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Scale-free networks as preasymptotic regimes
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We study the following paradox associated with networks growing according to superlinear prefer-
ential attachment: superlinear preference cannot produce scale-free networks in the thermodynamic
limit, but there are superlinearly growing network models that perfectly match the structure of
some real scale-free networks, such as the Internet. We obtain an analytic solution, supported by
extensive simulations, for the degree distribution in superlinearly growing networks with arbitrary
average degree, and confirm that in the true thermodynamic limit, these networks are indeed de-
generate, i.e., almost all nodes have low degrees. We then show that superlinear growth has vast
preasymptotic regimes whose depths depend both on the average degree in the network and on how
superlinear the preference kernel is. We demonstrate that a superlinearly growing network model
can reproduce, in its preasymptotic regime, the structure of a real network, if the model captures
some sufficiently strong structural constraints — rich-club connectivity, for example. These findings
suggest that real scale-free networks of finite size may exist in preasymptotic regimes of network
evolution processes that lead to degenerate network formations in the thermodynamic limit.

PACS numbers: 89.75.Fb, 89.75.Hc, 05.65.+b

I. INTRODUCTION

Models of complex networks can be roughly split into
two classes: static and growth models. Static models,
such as classical random graphs [1] and their generaliza-
tions [2, 3, 4], generate a whole network at once, trying
to directly reproduce some properties observed in real
network snapshots. Growth models, e.g., preferential at-
tachment [5], construct networks by adding a node at a
time, attempting to provide some insight into the laws
governing network evolution. Compared to static mod-
els, it is generally more di�cult to closely match observed
network properties with growth models, because in this
case one usually has less direct control over the properties
of modeled networks.

The �rst growth model that matched the observed In-
ternet topology surprisingly well, across a wide spectrum
of network properties, was the positive-feedback prefer-
ence (PFP) model by Zhou and Mondrag�on [6]. In the
model, at each time step, one node is added to the net-
work, and connected to the existing nodes by two or three
links, choosing di�erent link placement options with dif-
ferent probabilities. The most important property of the
model is that the probability to connect a new node to
the existing nodes of degree k is a superlinear function of
k. Although there are many other models of the Internet
evolution, e.g. [7, 8, 9], the PFP model stands apart as
it gives rise to the following unresolved paradox. On the
one hand the model matches perfectly the observed Inter-
net, while on the other hand, since it is explicitly based
on preferential attachment with a superlinear preference
kernel, it cannot produce, in the thermodynamic limit,
any scale-free networks [10], including the Internet.

Here we resolve this paradox by showing that superlin-
ear preferential attachment can have vast preasymptotic

regimes. Speci�cally, we �rst �nd an analytic asymp-
totic solution for superlinearly growing networks with
arbitrary average degree, con�rming that the asymptotic
regime is indeed degenerate | regardless of the average
degree, only a �nite number of nodes have high degrees
(Section II). However, in Section III, we show that if the
preference kernel is not too superlinear and if the aver-
age degree is not too low, then this asymptotic regime
becomes noticeable only at network sizes that are orders
of magnitudes larger than the size of any real network,
including the Internet. We thus half-resolve the paradox
by showing that the PFP model can, in fact, match the
Internet. Section IV resolves the other half, by explaining
why the model does so: its design implicitly reproduces
the degree correlations in the Internet, which are known
to de�ne almost all important topological properties, ex-
cept clustering [3, 4]. We conclude in Section V with an
outline of our �ndings and their implications.

II. ASYMPTOTIC DEGREE DISTRIBUTION

In this section we derive the analytic solution for the
degree distribution of superlinearly growing networks
(SLGNs) in the thermodynamic limit. We begin by re-
calling what is known for networks grown by adding a
single link per node (the average degree �k � 2), and then
generalize to the case with multiple links.

A. Single link per node

The case when a new node attaches to exactly one
existing target (or host) node is well-studied [10, 11, 12].
Let the probability that the new node selects a host node
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of degree k be

k�=

NX

j=1

(kj)
�; (1)

where the summation is over all N existing nodes and kj 's
are their degrees. Then the asymptotic degree distribu-
tion is a stretched exponential for sub-linearly growing
networks (� < 1) and a power law for linearly growing
networks (� = 1). Superlinearly growing networks with
� > 1 are asymptotically star graphs.

Speci�cally, if � > 2, then the number of nodes with
degrees k > 1 remains �nite in the thermodynamic limit
N ! 1, meaning that almost all nodes have degree 1,
N1(N) � N . If 3=2 < � < 2, then the number N2(N)
of nodes with degree 2 (degree-2 nodes) grows as N2��,
while the number of nodes with degrees k > 2 remains
�nite. If 4=3 < � < 3=2, then N3(N) � N3�2�, and the
number of nodes with degrees k > 3 is �nite. In other
words, there is an in�nite series of \phase transitions" at
critical values �p = 1+1=p, where p = 1; 2; 3; : : :, and the
degree distribution in SLGNs with � lying between these
critical values, �p < � < �p�1 (�0 � 1), is given by

Nk=N �
(

N (k�1)(1��) if 1 6 k 6 p;

1=N otherwise.
(2)

In what follows we also consider the extremal growth

rule, which formally corresponds to the � ! 1 limit, and
speci�es that a new node attaches to the existing node
with the maximum degree. If there are several nodes with
the same maximum degree, then the host node is ran-
domly selected among them. SLGNs grown according to
this rule stay stars throughout their evolution, assuming
they are stars at the beginning. If an SLGN is not ini-
tially a star, then extremal growth evolves it to almost a
star, with all new nodes attaching to a maximum-degree
node in the initial graph.

