
Internet-Scale IP Alias Resolution Techniques ∗

Ken Keys
Cooperative Association for Internet Data Analysis (CAIDA)

University of California, San Diego
kkeys@caida.org

ABSTRACT
The well-known traceroute probing method discovers links
between interfaces on Internet routers. IP alias resolution,
the process of identifying IP addresses belonging to the same
router, is a critical step in producing Internet topology maps.
We compare the performance and accuracy of known alias
resolution techniques, propose some enhancements, and sug-
gest a practical combination of techniques that can produce
the most accurate and complete IP-to-router mapping at
macroscopic scale.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network monitoring ; C.2.1 [Computer-Com-
munication Networks]: Network Architecture and De-
sign—Network topology

General Terms
Measurement, Experimentation

Keywords
Alias resolution, Mercator, iffinder, Ally, RadarGun, APAR,
kapar, DisCarte

1. INTRODUCTION
The traceroute tool [13] and variants of it are widely used

for discovery of network topology [14, 22, 21, 18]. Tracer-
oute works by probing a destination address with a series of
packets with increasing initial values of the IP TTL (Time
To Live) field. When an IP router receives a packet to be
forwarded, it first decrements the TTL field; if the new TTL
is zero, the router does not forward the packet, but instead
sends an ICMP Time Exceeded error back to the sender.
The source address of the ICMP message identifies an in-
terface on the router that sent the message. A series of
probes with increasing initial TTL values will normally re-
veal an address at every hop along the path, with some
exceptions. Repeating this process from multiple sources to
multiple destinations can reveal many router addresses and
links between them.

Each router by definition has at least two interfaces; Inter-
net core routers commonly have 10 to 30. Additionally, each

∗This project is sponsored by the U.S. Department of Home-
land Security (DHS) Science and Technology (S&T) Direc-
torate Cybersecurity Contract #N66001-08-C-2029.

interface may have multiple addresses. But each traceroute
response reveals only a single address of a router. Convert-
ing raw IP address topology data discovered by traceroute
into a more useful router topology requires identifying which
addresses belong to the same routers. This process is called
IP alias resolution.

In this report we compare the current state-of-the-art in
alias resolution techniques. Section 2 describes how each
technique works, and their strengths and weaknesses. Sec-
tion 3 applies several techniques to comprehensive Inter-
net topology measurements, validates their results against
known ground truth, and evaluates their effectiveness. We
conclude by identifying a practical combination of techniques
that produces the most accurate and complete alias resolu-
tion information.

2. TECHNIQUES
We classify alias resolution techniques into two types: fin-

gerprint techniques and analytical techniques.
Fingerprint techniques work by sending probe packets to

different addresses, and identifying similarities in the re-
sponses that indicate the responses came from the same
router. Fingerprint techniques are usually accurate, but
incomplete because many routers do not respond to the
probes.

Analytical techniques draw inferences about topology by
analyzing the IP address graph. They are typically less ac-
curate than fingerprinting because they make more assump-
tions about network engineering practice and deal with in-
direct, incomplete, and sometimes conflicting data. How-
ever, because they do not rely on responses to direct router
probes, they can work on non-responding routers where fin-
gerprinting techniques are useless.

2.1 Common source address
The earliest alias resolution technique was a fingerprint

technique described by Pansiot and Grad [17], and imple-
mented in Mercator [8] and iffinder [15]. It works by sending
a UDP or TCP packet to an unused port and comparing the
source IP address of the ICMP Port Unreachable error mes-
sage sent in reply. The router could theoretically respond
from any of its addresses. In practice, many routers respond
from the address of the interface on the route back to the
prober. On these routers, a probe sent to the address of any
of the other interfaces will reveal that the probed address
and response address are aliases. However, some routers al-
ways respond from the probed address, or do not respond at
all to this type of probe, making their aliases undetectable



with this method. If the source address of the error message
is in private (RFC 1918) address space, it may not be unique,
and additional techniques are required to disambiguate it.

