
Hyperbolic Geometry of Complex Networks

Dmitri Krioukov,1 Fragkiskos Papadopoulos,2 Maksim Kitsak,1 Amin Vahdat,3 and Marián Boguñá4
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We develop a geometric framework to study the structure and function of complex networks. We
assume that hyperbolic geometry underlies these networks, and we show that with this assumption,
heterogeneous degree distributions and strong clustering in complex networks emerge naturally
as simple reflections of the negative curvature and metric property of the underlying hyperbolic
geometry. Conversely, we show that if a network has some metric structure, and if the network degree
distribution is heterogeneous, then the network has an effective hyperbolic geometry underneath.
We then establish a mapping between our geometric framework and statistical mechanics of complex
networks. This mapping interprets edges in a network as non-interacting fermions whose energies are
hyperbolic distances between nodes, while the auxiliary fields coupled to edges are linear functions of
these energies or distances. The geometric network ensemble subsumes the standard configuration
model and classical random graphs as two limiting cases with degenerate geometric structures.
Finally, we show that targeted transport processes without global topology knowledge, made possible
by our geometric framework, are maximally efficient, according to all efficiency measures, in networks
with strongest heterogeneity and clustering, and that this efficiency is remarkably robust with respect
to even catastrophic disturbances and damages to the network structure.

PACS numbers: 89.75.Hc; 02.40.-k; 67.85.Lm; 89.75.Fb

I. INTRODUCTION

Geometry has a proven history of success, helping to
make impressive advances in diverse fields of science,
when a geometric fabric underlying a complex problem or
phenomenon is identified. Examples can be found every-
where. Perhaps the most famous one is general relativ-
ity, interpreting gravitation as a curved geometry. Quite
a contrasting example comes from the complexity the-
ory in computer science, where apparently intractable
computational problems suddenly find near optimal so-
lutions as soon as a geometric underpinning of the prob-
lem is discovered [2], leading to viable practical applica-
tions [3]. Yet another example is the recent conjecture
by Palmer [4] suggesting that many “mysteries” of quan-
tum mechanics can be resolved by the assumption that
a hidden fractal geometry underlies the universe.

Inspired by these observations, and following [5], we
develop here a geometric framework to study the struc-
ture and function of complex networks [6, 7]. We be-
gin with the assumption that hyperbolic geometry un-
derlies these networks. Although difficult to visualize,
hyperbolic geometry, briefly reviewed in Section II, is
by no means anything exotic. In fact it is the geom-
etry of the world we live in. Indeed, the relativistic
Minkowski spacetime is hyperbolic, and so is the anti-de
Sitter space [8–10]. On the other hand, hyperbolic spaces
can be thought of as smooth versions of trees abstracting
the hierarchical organization of complex networks [11],
a key observation providing a high-level rationale, Sec-

tion III, for our hyperbolic hidden space assumption. In
Section IV we show that from this assumption, two com-
mon properties of complex network topologies emerge
naturally. Namely, heterogeneous degree distributions
and strong clustering appear, in the simplest possible
settings, as natural reflections of the basic properties of
underlying hyperbolic geometry. The exponent of the
power-law degree distribution, for example, turns out to
be a function of the hyperbolic space curvature. Fortu-
nately, unlike in [4], for instance, we can directly verify
our assumption. In Section V we consider the converse
problem, and show that if a network has some metric
structure—tests for its presence are described in [12]—
and if the network’s degree distribution is heterogeneous,
then the network does have an effective hyperbolic geom-
etry underneath.