Adding one link per node results in growing trees,
which are not good models of real complex networks that
all have strong clustering. But even if we are not con-
cerned with the models' realism, there is another reason
to consider SLGNs with multiple links added per new
node.

While for sub-linearly growing networks, adding more
than one link should not qualitatively change the degree
distribution, this modi�cation may have a more promi-
nent e�ect on the degree distributions in superlinearly
growing networks. Indeed, the more links per node we
add in SLGNs with a �nite �, the stronger the deviations
from stars we obviously expect to observe. In view of
the PFP model paradox, one might even start suspect-
ing that multiple links may resurrect power laws. We
thus have to exercise more care dealing with multiple-link
SLGNs. In what follows, we �rst consider them under the
extremal growth rule, and then remove this restriction.

Existing network

New node

Host nodes

(a)Two hosts

Existing network

New node

Host node Peer node

(b)One host

FIG. 1: Link placement options for two links.

B. Multiple links per node. Extremal growth.

We denote by m the number of links added per new
node. The PFP model uses a superposition of the m = 2
and m = 3 cases, and a combination of the following two
link placement options: place a link either between the
new and host nodes, or between the host and another
existing node, called the peer node. Links are always
placed such that the subgraph induced by the new links
is connected and contains the new node, so that the net-
work stays connected at each time step. For concreteness,
we shall assume that m is a �xed positive integer, and
consider cases with di�erent m separately. Another im-
portant restriction is that we construct simple graphs,
i.e., self-loops and multiple links between the same two
nodes are not allowed.

We �rst focus on the case with m = 2. In this case we
have only two options to place two links (see Fig. 1):
place both links between the new and host nodes, or
place one link between the new and host nodes, and
place another link between the host and peer nodes.
The both options, or any their superposition, produce
the same result. Let the initial network be two discon-
nected nodes. Adding the third node according to the
extremal growth rule creates the star graph with three
nodes. We shall represent our graphs by their degree
sequences (k1; : : : ; kN ). The degree sequence represen-
tation turns out to de�ne, up to an isomorphism, the
graphs grown according to our extremal growth rule. The
star graph after the �rst step is (2; 1; 1) in this represen-
tation. Applying the extremal growth rule to add the
fourth node, we obtain (3; 2; 2; 1), and then (4; 3; 2; 2; 1),
(5; 4; 2; 2; 2; 1), and generally

(N � 1; N � 2; 2; : : : ; 2
| {z }

N�3

; 1) (3)

We prove (3) by induction. We already checked its
validity for small N . Assuming that (3) holds for some
N > 4, we establish it for N +1. If we place the two links
according to the �rst option, shown in Fig. 1(a), then the
new node attaches to the nodes with degrees N � 1 and
N � 2. Thus degree N � 1 7! N and N � 2 7! N � 1,
the new node acquires degree 2, other degrees do not
change, and the new graph has indeed the same structure
(3). If we use the other link placement option shown in
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A

B

FIG. 2: Open 2-book (8,7,2,2,2,2,2,2,1).

Fig. 1(b), we must choose the node of degree N � 2 as
the host node. We cannot attach the new node to the
node of degree N � 1 because this latter node is already
connected to all other nodes, and therefore we cannot
add the second link between this hub node and any peer
node. Selecting the node of degree N � 2 as the host,
we notice that it is connected to all other nodes, except
the degree-1 node. Therefore this latter node is the only
choice for the peer node. Hence N � 2 7! N and 1 7! 2,
the new node acquires degree 1, and other degrees do not
change. Thus the new graph has the same structure (3).

We shall call the graphs series (3) the open 2-books.
The justi�cation for this name is as follows. The link
between the two nodes of highest degrees, denoted by A
and B, is the binding of an open book. Each degree-2
node is connected to A and B, and the resulting triangle
is a page. Thus, an open 2-book contains N�3 triangular
pages. Finally, the link between the highest-degree node
A and the dangling degree-1 node is a built-in bookmark.
The open 2-book graph with N = 9 nodes is shown in
Fig. 2.

Note that we can call a star an open 1-book. It does
not have bookmarks, its binding is the hub node, and its
N � 1 pages are all the links.