2.2 Common IP ID counter: Ally
The IP identification field of packets is designed to iden-

tify and allow reassembly of IP datagrams that have been
fragmented. Many routers maintain a simple IP ID counter
that is incremented with each use, and shared by all inter-
faces. Consecutive packets generated by such routers will
have consecutive ID values, no matter which address is used
as the source address of the packets. This shared counter
serves as the basis of another fingerprint technique, which
was implemented in the Ally component of Rocketfuel [21].

Ally tests a candidate pair of alias addresses by simulta-
neously sending a probe packet to each, and then sending a
third probe to whichever address responds first. If the IP
IDs of the three responses are in order and close in value,
it suggests the two addresses belong to a single router using
a simple shared counter. If not, it may be because the ad-
dresses are not aliases, or they could be aliases on a router
that does not use a simple shared counter. This ID finger-
printing method is vulnerable to false positives due to two
routers’ IDs coincidentally synchronizing during the three-
packet test, although this weakness can be mitigated by run-
ning Ally again at a later time on each pair identified in the
first pass. Ally is also vulnerable to false negatives due to
routers that do not respond to direct probes, routers that
rate-limit their responses to direct probes, or routers whose
ID counters increment too quickly. Additionally, Ally can-
not draw any conclusions about routers that appear to not
use incrementing ID counters.

But the biggest drawback of the Ally technique is that,
given n addresses, it would require O(n2) probes to test all
possible pairs. To make Ally more practical, some other
heuristic is needed to reduce the size of the search space.
One such heuristic, used by Rocketfuel, is to restrict the set
of candidate pairs to those pairs in which both IP addresses
have similar TTL values as measured from a number of diffe-
rent vantage points. Although this heuristic does reduce the
amount of probing needed, it is still not enough for practical
use on macroscopic-scale Internet graphs. Also, any pruning
heuristic carries the risk of excluding some candidate pairs
that would otherwise have been identified as aliases.

2.3 Common IP ID counter: RadarGun
RadarGun [7] avoids many of Ally’s problems by not work-

ing with address pairs, but instead probing the entire list of
n addresses, iterating over the list at least 30 times. Using
all of the responses for an address, RadarGun can estimate
the rate of change, or velocity, of the IP ID of the router with
that address. Because two potential aliases may be probed
tens of seconds apart, their ID values cannot be compared di-
rectly. But after calculating their velocities, RadarGun can
interpolate what their values would be at any time during
the probing process, and compare the interpolated values.
Any two addresses can be inferred to be aliases if they have
similar and constant ID velocities, and the ID value in every
response from one address is similar to the interpolated ID
value of the other address at the same time. Because each
test uses many more responses than an Ally test, RadarGun
is more tolerant of routers that are occasionally unresponsive
due to rate limiting, dropped packets, or other intermittent

losses.
The number of RadarGun probes per address is typi-

cally configured to a value between 30 and 100, which much
smaller than n, so the total number of probes is only O(n).
Although this is much better than Ally’s O(n2) probes,
RadarGun still has some scaling difficulties when applied
to large-scale Internet graphs generated by CAIDA, with
values of n in the millions. Because IP ID counters are only
16 bits, they “wrap” back to 0 after reaching 65535. Occa-
sional single wraps between probes are unavoidable, and can
be taken into account when calculating velocities. However,
if probes to the same address are spaced more than about
30 to 40 seconds apart, multiple wraps become so likely that
it is impossible to confidently detect linear ID change or cal-
culate ID velocities. So if the list is too large to probe in
its entirety within this maximum packet spacing, while also
staying under a desired maximum probing rate, some other
heuristic must be used to break the list into smaller pieces.

