

caida 2004-2006 view

ucsd/sdsc/caida kc@caida.org june 2004 http://www.caida.org/projects/progplan/

research programs

- active: macroscopic topology project
- passive: (real-time) traffic workload characterization
- DNS analysis
- routing analysis and modeling
- performance/bandwidth estimation methods and tools
- Internet Measurement Data Catalogue (IMDC)
- security issues
- other areas
 - tools development
 - new network visualization metaphors
 - policy
 - outreach & education

macroscopic topology project

2003 activities

massive macroscopic traceroute data - most comprehensive in world

• established legitimate framework for IP topology analysis

mapping IP -> AS -> organization -> latitude, longitude

• largest publically available database (still hard problem -needs funding)

distilled AS topology data available to community

• derived from skitter probes and BGP data

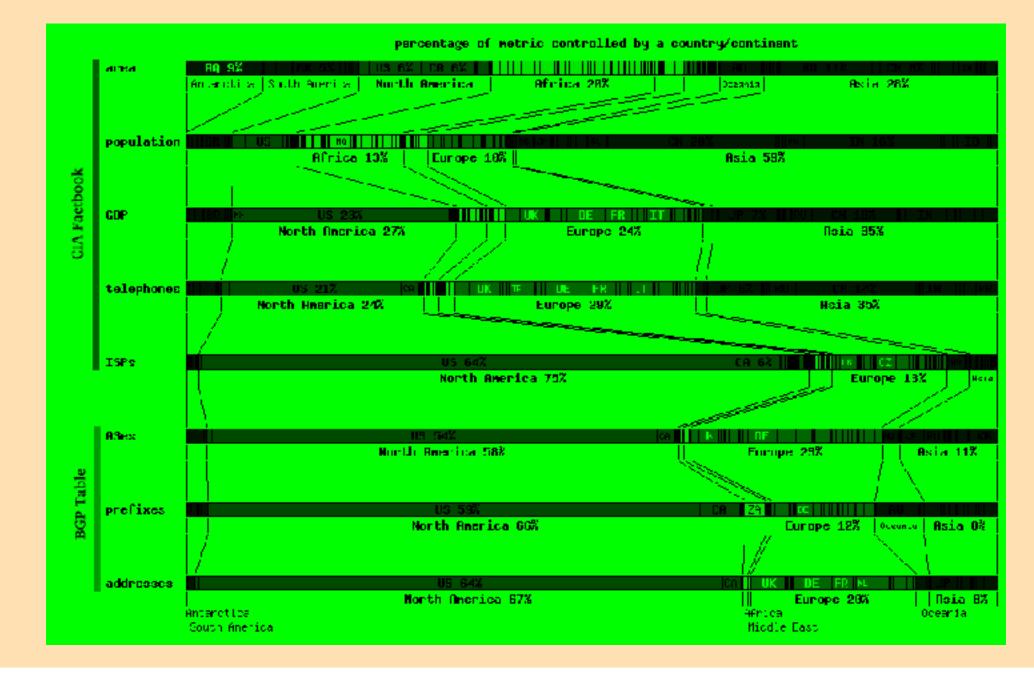
• weekly

• Internet toplogy data kit (ITDK) 2003

april 2003 data: topology, routing, meta-data
hopefully wide use of this carefully selected data set

AS ranking (in/out degree)

2004-5


extending ASrank to organizational granularity

correlation with routing tables

IPv6 topology map (scamper data, WIDE funding)

pop-level map of the Internet (need funding)

macroscopic topology project

2003-5

- continued passive measurements of Internet data
- techniques for high speed traffic sampling/aggregation
- only OC48 backbone traces available to researchers (so far as we know)
- also only network telescope available to researchers (so far as we know)
 - backscatter, worms, scanning traffic
 - invaluable source of data to security researchers

various levels of anonymization available to community

• under AUP

study how user activities produce torrents of bytes

- testing models for TCP in presence of bursty cross traffic
- detection of long-running streams
- tracking Internet usage patterns, e.g., p2p
- PAM 2004 paper: 'their share: diversity and disparity in IP traffic'
- PAM 2004 paper: 'measurements & lab simulations of upper dns hierarchy'