Many different pieces start coming together in Sec-
tion VI, where we show that the ensembles of networks
in our framework can be analyzed using standard tools
in statistical mechanics. Hyperbolic distances between
nodes appear as energies of corresponding edges dis-
tributed according to Fermi-Dirac statistics. In this in-
terpretation, auxiliary fields, which have been consid-
ered as opaque variables in the standard exponential
graph formalism [13–17], turn out to be linear func-
tions of underlying distances between nodes. The chem-
ical potential, Boltzmann constant, etc., also find their
lucid geometric interpretations, while temperature ap-
pears as a natural parameter controlling clustering in
the network. The network ensemble exhibits a phase
transition at a specific value of temperature, caused—
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FIG. 1: (Color online) Poincaré disk model. In (a), L1,2,3 and P1,2,3 are examples of hyperbolic lines. Lines L1,2,3 intersect
to form triangle ABC. The sum of its angles a + b + c < π. As opposed to Euclidean geometry, there are infinitely many
lines (examples are P1,2,3) that are parallel to line L1 and go through a point C that does not belong to L1. In (b), a
{7, 3}-tessellation of the hyperbolic plane by equilateral triangles, and the dual {3, 7}-tessellation by regular heptagons are
shown. All triangles and heptagons are of the same hyperbolic size but the size of their Euclidean representations exponentially
decreases as a function of the distance from the center, while their number exponentially increases. In (c), the exponentially
increasing number of men illustrates the exponential expansion of hyperbolic space. The Poincaré tool [1] is used to construct
a {7, 7}-tessellation of the hyperbolic plane, rendering a fragment of The Vitruvian Man by Leonardo da Vinci.

as usual—by a non-analyticity of the partition function.
This phase transition separates two regimes in the en-
semble, cold and hot. Complex networks belong to the
cold regime, while in the hot regime, the standard config-
uration model [18] and classical random graphs [19] turn
out to be two limiting cases with degenerate geometric
structures, Section IX. Sections VII and VIII analyze the
degree distribution and clustering as functions of temper-
ature in the two regimes.

Finally, in Section X, we shift our attention to network
function. Specifically, we analyze the network efficiency
with respect to targeted communication or transport pro-
cesses without global topology knowledge, made possi-
ble by our geometric approach. We find that such pro-
cesses in networks with strong heterogeneity and cluster-
ing, guided by the underlying hyperbolic space, achieve
the best possible efficiency according to all measures, and
that this efficiency is remarkably robust with respect to
even catastrophic levels of network damage. This finding
demonstrates that complex networks have the optimal
structure, allowing for routing with minimal overhead
approaching its theoretical lower bounds, a notoriously
difficult longstanding problem in routing theory, proven
unsolvable for general graphs [20].

II. HYPERBOLIC GEOMETRY

In this section we review the basic facts about hyper-
bolic geometry. More detailed accounts can be found
in [21–27].

There are only three types of isotropic spaces: Eu-

clidean (flat), spherical (positively curved), and hyper-
bolic (negatively curved). Hyperbolic spaces of constant
curvature are difficult to envisage because they cannot be
isometrically embedded into any Euclidean space. The
reason is, informally, that the former are “larger” and
have more “space” than the latter.

Because of the fundamental difficulties in represent-
ing spaces of constant negative curvature as subsets of
Euclidean spaces, there are not one but many equivalent
models of hyperbolic spaces. Each model emphasizes dif-
ferent aspects of hyperbolic geometry, but no model si-
multaneously represents all of its properties. In special
relativity, for example, the hyperboloid model is com-
monly used, where the hyperbolic space is represented
by a hyperboloid. Its two different projections to disks
orthogonal to the main axis of the hyperboloid yield
the Klein and Poincaré unit disk models. In the lat-
ter model, the whole infinite hyperbolic plane H2, i.e.,
the two-dimensional hyperbolic space of constant curva-
ture −1, is represented by the interior of the Euclidean
disk of radius 1, see Fig. 1. The boundary of the disk,
i.e., the circle S1, is not a part of the hyperbolic plane,
but represents its infinitely remote points, called bound-
ary at infinity ∂H2. Any symmetry transformation on
H2 translates to a symmetry on ∂H2, and vice versa, a
cornerstone of the anti-de Sitter space/conformal field
theory correspondence [8–10], where quantum gravity on
an anti-de Sitter space is equivalent to a quantum field
theory without gravity on the conformal boundary of the
space. Hyperbolic geodesic lines in the Poincaré model,
i.e., shortest paths between two points at the boundary,
are disk diameters and arcs of Euclidean circles intersect-
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ing the boundary perpendicularly. The model is confor-
mal, meaning that Euclidean angles between hyperbolic
lines in the model are equal to their hyperbolic values,
which is not true with respect to distances or areas. Eu-
clidean and hyperbolic distances, re and rh, from the disk
center, or the origin of the hyperbolic plane, are related
by

re = tanh
rh
2
. (1)

The model is generalizable for any dimension d > 2, in
which case Hd is represented by the interior of the unit
ball whose boundary Sd−1 is the boundary at infinity
∂Hd. The model is related via the stereographic pro-
jection to another popular model—the upper half-space
model—where Hd is represented by a “half” of Rd span
by vectors x = (x1, x2, . . . , xd) with xd > 0. The bound-
ary at infinity ∂Hd in this case is the hyperplane xd = 0
instead of Sd−1. Essentially any d-dimensional space X
with a (d − 1)-dimensional boundary can be equipped
with a hyperbolic metric structure, with the X’s bound-
ary playing the role of the boundary at infinity ∂X.