2.4 DNS analysis
If an organization assigns DNS names to router interfaces

with a systematic convention that identifies the router, this
information can be extracted by decoding the names, as
described by Spring et al. [20]. This approach requires a
human to identify the naming convention of each ISP, and
write rules for interpreting the names according to the con-
vention. Additionally, naming conventions are subject to the
whims of the ISP, and DNS databases are not always kept
up to date. Because of the human intervention required and
other problems, we do not currently consider DNS analysis
a practical technique for automated macroscopic alias reso-
lution, although future work and homogenization of conven-
tions may improve this situation, and it can be useful for
manual validation of other techniques.

2.5 Simple graph analysis
In [20], Spring et al. described a simple pair of rules that

could be used to infer aliases by analyzing the traceroute
graph. Because most routers respond to a traceroute probe
from the address on which the probe arrives, two addresses
with a common successor in traceroute paths are aliases, as-
suming the IP links are point-to-point. That is, if we have
observed path segments (a, c) and (b, c), where letters rep-
resent interface addresses, and links are assumed to connect
exactly two routers, then, as illustrated in Figure 1, a and
b must be aliases. Second, addresses in the same (loop-free)
path are not aliases. The utility of these rules is limited
because they can infer aliases only where two paths from
different sources converge, and because Layer 2 constructs
allow an IP link to connect more than two routers.

c
a

b

Figure 1: Possible topology for observed path seg-
ments (a, c) and (b, c), assuming point-to-point links.

2.6 Graph analysis: APAR
The Analytic and Probe-based Alias Resolver (APAR)

tool [10, 11] uses a richer set of inference rules, based on



d

a

c

de

a e

2 31

a

e

b cd b c

b

Figure 2: Three possible topologies for observed path segments (a, b, c) and (d, e) with c and d on the same
subnet. Large circles represent routers; small circles are interfaces on the router.

identifying the subnets linking routers and then aligning
traceroute paths using those subnets.

APAR begins by inferring subnets among all the addresses
collected from a large number of traceroutes. It starts by
looking for addresses with the same /24 prefixes, splitting
those prefixes into pairs of /25 prefixes, and so on down to
the /31 prefixes. Any candidate prefix must meet several
conditions in order to be considered a legitimate subnet.

Recall that the first and last addresses of an /x subnet,
where x < 31, are reserved for broadcast addresses, so if
either of those addresses was observed in a path, the prefix
can not be a subnet. This “no broadcast” condition rules
out many /30 and larger subnets, but cannot rule out /31
subnets because they do not have broadcast addresses.

Second, the “accuracy” condition requires that no two ad-
dresses in the same subnet should appear as non-neighbors
in the same trace, because a path should never traverse the
same link twice. Appearing as neighbors is possible when
the first router on a link responds from its outgoing inter-
face instead of its incoming interface, contrary to standard
practice. For example, in Figure 2.3, a traceroute probe
sent from the left side would normally make the first router
respond from interface a, and the second router from b; how-
ever, if the first router responds from e, we see a path seg-
ment of (e, b), where e and b are on the same subnet.

Third, the “completeness” heuristic requires that at least
half of a subnet’s possible addresses were observed in the
traceroute paths. For example, a /28 subnet is acceptable
only if we observe at least 7 of its 14 possible addresses.
Without this condition, APAR would incorrectly infer many
sparsely populated large subnets whose interfaces really be-
long to a scattering of smaller subnets in the same address
range. This condition may falsely reject a real subnet that
was poorly covered by traceroutes, but smaller subnets (with
longer prefixes) within it will still be allowed. This risk de-
creases with improved traceroute coverage. Point-to-point
(/30 and /31) subnets will always be identified if both ad-
dresses were seen. APAR has greater confidence in subnets
with higher completeness.

