP data can grow large owing to sampling frequency
 - sc_bdrmap requires ~150MB of memory and some CPU to maintain mappings, probing state

- Some measurement devices (SamKnows, BISmark) are resource constrained
 - 64-128M memory
 - 400Mhz MIPS CPUs
 - No significant storage (small flash w/ limited write cycles)
TSLP ON CONSTRAINED DEVICES

- We extended scamper to support interactive remote control
 - resource constrained device still runs scamper (3.5M RSS)
 - scamper connects to more powerful remote system to receive instruction
 - border mapping and TSLP can run on the remote system and use sc_remoted to communicate with scamper instance
Central Server: able to control 100s of low resource VPs

Central Server

control

sc_bdrmap

probing state decision logic

sc_remoted

remote

Low Resource VP

Vantage Point

3.5MB

scamper traceroute alias resolution
BISMARK TRIAL

• Deployed border mapping and TSLP on ~15 Bismark OpenWRT routers (Thanks to the Project Bismark team!)

• Results are promising so far

• Varying degrees of reliability: router reboots and address changes interrupt border mapping and TSLP processes

• Enhancements to scamper remote operation mode should make things more robust
FCC-SAMKNOWS

• ~10,000 home routers operated by SamKnows as part of the FCC’s Measuring Broadband America program

• Next target for TSLP
THANKS!
amogh@caida.org