We now move to the case with three links added per
new node, m = 3. Generalizing the link placement op-
tions for two links, there are four options for placing
three links, shown in Fig. 3. Choosing the �rst option
with three host nodes (Fig. 3(a)), the application of the
extremal growth rule to the initial graph (0; 0; 0) yields
the graph series (3; 1; 1; 1), (4; 3; 2; 2; 1), (5; 4; 3; 3; 2; 1),
(6; 5; 4; 3; 3; 2; 1), (7; 6; 5; 3; 3; 3; 2; 1), and generally

(N � 1; N � 2; N � 3; 3; : : : ; 3
| {z }

N�5

; 2; 1) (4)

Using the same logic as in the m = 2 case, one can prove
that the extremal growth indeed produces (4). The link
placement option in Fig. 3(c) results in exactly the same
graph series. Placing links as in Fig. 3(d), we obtain
almost the same graph series, except that the �rst graph
is (2; 2; 1; 1). The option in Fig. 3(b) leads to a di�erent
graph series, but almost all nodes still have degree 3.

Existing network

New node

Host nodes

(a)Three hosts

Existing network

New node

Host nodes Peer node

(b)Two hosts

Existing network

New node

Host node Peer nodes

(c)One host

Existing network

New node

Host node Peer nodes

(d)One host

FIG. 3: Link placement options for three links.

We call the graph series (4) open 3-books. The binding
is the triangle ABC connecting the three nodes A, B,
and C of highest degrees N � 1, N � 2, and N � 3.
Each page is a tetrahedron ABCD, where D is one of
the N � 5 degree-3 nodes. Thus, an open 3-book has
N � 5 tetrahedral pages. It also has two bookmarks:
triangle ABE and link AF , where E and F are the nodes
of degrees 2 and 1.

Generalizing to an arbitrary m, we notice that there
are combinatorially many possibilities to place m links.
In general, they lead to di�erent graph series. For con-
creteness, in the rest of this paper we focus on the sim-
plest option with no peer nodes and m hosts, i.e., the
generalization of Figs. 1(a),3(a). In this case, if N is suf-
�ciently large, i.e., N > 2m, then the resulting graphs
are

(N � 1; : : : ; N � m; m; : : : ; m
| {z }

N�2m+1

; m � 1; : : : ; 1) (5)

These graphs are open m-books. If we imagine them
placed in an m+1-dimensional ambient space, then they
contain:

� one 2-codimensional binding, i.e., the m�1-simplex
A1 : : : Am composed of the m highest-degree nodes;

� N�2m+1 1-codimensional pages, i.e., m-simplices
A1 : : : AmD, where D is one of the N � 2m + 1
degree-m nodes;

� m � 1 bookmarks of codimensions 2; 3; : : : ; m, i.e.,
m�1-, m�2-, . . . , and 1-simplices (one simplex of
each dimension), composed of links interconnecting
highest-degree nodes and nodes of degrees k < m.

The notion of an open book appears in mathemat-
ics [13], where it �nds various applications, e.g., as a
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tool to establish connections between contact geome-
try and topology. In its simplest de�nition, an open
book is a �bration of a manifold by a collection of 1-
codimensional submanifolds (pages), joined along a 2-
codimensional submanifold (binding). Open books with
bookmarks (formal de�nitions are obvious) seem natural,
and perhaps they will �nd applications, too.

C. Removing the extremal growth restriction

In this section we outline the logic behind removing the
extremal growth condition. (A more detailed exposition
is presented in the Appendix.) We assume that � has a
�nite value. First, we estimate the probability that an
SLGN remains an open book. We then characterize the
deviations from the open book structure. For clarity, we
consider the simplest case with m = 2 and the �rst link
placement option in Fig. 1(a).

Consider a network of large size j, so that j � j �
1 � j � 2 � j � 3, and suppose that it is an open 2-
book (3). Avoiding multiple links between the same pair
of nodes, the probability Pj 7!j+1 that after adding one
node the network preserves its open book structure is
approximately

Pj 7!j+1 � j� + j�

j� + j� + j � 2�
� j�

j� + j � 2�
: (6)

Indeed, the �rst factor is the probability that one of the
two nodes of degree � j is selected as the �rst host,
while the second factor is the probability that the other
such node is selected as the second host, in which case
the network preserves its approximate open book struc-
ture. Using (6) we estimate the probability PN that upon
reaching size N the network is still an open 2-book

PN �
NY

j=2

1

1 +
�

2
j

���1
� 1

1 + 2
�

2
j

���1

�

8

><

>:

�nite in the limit N ! 1 if � > 2;

N�6 if � = 2;

e�a N2��

; a = 3�2��1

2��
if � < 2:

(7)

We thus see that if � is su�ciently large, viz. � > 2, then
there is a �nite probability that the network preserves its
open 2-book structure throughout the entire evolution.
This observation implies that even if it is not an open
book, the distortion of the open book structure is �nite,
e.g., a �nite number of nodes have degree k > 2, degrees
of nodes A and B in Fig. 2 are respectively lower, etc.