After identifying subnets, APAR iterates over them start-
ing with those in which it has the most confidence. It
uses each subnet to align segments of path traces and in-
fer aliases. Note that the responses generated by traceroute
are usually sent from the interface that received the probe.
Thus, given two path segments (a,b,c) and (d,e) from diffe-
rent paths, where c and d are on the same inferred subnet,
we infer that c and d are connected, and that the two path
segments crossed the c-d link in opposite directions. There
are three possible topologies that would explain this result,
shown in Figure 2. Addresses b and d are potential aliases.
The “common neighbor” condition looks for shared topology

on the left side of the potential aliases. If b and e are also
on the same subnet as each other1, only cases 2 and 3 can
be correct, and b and d must be aliases. Similarly, if a and e
are the same address or are already known aliases, only case
3 can be correct, and again b and d must be aliases. The
“no loop” condition must also hold: two addresses cannot be
aliases if they both appear in the same trace, because that
would imply a path passed through the same router twice.

After one pass over the inferred subnets, we make a second
pass over just the point-to-point subnets, without enforcing
the common neighbor condition. That condition is unneces-
sary because the subnet cannot contain a third address, and
so case 1 is ruled out and b and d must be aliases. This relax-
ation of the common neighbor condition is done in a second
pass because we are less confident of the fact that the c - d
subnet is point-to-point than we are of its existence, and we
want the earlier inferences in which we are more confident to
take precedence. The “no loop” condition is particularly im-
portant in this pass where the common neighbor condition is
omitted. For example, in case 1 of Figure 2, if we incorrectly
infer that the c - d subnet is point-to-point, but there was
another path observed that passed through (...a,b,d,e...), the
“no loop” condition will rule out (b,d) as an alias pair.

Additionally, APAR can make use of TTL data to avoid
some false positives. To collect this data, one monitor must
directly probe each interface address observed in the tracer-
oute paths. Because interfaces on the same subnet are topo-
logical neighbors, their distance from a given vantage point
should differ by at most 1 hop. Thus, during the subnet in-
ference phase, the “subnet distance” condition requires that
the minimum and maximum values of TTLs of interfaces
within a potential subnet must differ by at most 1. Avoid-
ing false positive subnet inferences can prevent both false
positive and false negative alias inferences later. Similarly,
during the alias inference phase, the “alias distance” condi-
tion requires that for any two interfaces to be aliases, their
TTL values must differ by at most 1. On the other hand,
inconsistencies in TTL data may cause us to incorrectly re-
ject some valid subnets and aliases. So, depending on the
quality of the TTL data, the net effect could be good or bad.

2.7 Graph analysis: kapar
Although the APAR algorithm is promising, the original

implementation [9] was not well optimized for production
use on large-scale Internet topologies. We wrote our own
highly optimized implementation of APAR, called “kapar”,

1The publicly available implementation of APAR [9] used a
weaker definition for the neighboring subnet than that sug-
gested by [11]: it required only that the b - e prefix was not
shorter than the c - d prefix. In particular, it did not enforce
the no broadcast, accuracy, or subnet distance conditions.



to overcome this problem and to fix a few bugs, as well as to
experiment with our own improvements to the algorithm.

The most significant optimization was to avoid storing the
complete set of paths in memory. Instead, kapar makes a
single pass over the set of traces and extracts only the min-
imum information it needs. First, it finds all unique 3-hop
segments to use for the alias resolution phase. Second, it
identifies common prefixes of length 24 or greater among
addresses in the same trace to generate a list of subnets
that cannot exist according to the subnet accuracy condi-
tion. Finally, it assigns a unique ID number to each trace,
and stores a list of all observed addresses and a compressed
bitmap of the IDs of the traces in which each address ap-
peared. These trace ID sets contain sufficient information
for checking the no-loop condition.

Kapar also improves upon the APAR algorithm in several
ways. First, it can load a set of aliases obtained from another
source, e.g. results of a fingerprint technique or published
topologies. These aliases are considered more reliable than
traceroute paths, so when a combination of an alias pair
and a path would violate the no-loop condition, the path
is considered incorrect. Rejecting incorrect paths leads to
fewer false inferences.