2004-5

co-chairing IETF WG developing standards for flow measurements

- traffic spectroscopy (andre broido)
- 2005 goal: 24 hour packet trace from the core

Domain Name System (DNS) data analysis

DNS = indispensable Internet component

new technologies (e.g., anycast, DNSSEC) being deployed at highest (point of failure) levels without instrumentation to debug

2003

real-time public monitor of root/gTLD performance

studies of garbage at root servers

modeling of DNS resolver behavior

• trace-based simulation

2004-2005

analysis of F-root (ISC) data for caching resolver pollution

• submitted paper to Sigcomm workshop (Duane will discuss today)

support ICANN's Security and Stability Committee (SSAC) with data

• empirical analysis to support policy recommendations

proposed CAIDA/OARC project to NSF

• getting sound DNS data to researchers

• preliminary OARC support (w WIDE help)

interdomain routing

new routing researcher: Dima Krioukov

- theoretical background in routing
- IRTF chair of working group on scalable interdomain routing

will talk tomorrow on compact routing

- infocom 2004 paper
- submitted proposal to NSF for follow-up funding
 - explore applicability of surprising theoretical results from 2003

2003

completed atoms project. no follow-up for nowatoms PI patrick verkaik will be joining UCSD PhD program in the fall

2004-5

- supporting data for pop-level map
- compact routing research for inter-domain
- maccroscopic AS topology available weekly

performance tools and analyses

bandwidth estimation

collaboration with GA tech - they creating new bwest tools

- pathrate: packet pair technique: dispersion of two back-to-back packets
- pathload: SLOPS methodology: looks at one-way delays of a periodic packet stream • non-intrusive but requires cooperation of both endpoints

tools methodology, evaluation

comparing and calibrating available tools

• pathload, pathrate, pathchirp, ABw, igi, netest2, iperf

experiments in CalNGI reference lab

- full control of environment & conditions
- 100 Mbp and GigE links

next stage: experiments against real traffic

2004-5 (ga tech lead, pending funding)

convenient user interface to these toolsintegration with other network middleware

performance data

skitter and scamper delay data

intermediate RTTs now being collectedbrad and matthew to analyze this year

beluga per hop latency toolunfunded

2003

AS rankskitter daily summary

2004

AS rank by organization
IPv6 topology map over time
improve operational integrity of measurement and analysis software

I'net Measurement Data Catalog (IMDC)

'trends' project

year 2 of three-year project funded (partially) by NSF "Correlating Heterogeneous Measurement Data to Achieve System-Level Analysis of Internet Traffic Trends"

design a universal annotation system (meta-data)

• how to describe heterogeneous Internet data sets?

build meta-data repository to store "data about data"

- do cross-correlational analysis
- start building 'community memory'

• recommendations for long-term archiving of measurement data

collaboration with IMRG (Internet measurement research group)

It is time for a substantial increase in attention toward the task of conducting Globally Relevant Measurements of Internet phenomena and trends

challenge: characterize Internet traffic trends

motivation: lack of data since 1995 another motivation: way too much data

admissions about dealing with Internet data

- vern's 2001 talk www.icir.org/vern/talks/vp-nrdm01.ps.gz
- david moore's 2002 talk www.caida.org/outreach/presentations/2002/ipam0203/

Iongitudinal data are highly ad hoc

measurement tools lie to us

• packet filters, clocks, "simple" tools...

• no culture of calibration

measurements carry no indication of quality

• lack of auxiliary information

measurements are not representative

• there is no such thing as typical

analysis results are not reproducible

large-scale measurements are required

• that overwhelm our home-brew data management

• we do not know how to measure real traffic

just so i don't understate the case

for the most part we really have no idea what's on the network

- can't measure topology effectively in either direction. at any layer.
- can't track propagation of a bgp update across the Internet
- can't get router to give you its whole RIB, just FIB (best routes)
- can't get precise one-way delay from two places on the Internet
- can't get an hour of packets from the core
- can't get accurate flow counts from the core
- can't get anything from the core with real addresses in it
- can't get topology of core
- can't get accurate bandwidth or capacity info
 - not even along a path much less per link
- SNMP just an albatross (enough to inspire telco envy)
- no 'why' tool: what's causing my current problem?
- privacy/legal issues disincent research
- result --> meager shadow of careening ecosystem
- result --> discouraged (or worse) academics
- if you're not scared i'm not explaining this right

where is the data?