However, if � 6 2, the network is not an open book
with high probability. But even though the exact open
book structure is almost surely destroyed, the distor-
tion is still asymptotically small and admits analytic es-
timates. Indeed, let us �rst estimate the number N3(N)
of degree-3 nodes in an N -sized SLGN with m = 2 and
� 6 2. This number grows if instead of connecting to the

highest-degree node with probability PN 7!N+1 in Eq. (6),
the new node selects the other option and connects to a
degree-2 node with probability 1 � PN 7!N+1. Therefore

dN3

dN
� 1 � PN 7!N+1 � 3

�
2

N

���1

; (8)

where we have neglected loss terms describing the de-
crease of the number of degree-3 nodes due to new nodes
connecting to them and changing their degrees to 4 or 5.
These loss terms, as well as corrections to the approxi-
mate expression for PN 7!N+1 in (6), are sub-leading, as
we show in Appendix. The integration of Eq. (8) gives

N3(N) �
(

6 lnN if � = 2;

a N2�� if � < 2;
(9)

which we juxtapose against simulations in Section III.
We thus see that the number of degree-3 nodes grows
sublinearly with N , and consequently their proportion in
the thermodynamic limit is in�nitesimal. We also note
that the solution in Eq. (9) allows us to compactly rewrite
Eq. (7) as

PN � e�N3(N): (10)

The obvious generalization of (8) for higher degrees is

dNk

dN
� Nk�1

N �
: (11)

Solving recursively yields the connectivity transitions
quite similar to those in the m = 1 case (2)

Nk=N �
(

N (k�2)(1��) if 2 6 k 6 p + 1;

1=N otherwise;
(12)

for any � such that �p < � < �p�1, where �p = 1+1=p and
p = 1; 2; 3; : : :. The only di�erence between the degree
distributions for the m = 1 and m = 2 cases (Eqs. (2)
and (12)) is that the latter is the former shifted along
the k-axis to the right by 1 (Eq. (12) is Eq. (2) with
k 7! k � 1).

Therefore, the same in�nite series of connectivity tran-
sitions appear for any m > 1, and the asymptotic degree
distribution is given by

Nk=N �
(

N (k�m)(1��) if m 6 k 6 p + m � 1;

1=N otherwise:
(13)

III. PREASYMPTOTIC REGIME

We have shown that all SLGNs are asymptotically
open books, while Zhou and Mondrag�on [6] showed that
a speci�c SLGN of a �nite size exhibited clean power
laws. Another apparent disagreement is that according
to our analysis, Nk=N ! 0 for all k > m, while the PFP
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model simulations show that Nk ∼ N for all k. The
explanation of these paradoxes lies in the fact that the
PFP model has a vast preasymptotic regime, and both
the Internet size and sizes achievable in simulations lie
deep within this regime. In this section, we describe two
main factors that render this regime extremely vast for
the PFP-modeled Internet.

The first factor is that δ in the PFP model exceeds 1
only slightly (specifically, δ ≈ 1.15 in [6]). For clarity, let
us focus on the following concrete example. The propor-
tion of degree-3 nodes N3/N in the m = 2 case scales as
N1−δ, so that if δ is close enough to 1, then the deviation
of N3(N) from the linear growth may be hard to observe
for insufficiently large N . Indeed, N = 104 (the order
of the Internet size) and δ = 1.15 substituted in Eq. (9)
yield N3/N ≈ 0.98, contradicting the assumption made
to derive Eq. (9) that the network is almost an open 2-
book and hence N3/N � 1. This contradiction means
that we are very far from the asymptotic regime. Even
if we choose N = 1010 (almost two autonomous systems
per person!), the ratio N3/N goes down only to 12%, so
it is still far from negligible. To get it down to 1%, we
would need N = 1017, non-achievable in simulations.

The second factor deepening the preasymptotic regime
is m > 1. The larger m, the slower the decay of Nk/N ∼
N (k−m)(1−δ) for k > m, the deeper the preasymptotic
regime. For example, using the results from [11] for
N3(N) in the m = 1 case, we find that the Internet
size N = 104 and δ = 1.15 yield N3/N ≈ 0.24, and to
get it down to 1%, we would need only N = 108, while
N = 1010 makes it 0.4%—all the numbers are substan-
tially lower than in the m = 2 case.

We juxtapose these analytic estimates with simulations
in Figs. 4 and 5, showing the proportion of degree-3 nodes
N3/N and the overall degree distribution

∑
k′�k Nk/N in

SLGNs of different size N , grown with different δ and m.
For each combination of (N, δ, m) we average the results
over a number of graph instances ranging from 3 for the
largest size N = 105 to 100 for smaller N . We select the
values of δ = (δp + δp−1)/2, δp = 1 + 1/p, p = 1, . . . , 7
(δ = 3 for p = 1), so that the selected δ-values lie within
the connectivity transition intervals discussed above. For
p = 7, δ = 1.15, i.e., the δ-value used in [6].