Second, during the subnet formation phase, kapar option-
ally uses a stricter test for point-to-point subnet existence.
Recall that the existence of one of a subnet’s broadcast ad-
dresses rules out the existence of the subnet. Thus, any
/29 subnet can be split into two /30 subnets if its middle
two addresses were not observed, because the middle two
addresses correspond to broadcast addresses in the /30 sub-
nets. APAR treats the /29 subnet and both /30 subnets
as plausible in this case. However, kapar can use probes to
these two “missing middle” (MM) addresses to help disam-
biguate. If either address elicits a response, the /30 subnet
to which it would belong cannot exist, and only the /29
subnet is considered real. Ruling out false /30 subnets pre-
vents kapar from incorrectly relaxing the common neighbor
condition and potentially generating false positive aliases.

Third, during the alias inference phase, kapar uses stricter
tests for the common neighbor condition. When testing a
b - e subnet, kapar requires that the subnet was inferred
during the subnet inference stage (i.e., that it passsed the
no broadcast, accuracy, subnet distance, and completeness
conditions), and that it have a higher rank than the c -
d subnet. However, if there are no inferred subnets that
contain b and e, kapar must rely on an (a, e) alias pair.
Finding such a pair suggests not only that b and d are aliases,
but also that b and e are on the same subnet, one that was
not inferred during the subnet inference phase because of
low completeness. Kapar (optionally) does not consider the
common neighbor condition satisfied unless this implied b
- e subnet meets the no broadcast, accuracy, and distance
conditions. We call this optional extra test in the case of an
(a, e) pair “Subnet Neighbor Verification” (SNV).

Finally, the kapar implementation can make use of TTL
data obtained from multiple vantage points. This additional
data imposes more constraints on both the subnet formation
phase and alias resolution phase, further reducing the rate
of false positives in each.

2.8 Graph analysis: DisCarte
The Record Route IP option, although disabled on many

routers, provides another source of topology data that could

be used to complement traceroute data analysis. However,
it is difficult to use effectively because of inconsistent im-
plementations by routers and conflicts when attempting to
align it with traceroute data. DisCarte [19] addresses these
problems by using disjunctive logic programming (DLP) to
apply a set of practical network engineering constraints to
Record Route and traceroute data to make logical inferences
about topology and alias resolution.

Unfortunately, DisCarte’s DLP approach as currently im-
plemented is extremely computationally expensive. Work-
ing with traces between 379 sources and 376,408 destina-
tions, the authors found the complete solution intractable.
Even after dividing the data into subsets that would result
in an incomplete solution, their runtime on a 341-processor
Condor cluster was measured in CPU-years. For this reason,
we do not currently consider DisCarte a practical technique
for routine alias resolution at macroscopic scale.

3. EVALUATION
We used the scamper [16] tool on CAIDA’s Archipelago

(“Ark”) [12] measurement infrastructure to collect 190 mil-
lion ICMP Paris [6] traceroute-style traces over 28 daysfrom
26 geographically distributed monitors. The destinations of
these traces were selected from every /24 sub-prefix of ev-
ery routed prefix on the Internet. These traces served as
the base input to all of our tests. We extracted two sets
of addresses from this dataset: all 2,409,959 intermediate
path addresses, i.e. router interfaces, and 65,626 “missing
middle” (MM) addresses as described in section 2.7. Addi-
tionally, TTL datasets were collected 4 days after the end of
the trace collection period by sending a single ICMP Echo
Request (“ping”) probe from each Ark monitor to every ob-
served and MM address.

To test the common source address method, we ran our
own implementation, iffinder [15], on all 26 Ark monitors, 5
days after the end of trace collection. As input, we used the
router interface addresses, both with and without the MM
addresses. We also tested the use of TTL data to reduce
false positives.

We did not attempt to evaluate any of the common IP ID
counter techniques. According to the authors’ analysis and
our own preliminary evaluation, Ally has been superseded by
RadarGun in both accuracy and efficiency. However, Radar-
Gun was released only recently, so we have not had time to
fully evaluate it in our Ark environment nor implement any
of our planned accuracy and scalability enhancements.

We also did not evaluate any DNS analysis technique,
because they currently require too much human input for
routine macroscopic automated use.