- Internet grew organically, incorporating useful technologies as less useful ones obsolesced
- scientifically rigorous monitoring & instrumentation not included in post-NSFNET Internet
- data often proprietary; research use outside owning administrative domain is rare
- researchers can't find out about what little data is available
- Internet research fundamentally different from physics/biology/chemistry -although we have their problems as well
 - why wouldn't we? -- it's a dynamic, organic system, composed of interactions we don't understand, amon particles we can't access individually

more like astronomy w/no national virtual observatory or even decent telescopes

• or early quantum mechanics

• in that you can't measure the particles when you need to

add a bunch of lawyers -> recipe for bleak future

requires sophisticated tools And special access to data

obstacles to Internet/network research

problems caused by lack of data

results with predictive power elusive since every link/node has its own idiosyncracies/policies

makes it hard to assess the quality of any result

fundamental research cannot be accomplished

tools designed to combat major problems cannot be tested

DoS attack mitigation

• virus/worm spread

can't validate theory, model, or simulation against real network

• not to mention code bugs, methodology flaws

result: weak Internet science

it's not just soft, it's slippery

and stunted

no revolutionary progress in the field for years

and most of us are partial to revolution

• so if we're sometimes cranky, that might be why

the view from here

the data we do have

- disparate
- incoherent
- limited in scope
- scattered
- unindexed

what we need

globally relevant measurements

- rational architectures for data collection
- instrumentation suitable for above OC48 links (that number tends to grow..)
- archiving and disseminating capabilities
- data mining and visualization tools for use in (nearly) real time?
- historic data for baseline
- cross-domain analysis of multiple independent data sets
- local phenomena vs. global behavior

what can be done

find way to fund researchers to share data

time and resources are required to share public data with other researchers
 make a data catalog of available data sources -- a single clearinghouse for information on available data sets

need 'well-curated' Internet measurement data repository

measurements need pedigrees describing them, how to navigate
audit trails, portable analysis scripting language to support reproducibility
well-managed meta-data (machine readable and searchable)
software tools to analyze
understand sampling implications and technology better
anonymization tools & reduction agents
long-term and sustained support of such repositories

btw, much here already been/being solved by google, amazon, orkut

• tech transfer might should go both ways

IMDC project: tasks

deploy strategic Internet measurement instrumentation

improve measurement tools

- advanced hardware for monitoring OC48 links
- advanced software for pre-processing the data various levels of aggregation
- modules for storage and manipulation of data
- expand security related monitoring • ability to capture DoS attacks in progress

develop and support a large data storage infrastructure at SDSC

coordinate movement of traffic measurement data

create multi-faceted sets of data (datakits)

universal annotation system (next slide)

IMDC project: universal annotation system

requirements

- accomodate heterogeneous raw data sets
- handle data sets distributed among many sites
- facilitate community access to data repositories
 - data sharing and comparative analysis
- flexible and extensible
 - define meaningful data cross-mappings
- community-based approach to develop common formats
- encourage wide use of common formats
- leave control and security issues to data owners
- ? what else ?

present state of knowledge

- none for the Internet community
- draw from other sciences
 - biology, physics, astronomy

IMDC project: universal annotation system (2)

tasks

create front-end user interface

• Internet access to data

• APIs

• AUPs

• compatibility with collection-based sofrtware

create back end information management system

- automatic methods of indexing
- include: data, tools, analysis requests
- distributed data collection and publication

maintain and develop compelling tools

• responsive to user needs

solicit input from concerned research and standards groups

• Grid Forum, IETF (IPFIX, IPPM, PSAMP), IRTF (IMRG)