In Fig. 4 the cases with m = 1 and m = 2 confirm the
expected: the larger δ, the more quickly the proportion
N3/N approaches our analytic prediction of its asymp-
totic scaling. Comparing m = 1 and m = 2, we see that
in the former case, only for δ = 1.15 does N3/N stay con-
stant for all graph sizes N achieved in our simulations,
while in the latter case (m = 2), this ratio is constant
for higher δ-values (δ = 1.23) as well. We see that for
small δ’s, the scalings of N3/N are much farther from
their asymptotes in the m = 2 case than in the m = 1
case. The m = 3 plot confirms that N3/N quickly satu-
rates to a dependent constant that increases with δ, while
for m = 6, N3/N decays as expected, ∼ 1/N , with the
stronger fluctuations, the smaller δ.

Two factors contribute to the discrepancies between

δ
δ
δ
δ
δ
δ

FIG. 4: (Color online) Scaling of the proportion of degree-
3 nodes N3/N in SLGNs with different δ and m. The solid
lines are the analytic predictions for the leading term from
[11] for m = 1 and Eq. (9) for m = 2. The dashed lines are
simulations. The dotted line is 1/N .

the analytic predictions and simulations in Fig. 4. First,
we neglected loss terms in Eq. (9). Taking those into ac-
count would yield, for m = 2, the asymptotic expansion

N3(N) = a N2−δ − b N3−2δ + c N4−3δ + . . . , (14)

where b and c are some constants that depend on δ. For
δ = 1.15 this expansion turns into

N3(N) = a N0.85 − b N0.7 + c N0.55 + . . . (15)

explaining why keeping only the leading term in the
asymptotic result may lead to huge errors for small δ
and N .

The second discrepancy factor is that all the Nk(N) an-
alytic estimates above are actually the average values of
the corresponding random quantities. Nothing is known
about fluctuations of the degree distribution, the analy-
sis of which is difficult even in the simpler case of linear
preferential attachment [14].

Fig. 5 provides a more global view of the dependency
of the degree distribution on δ and m. The higher δ,
the more skewed the degree distribution and hence the
more star-like the graphs. For N = 105, δ = 3, and
m = 1, all the graph instances in our simulations are
stars. The larger m, the closer the degree distribution
curves corresponding to different N are to each other
(neglecting the size-dependent cut-offs exhibited by all
graphs), the straighter these lines, and thus the weaker
the dependency of the degree distribution shape on the
network size, and the deeper the preasymptotic regime.
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δ
Σ

′≥
′

δ δ δ

δ

Σ
′≥

′

δ δ δ

δ

Σ
′≥

′

δ δ δ

δ

Σ
′≥

′

δ δ δ

FIG. 5: (Color online) Scaling of the degree distributions in SLGNs with different δ and m. The lines show the complementary
cumulative distribution of node degrees (

P
k′�k

Nk′/N) measured in simulations.

IV. RICH CLUB CONNECTIVITY VERSUS

JOINT DEGREE DISTRIBUTION

We have shown in the previous section that the power
laws empirically observed in the PFP model do not con-
tradict the asymptotic open book structure of SLGNs,
since typical network sizes considered in simulations are
preasymptotically small. However, this argument does
not explain why the PFP model almost exactly repro-
duces not only the power-law degree distribution ob-
served in the real Internet, but also a long list of other
important network properties. Since the preasymptotic
regime is not amenable to straightforward analytic treat-
ment, in this section we approach the problem from a

different angle, and provide a simple explanation based
mostly on previous empirical work.

We first notice that the fact that the PFP model ex-
hibits preasymptotic power-law behavior is not so much
surprising, because for δ = 1 the model produces asymp-
totic power laws, and this asymptote is quickly achieved
for small N . The results of the previous section indicate
that if δ � 1 and m > 1, then this power-law asymptotic
behavior unnoticeably changes to preasymptotic, slowly
transforming into the new asymptotic behavior only for
very large N .

Yet this argument does not explain why the PFP model
reproduces so many other network properties observed
in the Internet. Previous work [3, 4, 15, 16, 17] shows
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that the degree distribution alone does not fully de-
�ne all other Internet's properties, i.e., the Internet is
not 1K-random in the terminology of [3], but is almost
2K-random | its structure is very close to the struc-
ture of maximally random graphs constrained by its 2-
point degree correlations, or the joint degree distribution
(JDD) de�ned by the total number Nkk0 of links between
degree-k and degree-k0 nodes. In other words, the Inter-
net's JDD narrowly de�nes almost all its other important
properties, except clustering [3, 4].

Although the PFP model is not concerned with the
JDD per se, it reproduces precisely the observed rich club
connectivity (RCC) '(r=N) de�ned as the ratio of the
number of links in the subgraph induced by the r high-
est degree nodes to the maximal number of such links
�
r
2

�
. The values of '(r=N) observed in the Internet for

small r are substantially higher than in networks grown
according to linear preferential attachment. Superlin-
ear preference increases the connectivity density among
high-degree nodes, which explains why the PFP model
successfully captures the observed RCC.