Given the abundance of hyperbolic space representa-
tions, we are free to choose any of those, e.g., the one
most convenient for our purposes. Unless mentioned oth-
erwise, we use the native representation in the rest of the
paper. In this representation, all distance variables have
their true hyperbolic values. In polar coordinates, for
example, the radial coordinate r of a point is equal to
its hyperbolic distance from the origin. That is, instead
of (1), we have

r ≡ rh = re. (2)

A key property of hyperbolic spaces is that they ex-
pand faster than Euclidean spaces. Specifically, while
Euclidean spaces expand polynomially, hyperbolic spaces
expand exponentially. In the two-dimensional hyperbolic
space H2

ζ of constant curvature K = −ζ2 < 0, ζ > 0, for
example, the length of the circle and the area of the disk
of hyperbolic radius r are

L(r) = 2π sinh ζr, (3)

A(r) = 2π(cosh ζr − 1), (4)

both growing as eζr with r. The hyperbolic distance x
between two points at polar coordinates (r, θ) and (r′, θ′)
is given by the hyperbolic law of cosines

cosh ζx = cosh ζr cosh ζr′ − sinh ζr sinh ζr′ cos ∆θ, (5)

where ∆θ = π − |π − |θ − θ′|| is the angle between the
points. Equations (3-5) converge to their familiar Eu-
clidean analogs at ζ → 0. For sufficiently large ζr, ζr′,
and ∆θ > 2

√
e−2ζr + e−2ζr′ , the hyperbolic distance x is

closely approximated by

x = r + r′ +
2

ζ
ln sin

∆θ

2
≈ r + r′ +

2

ζ
ln

∆θ

2
. (6)

TABLE I: Characteristic properties of Euclidean, spherical,
and hyperbolic geometries. Parallel lines is the number of
lines that are parallel to a line and that go through a point
not belonging to this line, and ζ =

√
|K|.

Property Euclidean Spherical Hyperbolic

Curvature K 0 > 0 < 0

Parallel lines 1 0 ∞
Triangles are normal thick thin

Shape of triangles

Sum of 4 angles π > π < π

Circle length 2πr 2π sin ζr 2π sinh ζr

Disk area 2πr2/2 2π(1− cos ζr) 2π(cosh ζr − 1)

That is, the distance between two points is approximately
the sum of their radial coordinates, minus some ∆θ-
dependent correction, which goes to zero at ζ →∞.

Hyperbolic spaces are similar to trees. In a b-ary tree
(a tree with branching factor b), the analogies of the circle
length or disk area are the number of nodes at distance
exactly r or not more than r hops from the root. These
numbers are (b+ 1)br−1 and [(b+ 1)br − 2]/(b− 1), both
growing as br with r. We thus see that the metric struc-
tures of H2

ζ and b-ary trees are the same if ζ = ln b: in

both cases circle lengths and disk areas grow as eζr. In
other words, from the purely metric perspective, H2

ln b
and b-ary trees are equivalent. Informally, trees can
therefore be thought of as “discrete hyperbolic spaces.”
Formally, trees, even infinite ones, allow nearly isometric
embeddings into hyperbolic spaces. For example, any tes-
sellation of the hyperbolic plane (see Fig. 1) naturally de-
fines isometric embeddings for a class of trees formed by
certain subsets of polygon sides. For comparison, trees do
not generally embed into Euclidean spaces. Informally,
trees need an exponential amount of space for branching,
and only hyperbolic geometry has it.

Table I collects these and other characteristic proper-
ties of hyperbolic geometry and juxtaposes them against
the corresponding properties of Euclidean and spherical
geometries.

III. TOPOLOGICAL HETEROGENEITY
VERSUS GEOMETRICAL HYPERBOLICITY

In this section we make high-level observations suggest-
ing the existence of intrinsic connections between hyper-
bolic geometry and the topology of complex networks.