To test analytic techniques, the original implementation
of the APAR algorithm proved too inefficient to run with
our large dataset. Instead, we used our own kapar imple-
mentation, which is efficient enough to run many tests in
a reasonable amount of time, and has the flexibility to ex-
periment with various test and input configurations. We
tested it with no TTL data, with TTL data from observed
addresses, and with TTL data from observed and MM ad-
dresses.

Finally, we combined the results of iffinder and kapar to
see how they could complement each other. Again, we used
various combinations of TTL and MM input.

For validation of our alias resolution results, we obtained
topology data for CAnet [1], GÉANT[2], Internet2 [3] NLR



CAnet GÉANT Internet2 NLR WIDE total
R TP FP R TP FP R TP FP R TP FP R TP FP R P

reality 5 117 19 478 9 713 7 231 6 88
techniques

iffinder kapar TTLs

yes - - 0 0 0 0 0 0 0 0 0 6 100 0 3 22 0 52779 140407
yes M - - 0 0 0 0 0 0 0 0 0 6 100 0 3 22 0 52986 142450
yes M - 1 H 0 0 0 0 0 0 0 0 0 6 95 0 3 22 0 52493 140355
yes M - all H 0 0 0 0 0 0 0 0 0 6 95 0 3 22 0 40361 94680

- yes - 4 52 0 22 104 28 17 190 45 9 69 11 5 38 0 131363 844059
- yes N - 4 52 0 22 118 16 17 191 44 9 70 11 5 38 0 131449 844293

- yes 1 4 56 0 21 112 27 16 205 44 9 69 6 5 36 0 135238 838571
- yes N 1 4 56 0 20 123 16 16 203 44 9 70 6 5 36 0 135291 838628

- yes all 4 45 0 16 99 12 16 165 4 8 76 6 5 36 0 131562 771812
- yes N all 4 45 0 16 99 12 15 171 4 8 76 6 5 36 0 131561 771776

yes M yes - 4 52 0 22 102 24 14 235 21 7 135 0 5 41 0 156471 902007
yes M yes N - 4 52 0 22 118 16 13 250 11 7 135 0 5 41 0 156573 902279

yes M yes 1 L 4 56 0 20 111 23 14 244 13 7 135 0 4 38 0 160655 895859
yes M yes N 1 L 4 56 0 20 123 16 13 238 37 7 135 0 4 38 0 160784 895948

yes M yes all L 4 45 0 16 103 12 14 159 6 6 134 0 5 39 0 159654 845083
yes M yes N all L 4 45 0 16 99 12 14 171 2 6 134 0 5 39 0 159662 845037

Table 1: Comparison of alias resolution techniques on known networks. Result columns list the number
of routers with multiple interfaces (R), and alias pairs: true (TP), false (FP), and total (P). In technique
columns, “-” indicates the corresponding technique was not used. In the “iffinder” column, “M” indicates
MM probes were used. The “kapar” column shows whether Subnet Neighbor Verification (N) was used. The
“TTLs” column shows whether TTLs from one (1) or all (all) monitors were used, and whether the TTL
precedence was high (H) or low (L) relative to iffinder.

[4], and WIDE [5] networks. Data for the first four of these
networks was available publicly.

Table 1 shows the results of running various combinations
of iffinder and kapar, compared to known topology data.The
row labeled “reality” reflects only those alias pairs in the real
published topologies for which both addresses appeared in
Ark paths. A perfect alias resolution technique would dis-
cover all of those pairs, but should not be expected to dis-
cover pairs containing addresses that were not in its input.
Note that a router with i interfaces has i ∗ (i − 1)/2 pairs
of interfaces; for example, a router with 10 interfaces has
45 pairs, and incorrectly merging a 3-interface router with a
4-interface router would introduce 12 false alias pairs. Also
note that the number of routers can be too low if many
aliases were missed, or too high if individual routers were
split into multiple routers.