In the rest of this section we analyze the relationship
between the JDD and RCC. Speci�cally, the JDD almost
fully de�nes RCC: any two graphs with the same JDD
have almost the same RCC. While the converse is gen-
erally not true, a given form of RCC introduces certain
constraints to the JDD. Given the JDD's de�nitive role
for the Internet topology, we conclude that reproducing
Internet's RCC must signi�cantly improve the accuracy
in capturing all other properties of the Internet topology
that depend on degree correlations, which explains the
success of the PFP model and provides clear grounds for
the discussion in [18, 19].

To see that the JDD almost fully de�nes RCC is
straightforward [20]. We �rst get rid of the node rank
r in '(r=N). The rank of a node is its position in the
degree sequence sorted in decreasing order, i.e., as in (3).
Recall that the node rank is essentially the complemen-
tary cumulative distribution function for node degrees: if
di and ri are the degree and rank of node i, kmax is the

maximum degree, and if we denote N+
k =

Pkmax

k0=k Nk0 ,

then 1 + N+
di+1 6 ri 6 N+

di
. Thus, the JDD and RCC

are directly related via 'k de�ned as the total number
of links between degree-k nodes and nodes i of higher
degrees di > k

'k =

�
N+

k

2

�

'(N+
k =N) �

�
N+

k+1

2

�

'(N+
k+1=N)

=

kmaxX

k0=k

Nkk0 : (16)

It follows that the JDD de�nes RCC, up to reordering of
nodes of the same degree.

To illustrate how the RCC constrains JDD, we choose
to consider a common projection of the JDD, the av-
erage degree of the nearest neighbors of degree-k nodes
�knn(k). We �rst look at the maximum and minimum

possible value of �knn(k) for a class of graphs with some
�xed degree distribution with minimum and maximum
degrees of 1 and kmax. We then suppose that 'k is also
given as a constraint, and we quantify how this constraint
narrows down the spectrum of possible values of �knn(k).

It is easy to see that the minimum and maximum val-
ues of �knn(k) without the 'k constraints are simply 1 and
kmax, if we neglect any structural constraints that a given
form of the degree distribution imposes on possible JDDs.
For example, if N1 > kmaxNkmax

, then �knn(1) cannot be
kmax, it is necessarily less than kmax. Scale-free networks
with  < 3 have these constraints for links connecting
nodes of degrees k and k0 such that kk0 > �kN [21]. To
formally see that without such constraints the minimum
and maximum of �knn(k) is 1 and kmax, let �kk0 = 1+�kk0

be the factor taking care of links between nodes of the
same degree in Mkk0 = �kk0Nkk0 , so that the total num-
ber Mk of \edge ends" (stubs) attached to degree-k nodes
is Mk = kNk =

P

k0 Mkk0 . We then have, by de�nition,

�knn(k) =
1

Mk

X

k0

k0Mkk0 : (17)

(The more common de�nition for the normalized dis-
tributions P (k) = Nk=N and P (k; k0) = Mkk0=(�kN)
such that

P

k P (k) =
P

kk0 P (k; k0) = 1 is �knn(k) =
P

k0 k0P (k0jk) = �k=(kP (k))
P

k0 k0P (k0; k).) The mini-
mum (maximum) values of �knn(k) are achieved when all
degree-k nodes are attached only to the nodes with the
minimum (maximum) degrees,

�kmin
nn (k) =

1

Mk

min

 
X

k0

k0Mkk0

�
�
�

X

k0

Mkk0 = Mk

!

= 1;

�kmax
nn (k) =

1

Mk

max

 
X

k0

k0Mkk0

�
�
�

X

k0

Mkk0 = Mk

!

= kmax;

where the minimum (maximum) is taken over all possible
JDD matrices Mkk0 yielding the given degree distribution
Mk. We thus see that the maximum di�erence between
possible values of �knn(k) is

�(k) = �kmax
nn (k) � �kmin

nn (k) = kmax � 1: (18)

In the Internet the maximum node degree is large (it

scales as kmax � N
1

�1 [21]), and hence �(k) � kmax.

Suppose now that �k =
Pkmax

k0=k Mkk0 = 'k + Nkk is
given as a constraint. Note that �k is not precisely equal
to 'k, but we neglect this extra Nkk term here as well,
partly because in the Internet, Nkk is relatively small
for almost all k. Introducing ratio �k = �k=Mk, which is
approximately the ratio of the number of links connecting
degree-k nodes and nodes of higher degrees to the number
of all links attached to degree-k nodes, we write the new
minimum value of �knn(k) as
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k̄min
nn (k|αk) =

1

Mk

{
min

(
k−1∑
k′=1

k′Mkk′

∣∣∣ k−1∑
k′=1

Mkk′ = Mk − φk

)
+ min

(
kmax∑
k′=k

k′Mkk′

∣∣∣ kmax∑
k′=k

Mkk′ = φk

)}

=
1

Mk

{1 · (Mk − φk) + k · φk} = (k − 1)αk + 1, (19)

where the minimum is now taken over all JDDs Mkk′ sat-
isfying the RCC constraints. Similarly, for the maximum
possible value, we have

k̄max
nn (k|αk) =

1

Mk

{(k − 1) · (Mk − φk) + kmax · φk}
= (kmax − k + 1)αk + k − 1, (20)

and the maximum possible difference is

Δ(k|αk) = k̄max
nn (k|αk) − k̄min

nn (k|αk)