Complex networks connect distinguishable, heteroge-
neous elements abstracted as nodes. Understood broadly,
this heterogeneity implies that there is at least some tax-
onomy of elements, meaning that all nodes can be some-
how classified. In most general settings, this classification
implies that nodes can be split in large groups consist-
ing of smaller subgroups, which in turn consist of even
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smaller subsubgroups, and so on. The relationships be-
tween such groups and subgroups can be approximated
by tree-like structures, sometimes called dendrograms,
which represent hidden hierarchies in networks [11]. But
as discussed in the previous section, the metric structures
of trees and hyperbolic spaces are the same. We empha-
size that we do not assume that the node classification
hierarchy among a particular dimension is strictly a tree,
but that it is approximately a tree. As soon as it is at
least approximately a tree, it is negatively curved [27].
This argument obviously applies only to a snapshot of a
network taken at some moment of time. A logical ques-
tion is how these taxonomies emerge. Clearly, when a
network begins to form, the node classification is degen-
erate, but as more and more nodes join the network and
evolve in it, they tend to diversify and specialize, thus
deepening their classification hierarchy. The distance be-
tween nodes in such hierarchies is then a rough approxi-
mation of node similarity, and the more similar a pair of
nodes, the more likely they are connected.

We consider several examples suggesting that these
general observations apply to different real networks. So-
cial networks form the most straightforward class of ex-
amples, where network community structures [28, 29]
represent hidden hierarchies [30]. More concretely, in pa-
per citation networks, the underlying geometries can ap-
proximately be the relationships between scientific sub-
ject categories, and the closer the subjects of two papers,
the more similar they are, and the more likely they cite
each other [31, 32]. Classifications of web pages (or more
specifically, of the Wikipedia pages [33, 34]) also show
the same effect: the more similar a pair of web pages, the
more likely that there is a hyperlink between them [35].
In biology, the distance between two species on the phy-
logenetic tree is a widely used measure of similarity be-
tween the species [36]. Note that this example empha-
sizes both the existing taxonomy of elements and their
evolution. The evolution of the Internet is yet another
paradigmatic example. In the beginning, there were only
a couple of computers connected to each other, but then
the network grew [37] splitting into a collection of in-
dependently administered networks, called autonomous
systems (ASs), whose number and diversity have been
growing fast [38]. Currently, ASs can be classified based
on their geographic position and coverage, size, number
and type of customers, business role, and many other
factors [38, 39].

The general observation that the metric structure of
node similarity distances is hyperbolic follows from the
mathematical fact illustrated in Fig. 2. We assume there
that a point in R2 represents an abstract node attribute
or characteristic, while a Euclidean disk in R2 represents
a collection of all the attributes for a given node in the
network. The network itself is not shown. Instead we
visualize a hidden hierarchy arising from the overlapping
disks. The more two disks overlap, the more similar the
sets of characteristics of the two corresponding nodes,
that is, the more similar the nodes themselves. But the

R2

H3

FIG. 2: Mapping between disks in the Euclidean plane R2

and points in the Poincaré half-space model of the three-
dimensional hyperbolic space H3 [21]. The x, y-coordinates
of disks in R2 are the x, y-coordinates of the corresponding
points in H3. The z-coordinates of these points in H3 are
the radii of the corresponding disks. This mapping repre-
sents the tree-like hierarchy among the disks. Two points in
H3 are connected by a solid link if one of the corresponding
disks is the minimum-size disk that fully contains the other
disk. This hierarchy is not perfect; thus, the tree structure is
approximate. The darkest disk in the middle partially over-
laps with three other disks at different levels of the hierarchy.
Two points in H3 are connected by a dashed link if the cor-
responding disks partially overlap. These links add cycles to
the tree. The shown structure is thus not strictly a tree, but
it is hyperbolic [27].

mapping between disks R2 and nodes in H3 in Fig. 2 is
such that the more the two disks overlap, the hyperbol-
ically closer are the corresponding two nodes. Formally,
if the ratio of the disks’ radii r, r′ is bounded by a con-
stant C, 1/C 6 r/r′ 6 C, and the Euclidean distance
between their centers is bounded by Cr, then the hy-
perbolic distance between the corresponding nodes in H3

is bounded by some constant C ′, which depends only
on C, and not on the disk radii or center locations [27].
The converse is also true. Therefore, the distances be-
tween nodes based on similarity of their attributes can
be mapped to distances in a hyperbolic space, assuming
that node attributes possess some metric structure (R2

in the above example) in the first place.