• NANOG, ISP community (security issues)

expected users of IMDC

CAIDA currently receives dozens of queries for data every week
CAAIDA makes available hundreds of gigabytes of data, including:
anonymized and unanonymized OC48 backbone traces
network telescope data including:

- host scan dynamics
- the spread of Internet worms
- Denial-of-Service backscatter

making CAIDA data searchable via IMDC will encourage people to use

we've attempted a compromise between requiring so much context for contributed data that no one will contribute, and requiring so little background that searches don't provide meaningful information

IMDC: research problems (cont.)

example: workload trends

patterns of usage over time pace of new protocols' deployment growth of tunneling technologies • impact on fragmentation more users or more traffic per user? • per host, prefix, site, AS behavioral characteristics • for classification • for engineering purposes comparison of various flow models traffic load and geography local regional • international

tracking distributed denial-of-service activity

expected uses of IMDC

exploding myths

e.g., RIAA claimed in august "P2P traffic dropped"

- http://www.pewinternet.org/reports/pdfs/PIP_File_Swapping_Memo_0104.pdf
- march/may 2003 -> december 2003 brought 29% -> 14% "usage"
- data sources: telephone surveys nov18->dec14 (huh?); software downloads
- not data sources: Internet data (wth?)

real data

have never seen a trace at time t with less p2p traffic than at time t-1

• frankly i don't see that happening soon

being able to verify/refute this claim is actually a huge deal

- (and not just about changing how we must think of ownership of everything that comes out of our brains)
- will change Internet engineering as we know it today
- current stability and profitability/usability assumptions of asymmetric utilization
 - (btw also driving community to re-evaluate issues of privacy and anonymity;
 - won't ever see a p2p protocol again that doesn't support encryption)

IMDC project: meta-commentary

end game: legitimate tracking of trends

- caveat: trends really not good
- the more we see, the less we like
- kc's 2004 talk 'top problems of the Internet & how researchers can help'
- grep for 'garbage' in bruce sterlings's nsf april 2004 grand challenge workshop keynote talk
 - http://www.cra.org/Activities/grand.challenges/sterling.html

"digital imprimateur" -- john walker

- http://www.fourmilab.ch/documents/digital-imprimatur/
- "how big brother and big media can put the Internet genie back in the bottle"
- rich 'optimistic pessimism'

geoff huston's nznog talk

- video http://s2.r2.co.nz/20040129/
- slides http://www.nznog.org/ghuston-trashing.pdf
- not so much with the optimism

this project's website (neutral about falling sky)

http://www.caida.org/project/trends/

IMDC: interim progress (20/36 months in)

short answer: not done yet

- design process complete, including user interface
- database configured and functional
- prototype implementation in progress

medium answer: impediments on our minds

- ineffective data cataloging
- disparate formats
- inadequate documentation
- inadequate or missing information or quality control
- inadequate analysis tools
- inadequate local storage for data analysis

Iong answer: workshop in early june 2004

- co-chair with IRTF's IMRG chair to maximize community input
- introduce community to and solicit feedback on architecture and user interface
 - ▶ get architecture to fit data, not vice-versa
 - discuss typical user modes for researchers, engineers
- discuss logistical issues
 - supporting processing tools
 - anonymization techniques
 - security of database
- future workshop 'reverse engineering the Internet' theme (--neil spring's paper)
- relationship to and support for distributed observatory

CAIDA: security research

global denial of service activity

CAIDA invented backscatter methodology

• detecting denial-of-service (DOS) activity on the global Internet

• monitoring spread of worms in the networks

▶ Nimda, Code Red, Sapphire, ... (to be continued)

the only publicly available data quantifying DOS

main results

understand nature of current DOS threat
longer-term analysis of recurring patterns of attacks