= (kmax − 2k + 2)αk + k − 2. (21)

Compared to the unconstrained case, the relative de-
crease of the range of possible values of k̄nn(k), assuming
large kmax, is

Δ(k) − Δ(k|αk)

Δ(k)
≈

(
1 − k

kmax

)
−

(
1 − 2

k

kmax

)
αk

≈

⎧⎪⎨
⎪⎩

1 − k
kmax

if αk ≈ 0;
1
2 if αk ≈ 1

2 ;
k

kmax

if αk ≈ 1.

(22)

In disassortative networks, such as the Internet [17], most
links incident to medium- and high-degree nodes lead
to low-degree nodes, meaning that αk ≈ 0 except for
k/kmax � 1. Given (22), we conclude that the RCC
introduces significant constraints to the JDD, reflected
even in a JDD’s simple summary statistic k̄nn(k), except
for lowest degrees k ≈ 0, and perhaps highest degrees
k ≈ kmax, for which our analysis may be not very accu-
rate since we neglected the structural constraints that are
relevant in the high-degree zone. We confirm this con-
clusion in Fig. 6 where we use the RCC in the measured
Internet topology to compute the RCC-induced relative
decrease 1 − Δ(k|αk)/Δ(k) of the range of possible val-
ues of k̄nn(k). In the medium-degree zone this decrease
reaches 80%.

V. CONCLUSION

Preferential attachment is a robust mechanism that
may be responsible for the emergence of the power-law
degree distributions in some complex networks [5]. How-
ever, power laws emerge only if the preference kernel is
a linear function of node degree [10, 11]. If one believes
that preferential attachment is a driving force, explicit or

Δ
α

Δ

FIG. 6: Relative decrease of the range of possible values of
k̄nn(k) imposed by the Internet’s RCC. The Internet map
from [17] is used to compute Δ(k) and Δ(k|αk) given by
Eqs. (18,21).

implicit, behind the evolution of complex networks, then
the natural question one has to face is why this kernel
must be exactly linear in so many so different complex
systems.

In this paper we argue that even if the preference kernel
is not linear but slightly superlinear, preferential attach-
ment may still produce scale-free networks, except that
it does so not in the asymptotic but in a vast preasymp-
totic regime. Two key factors contribute to the depth of
this regime: 1) how close the preference kernel is to being
linear, and 2) how many links are added per new node.
These factors allow us to say, informally, that multiple
links added under slightly superlinear preferential attach-
ment resurrect power laws, although only by means of
deepening the preasymptotic regime.

The asymptotic regime is still degenerate: adding m
links leads to the asymptotic degree distribution P (k) →
δk,m. More precisely, the asymptotic network structure
is a distorted (or “torn”) open m-book — a generaliza-
tion of the known object in topology [13]. The level of
distortion depends on how close the preference kernel is
to a linear function. Similar to the m = 1 case (the
open 1-book is a star), we find an infinite series of con-
nectivity transitions characterizing the degree of damage
to the open book structure, as the kernel approaches a
linear function.

To explain the success of one particular superlinear
model — the positive-feedback preference model [6] — in
capturing not only the degree distribution but also many
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other important properties of one particular complex net-
work, the Internet, we analyze the both-way relationship
between the joint degree distribution (2-point degree cor-
relations) and rich-club connectivity. The former de�nes
the latter, while the latter constrains the former. These
constraints, captured by the model, su�ce to reproduce
many other important Internet's properties, since it has
been shown that most of them, except clustering, depend
only on the joint degree distribution [3, 4].

Given that the depth of the preasymptotic regime in-
creases with the number m of links added per node, and
that the average degrees �k � 2m of some complex net-
works including the Internet have been reported to grow
with network size [22, 23, 24], our �ndings, taken alto-
gether, imply that some complex networks may exist in
vast preasymptotic regimes of evolution processes that
have degenerate network formations as their asymptotes.
We contrast this implication with the observation that
the vast majority of the existing network evolution mod-
els are designed with the goal to yield asymptotic power-
law distributions, quickly achievable at small network
sizes.