3.1 iffinder
Iffinder works well when probed routers respond from the

interface on the route back to the prober as this tool expects.
The NLR and WIDE columns of the first four experiments in
the table illustrate that in this case iffinder correctly identi-
fies many true aliases and yields no false positives. However,
when routers do not respond to direct probing, or always
respond from the probed address, iffinder is completely in-
effective, as is the case in the other three networks used
for verification. A single organization typically uses similar
configurations on all of its routers, so iffinder tends to work
either quite well or not at all on an entire network. Of the
observed router interfaces we probed, 64% responded with
a Port Unreachable message to at least one of the moni-

tors; of those responders, 5.6% responded to at least one
monitor from an address other than the one probed, reveal-
ing an alias pair. This low resolution rate suggests that
the common source address technique, while useful on some
networks, is insufficient by itself on the Internet in general.

Adding the MM addresses to iffinder’s list of probe tar-
gets did not make any difference on the networks where we
were able to verify the results of iffinder. However, probing
MM addresses did produce a small increase in the number
of routers and alias pairs found on the Internet in general.
Although we can not conclusively prove that these addtional
inferences are correct, we believe that they are, since both
theory and (limited) experimental evidence give no reason to
expect a significant number of false positives. Because MM
probes appear to have at least a small beneficial effect with
almost no risk of detrimental effect, we continue to use MM
probes in our later tests. The number of MM addresses was
less than 3% of the number of observed router addresses, so
probing them did not incur substantial additional overhead.

Since iffinder found no false positives, adding TTL con-
straints to it is unnecessary. In fact, adding TTL constraints
actually hurt iffinder’s results slightly by incorrectly exclud-
ing some pairs that were correct. We expect that this rela-
tive reliability is because TTL comparisons rely on two sep-
arate probes, which are vulnerable to routing differences,
whereas an iffinder inference relies on just one probe.

3.2 kapar
Kapar does not rely on direct probes and, therefore, works

more consistently than iffinder across all of the networks
with known topologies. However, kapar does not necessarily



find as many correct alias pairs on networks where both
techniques work, and does find a small number of incorrect
alias pairs. Kapar finds about 7 times more alias pairs than
iffinder on the Internet in general, but we have no practical
way to find out how many of those are false positives.

In most cases, Subnet Neighbor Verification (SNV) im-
proved one or both of true positives and false positives, or
had no effect. In only one case did SNV have a small detri-
mental effect, by incorrectly ruling out two true positives.
Thus, SNV seems to be a useful addition to the APAR al-
gorithm.

When we add in TTL data from one monitor, we see some
decrease in false positives as expected, and, surprisingly, we
also see some increase in true positives. This increase could
be explained by the TTL data ruling out some false sub-
nets which otherwise would have in turn ruled out some
true aliases. More testing is necessary to decide if this effect
is consistent or was just luck. With TTL data from all 26
monitors, the results are closer to our expectations: the de-
crease in false positives is even greater than that for TTLs
from one monitor, but there is also an unfortunate decrease
in true positives. Future work may help isolate the helpful
effects of TTLs from the harmful effects and make TTLs
more useful. For example, sending multiple pings to each
address may reveal some addresses that reply with varying
TTL values, making them too unreliable to be used in dis-
tance conditions.

3.3 iffinder and kapar
Combining iffinder and kapar lets us take advantage of

the strengths of both methods. Because of iffinder’s negli-
gible false positive rate, we always configure kapar to treat
iffinder’s alias inferences as correct if they would conflict
with its own inferences. Together, the two methods discover
more true alias pairs than either method alone. Somewhat
surprisingly, even on networks where routers do not respond
to iffinder probes, adding iffinder results to kapar’s analysis
was sometimes helpful. This effect is likely due to the APAR
algorithm propagating information from accurate iffinder re-
sults along path segments into neighboring networks.

When using both iffinder and kapar methods together,
adding the Subnet Neighbor Verification technique appears
to be a net benefit, although not as much as when we ran
kapar without iffinder (section 3.2).