• number, duration, focus, behavior

modeling quarantine systems to block self-propagating code

• use real data from epidemics & macroscopic topology probing

• explore systems in terms of abstract properties

▶ speed of detection, granularity of blocking, breadth of deployment

disturbing discovery: no way to react in time! automated detection of worms and response are essential

network telescope observation station

network telescope

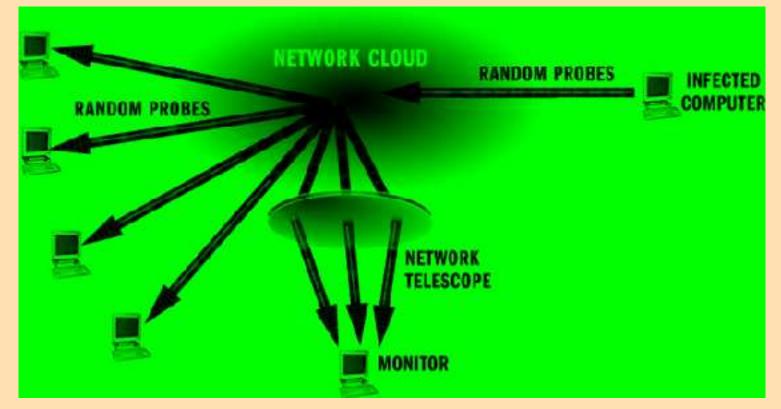
a chunk of globally routed IP address space


- e.g., UCSD's has a /8 and /16 network
 - ► (1/256th plus 1/65539th of all IP version 4 addresses)
- little or no legitimate traffic (or easily filtered legitimate traffic)
- unexpected traffic arriving at the network telescope can imply remote network/security events
- generally good for seeing explosions, not small events
- depends on random component in spread
- has given vital data on: codered*, sapphire, SCO attacks, witty worm

UCSD's network telescope team:

David Moore & Colleen Shannon

security: Internet worm attacks (3)


sapphire effects

over 75,000 hosts infected in ten *minutes*
sent more than 55 million probes per second worldwide
collateral damage:

- bank of america ATMS
- 911 disruptions
- continental airlines cancelled flights
- unstoppable; relatively benign to hosts

telescope: worm attacks

open research questions

- random number generation and spread rates
- effective countermeasures
- victim classification/hitlists

telescope observation station goals

continuous data collection with rotating data files:

- full packet trace kept for 24 hours
- complete packet header trace kept for 1 week
- aggregated data (flow tables) stored indefinitely

sanitized data publicly available to research community

- under NDA
- intend to integrate with doug's data collection efforts

expansion to include monitoring distributed address space

- countermeasures include to #define telescope prefixes out of scripts
- countercountermeasures include distributed lenses and moving lenses (requires ARIN support)