An interesting open question is whether the dynamics
of the world economy supports our �ndings. Speci�cally,
does the superlinear growth of wealth contribute to
such e�ects as the \shrinking middle class" [25, 26] and
growing wealth inequality [27, 28]? More succinctly, is
the Pareto distribution preasymptotic [23, 29]?
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APPENDIX: NONEXTREMAL GROWTH

The network remains an open book throughout its evo-
lution with probability

P1 =
1Y

j=2

Pj 7!j+1 (A.1)

where Pj 7!j+1 is the probability of attaching the new
node to the two nodes of highest degree

Pj 7!j+1 =
(j � 1)� � (j � 2)�

(j � 1)� + (j � 2)� + (j � 3) � 2� + 1
Qj

and we used the shorthand notation

Qj =
1

(j � 2)� + (j � 3) � 2� + 1

+
1

(j � 1)� + (j � 3) � 2� + 1

When � > 2, the probability to remain an open book
is �nite, although it vanishes very rapidly when � ap-
proaches to 2 from above:

P1 � exp

�

� 6

� � 2

�

(A.2)

When � 6 2, the exact open book structure will be
certainly destroyed at some moment. A su�ciently large
network is thus not an open book exactly, yet the devi-
ation from this structure is rather small. Consider for
concreteness the range 3=2 < � < 2 where the number of
degree-3 nodes keeps growing while the number of nodes
of degrees > 4 remains �nite. The degree sequence reads

(k1; k2; 3; : : : ; 3
| {z }

N3

; 2; : : : ; 2
| {z }

N�N3

) (A.3)

where k1 and k2 are the highest degrees, and where we
have not displayed a �nite number of other nodes whose
degrees are di�erent from 2 and 3. The two highest de-
grees k1 and k2 are slightly smaller than N . To deter-
mine k1 and k2 we �rst recall that the sum of all degrees
is twice the total number of links,

NX

j=1

kj = 2L (A.4)

Since L = 2N � 4 when m = 2 and the initial sequence
is (2; 1; 1), we use (A.3) and re-write (A.4) as

k1 + k2 + 3N3 + 2(N � N3) = 4N + O(1) (A.5)

from which k1 + k2 = 2N � N3 + O(1). Combining this
relation with inequalities k1 < N and k2 < N , we obtain

k1 = N � pN3; k2 = N � (1 � p)N3 (A.6)

We now argue that p = 1=2. Indeed, in the leading or-
der the di�erence k1 � k2 evolves according to the rate
equation

d

dN
(k1 � k2) =

k�
1 � k�

2

2 � N �

N � 2�

N �

=
� � 2��1

N �
(k1 � k2) (A.7)

This suggests that k1 � k2 remains �nite and therefore
supports (A.6) with p = 1=2. While the latter assertion
is correct, equation (A.7) just shows that bias in favor of
the node of the highest degree k1 over the second high-
est degree k2 is too small. However, there remain pure
stochastic uctuations, and the di�erence k1�k2 is there-
fore a random variable of the order of

p
N3. Thus

k1 = N � 1

2
N3; k1 � k2 = O(

p

N3) (A.8)

Let us now compute N3. In the leading order we have

dN3

dN
= 1 � PN 7!N+1 (A.9)
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where for PN 7!N+1 we should ignore O(N3) corrections,

PN 7!N+1 =
N � + N �

N � + N � + N � 2�
� N �

N � + N � 2�
(A.10)

Plugging (A.10) into (A.9) and keeping only the leading
contribution we get

dN3

dN
= 3

�
2

N

���1

(A.11)

which leads to N3 = a N2�� from (9).
To extract the sub-leading term, both (A.9) and (A.10)

should be modi�ed. To modify PN 7!N+1 we use (A.3)
and (A.8) and get a more accurate formula for

PN 7!N+1 =
2 � (N � N3=2)�

2 � (N � N3=2)� + (N � N3)2� + N3 � 3�

� (N � N3=2)�

(N � N3=2)� + (N � N3) � 2� + N3 � 3�

The modi�cation of (A.9) is

dN3

dN
= 1 � PN 7!N+1 � 3

N3 � 3�

N �
(A.12)

where the last term on the right-hand side assures that
whenever the new node links to a node of degree 3, we
have a loss rather than gain. After lengthy calculations
one gets

N3(N) �
(

a N2�� + O(1) if 3=2 < � < 2

a N2�� � bN3�2� if � < 3=2
(A.13)

Strictly speaking, in writing PN 7!N+1 we assumed that
� > 3=2. However, a more detailed analysis shows that
the nodes of degree 4 do not inuence the sub-leading
correction bN3�2�.

When 4=3 < � < 3=2, the nodes of degree 4 become
visible, and the network degree sequence becomes

(k1; k2; 4; : : : ; 4
| {z }

N4

; 3; : : : ; 3
| {z }

N3

; 2; : : : ; 2
| {z }

N�N3�N4

) (A.14)

A straightforward generalization of our previous argu-
ment gives

k1 = N � 1

2
N3 � N4; k1 � k2 = O(

p

N3) (A.15)

In the leading order, the quantity N4 evolves according
to

dN4

dN
=

N3 � 3�

2 � N �
+

N3 � 3�

N �
(A.16)

from which

N4(N) = a4N
3�2� ; a4 =

3�+1

2

a

3 � 2�
(A.17)

Proceeding the same way we obtain for any k > 2

dNk+1

dN
=

3

2

Nk � k�

N �
(A.18)

leading to the asymptotic

Nk+1(N) = ak+1N
k�(k�1)� (A.19)

with amplitudes

ak+1 = a

�
3

2

�k�2 kY

j=3

j�

j � (j � 1)�
(A.20)
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