When testing TTL data with the iffinder/kapar combina-
tion, we have the choice of trusting the TTL data more or
less than iffinder data. If the two data sources conflict, we
can discard the iffinder inference and keep the TTL data for
use in kapar, or keep the iffinder inference and discard the
TTL data so it does not affect kapar. The experimental re-
sults (not shown) are somewhat mixed, but do slightly favor
treating TTLs as less reliable than iffinder data, consistent
with our results in section 3.1. As in section 3.2, future work
may make TTLs more useful.

4. CONCLUSIONS
Every alias resolution technique tested has strengths and

weaknesses. Fingerprint techniques are accurate when rou-
ters respond to their probes, but many routers do not, leav-
ing large gaps in their coverage. Analytic techniques rely on
indirect data and assumptions about network design, mak-
ing them somewhat less accurate, but they do not depend on
direct probing and thus work more evenly across the entire

Internet. Adding TTL constraints and intelligently chosen
additional probing can further increase the accuracy of ana-
lytic approaches. By combining the strengths of these tech-
niques, we can obtain a better set of results than we could
with any one technique alone. Specifically, we found iffinder,
kapar, TTL constraints, and “missing middle” probes to be
an effective and scalable combination.

5. REFERENCES
[1] http://dooka.canet4.net/.

[2] http://stats.geant2.net/lg/.

[3] http://vn.grnoc.iu.edu/Internet2.

[4] http://routerproxy.grnoc.iu.edu/nlr2/.

[5] Private communication with Kenjiro Cho and Yuji
Sekiya at WIDE.

[6] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger,
T. Friedman, and M. Latapy. Avoiding traceroute
anomalies with Paris traceroute. In IMC, Oct. 2006.

[7] A. Bender, R. Sherwood, and N. Spring. Fixing Ally’s
growing pains with velocity modelling. In IMC, 2008.

[8] R. Govindam and H. Tangmunarunkit. Heuristics for
Internet map discovery. In INFOCOM, March 2000.

[9] M. H. Gunes. APAR tool. http://itom.utdallas.
edu/data/APAR.tar.gz (accessed 2008-07-02).

[10] M. H. Gunes and K. Sarac. Analytical IP alias
resolution. In IEEE International Conference on
Communications (ICC 2006), June 2006.

[11] M. H. Gunes and K. Sarac. Resolving IP aliases in
building traceroute-based internet maps. Technical
report, December 2006.

[12] Y. Hyun. Archipelago measurement infrastructure.
http://www.caida.org/projects/ark/.

[13] V. Jacobson. traceroute tool. ftp://ftp.ee.lbl.gov/
traceroute.tar.gz.

[14] k. claffy, T. Monk, and D. McRobb. Internet
tomography. In Nature, January 1999.

[15] K. Keys. iffinder tool, 2000. http://www.caida.org/
tools/measurement/iffinder/.

[16] M. Luckie. scamper tool. http://www.wand.net.nz/
scamper/.

[17] J.-J. Pansiot and D. Grad. On routes and multicast
trees in the Internet. In ACM SIGCOMM, 1998.

[18] Y. Shavitt and E. Shir. DIMES: Let the Internet
measure itself. In ACM Computer Communications
Review, October 2005.

[19] R. Sherwood, A. Bender, and N. Spring. DisCarte: A
disjunctive Internet cartographer. In ACM
SIGCOMM, 2008.

[20] N. Spring, M. Dontcheva, M. Rodrig, and
D. Wetherall. How to resolve IP aliases. Technical
report, May 2004.

[21] N. Spring, R. Mahajan, and D. Wetherall. Measuring
ISP topologies with Rocketfuel. In ACM SIGCOMM,
2002.

[22] N. Spring, D. Wetherall, and T. Anderson.
Scriptroute: A public Internet measurement facility.
In 4th USENIX Symposium on Internet Technologies
and Systems, 2002.