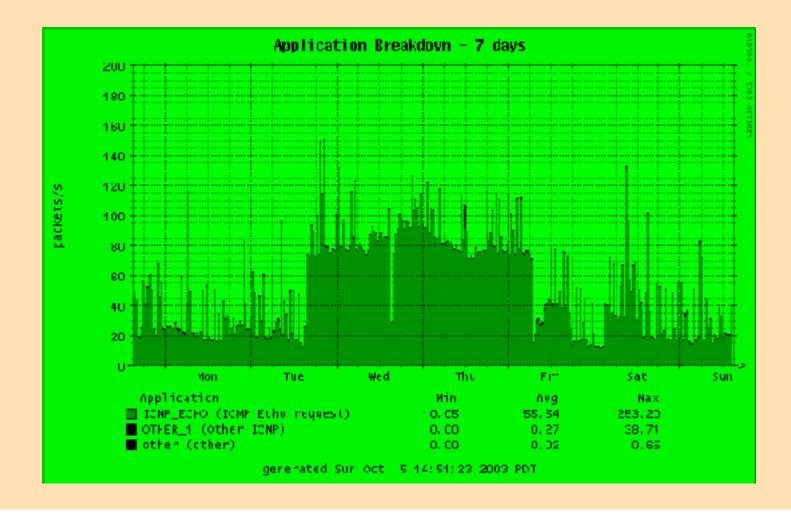
telescope: user interface

NTOS graphical interface

publicly accessible realtime graphical monitor

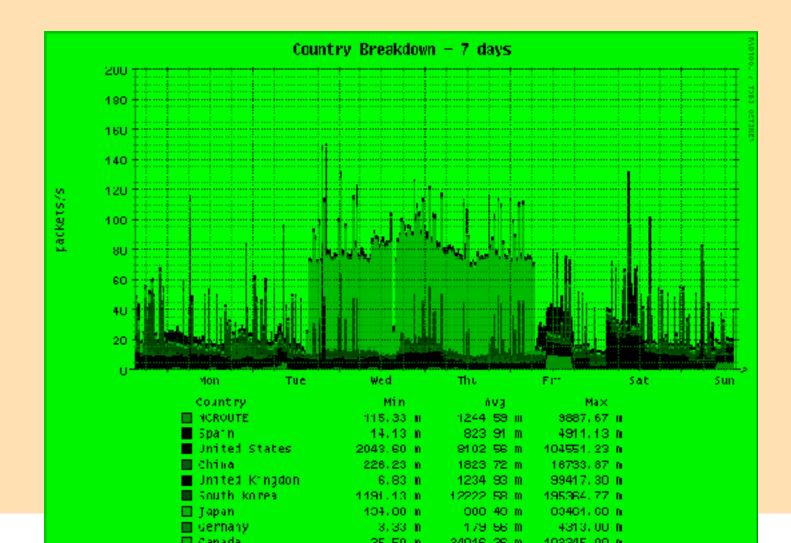
- denial-of-sercice attacks
- worm activity
- port scanning

authorized users

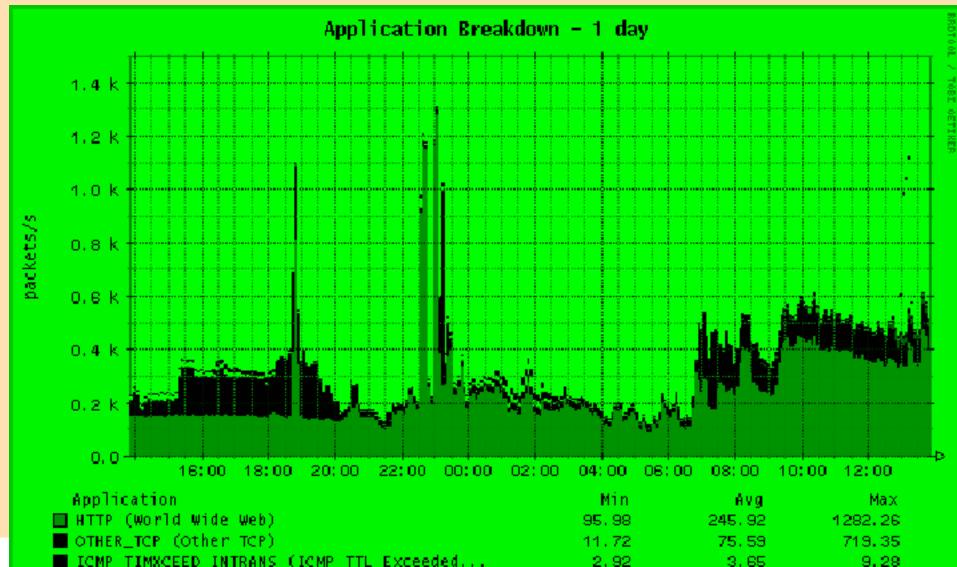

- drilldown technology
 - ▶ timescale
 - transport protocol
 - application ports
 - ▶ subnets

ability to save (manually or automatically) data of interest

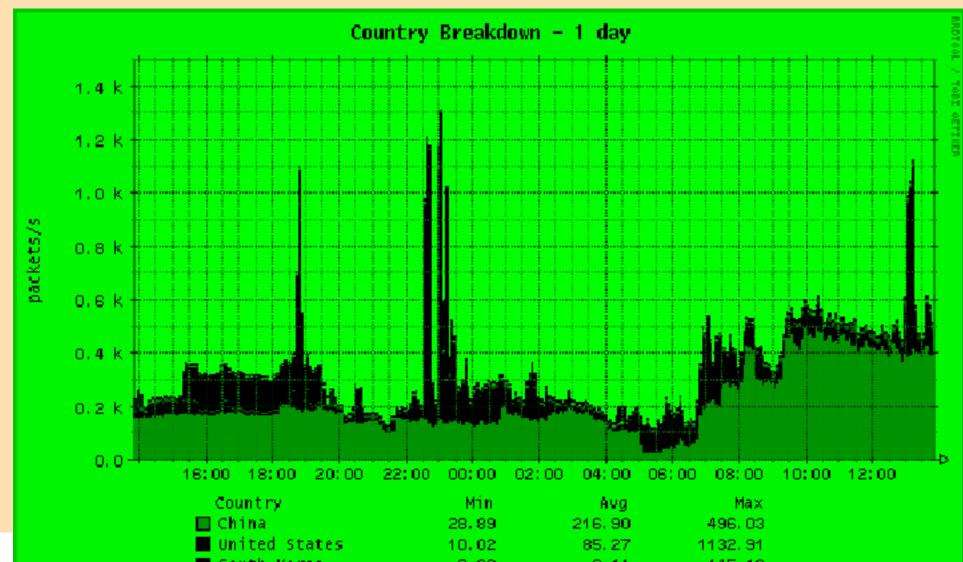
email alerts for trigger events


ICMP host scanning

- **5** october 2003
- some attacks are apparent, but others are difficult to identify


ICMP host scanning

- **5** october 2003
- viewing attacks by source country helps to differentiate them


ongoing denial of service attacks

7 october 2003breakdown of attacked services

ongoing denial of service attacks

7 october 2003breakdown by victim location

telescope: conclusions

Network Telescope Observation Station will continuously monitor worm and denial-of-service activity worldwide, archiving data for in-depth analysis.

NTOS furthers CAIDA's mission to foster communication and cooperation via collection, dissemination, and visualization of Internet data.

caida other activities

tools

Internet measurement tool taxonomy:www.caida.org/tools/taxonomy/

• used extensively by research and operational community

Taxonomy of public and private performance measurement infrastructures: www.caida.org/analysis/performance/measinfra/

CAIDA-developed tools:

- workload: CoralReef, NeTraMet cflowd
- topology: skitter, iffinder, gtrace
- performance: beluga
- IP data management utilities: arts++, netgeo
- viz: chart:graph, walrus, rrdtool, geoplot, mapnet, otter, libsea, plot-latlong
- dns: dnsstat, dnstop
- mbone: mantra

caida outreach

conference and journal publications http://www.caida.org/outreach/papers/

national and international presentations

• http://www.caida.org/outreach/presentations/

provide data to researchers

http://www.caida.org/outreach/data/

ISMA workshops

http://www.caida.org/outreach/isma/

security analysis

http://www.caida.org/dynamic/analysis/security/

Internet course curriculum materials

http://iec.caida.org

Internet tools taxonomy

• http://www.caida.org/tools/taxonomy/

Internet Atlas gallery

• http://www.caida.org/projects/internetatlas/gallery/

Internet measurement infrastructures

• http://www.caida.org/analysis/performance/measinfra/

networking research/analysis at UCSD

http://www.caida.org/home/about/research/

conclusions

current caida projects (apr 2004)

- [UCSD-RAMP] DARPA RAMP (UCSD CSE collaboration)
- [DOE-SciDAC] Bandwidth Estimation (bwest) [ends in 2004]
- [NSF-Trends] Correlating heterogeneous measurement data to achieve system-level analysis of Internet traffic trends
- [NSF-NCS] Inference of Internet structure (routing/topology)
- [Mbrs] Outreach to commercial ISPs and vendors
- [Cisco URB] Routing and Topology Analysis (AS ranking)
- [Cisco URB] Security: DOS attack and countermeasure analysis
- [DNS-WIDE] analysis of DNS root and gTLD nameserver system

Measurement is the link between mathematics and science. -Brian Ellis, 1968

http://www.caida.org/outreach/presentations/