IV. HYPERBOLIC GEOMETRY YIELDS
HETEROGENEOUS TOPOLOGY

We now put the intuitive considerations in the previous
section to qualitative grounds. We want to see what net-
work topologies emerge in the simplest possible settings
involving hyperbolic geometry.
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FIG. 3: The expected degree of a node at point X located
at distance r from the origin O is proportional to the area of
the dark-shaded intersection S(r) of the two disks of radius
R. The first disk, centered at O, contains all the nodes, dis-
tributed within it with a uniform density. The second disk,
centered at X, is defined by the connection probability p(x),
which is either 1 or 0 depending on whether the distance x
from X is less or greater than R. The node at X is con-
nected to all the nodes lying in the dark-shaded intersection
area S(r).

A. Uniform node density at curvature K = −1

Since the one-dimensional hyperbolic space H1 does
not exist, the simplest hyperbolic space is the hyperbolic
plane H2 discussed in Section II. The simplest way to
place N � 1 nodes on the hyperbolic plane is to dis-
tribute them uniformly over a disk of radius R � 1,
where R abstracts the depth of the hidden tree-like hier-
archy. We will see below that R is a growing function of
N , reflecting the intuition in Section III that the network
hierarchy deepens with network growth. The hyperbol-
ically uniform node density implies that we assign the
angular coordinates θ ∈ [0, 2π] to nodes with the uniform
density ρ(θ) = 1/(2π), while according to Eqs. (3,4) with
ζ = 1, the density for the radial coordinate r ∈ [0, R] is
exponential

ρ(r) =
sinh r

coshR− 1
≈ er−R ∼ er. (7)

To form a network, we need to connect each pair of nodes
with some probability, which can depend only on hyper-
bolic distances x between nodes. The simplest connection
probability function is

p(x) = Θ(R− x), (8)

where Θ(x) is the Heaviside step function. We will jus-
tify and relax this choice in Section VI. This connection
probability means that we connect a pair of nodes by a
link only if the hyperbolic distance (5) between them is
x 6 R.

The network is now formed, and we can analyze its
topological properties. We are first interested in the
most basic one, the degree distribution P (k), to com-
pute which we have to calculate the average degree k̄(r)
of nodes located at distance r from the origin. Since
the node density is uniform, k̄(r) is proportional to the
area A(r) of the intersection S(r) of the two disks shown
in Fig. 3. Specifically, k̄(r) = δA(r) with node density
δ = N/[2π(coshR − 1)]. The area element dA in polar
coordinates (y, θ) is dA = sinh y dydθ, cf. Eqs. (3,4) with
ζ = 1. Therefore, the intersection area A(r) =

∫∫
S(r)

dA

is given by the following integration illustrated in Fig. 3

A(r) = 2

∫ R−r

0

sinh y dy

∫ π

0

dθ + 2

∫ R

R−r
sinh y dy

∫ θy

0

dθ

= 2π[cosh(R − r)− 1] + 2

∫ R

R−r
θy sinh y dy, (9)

where θy ∈ [0, π] is given by the hyperbolic law of
cosines (5) for the triangle 4OXY in Fig. 3

coshR = cosh r cosh y − sinh r sinh y cos θy. (10)

Solving the last equation for θy and substituting the re-
sult into (9) yields the exact expression for A(r) and con-
sequently for the average degree k̄(r)

k̄(r) =
N

2π(coshR− 1)

{
2π(coshR− 1)− 2 coshR

(
arcsin

tanh(r/2)

tanhR
+ arctan

coshR sinh(r/2)√
sinh(R + r/2) sinh(R − r/2)

)

+ arctan
(coshR+ cosh r)

√
cosh 2R− cosh r√

2(sinh2R− coshR− cosh r) sinh(r/2)
− arctan

(coshR− cosh r)
√

cosh 2R− cosh r√
2(sinh2R+ coshR− cosh r) sinh(r/2)

}
, (11)

which perfectly matches simulations in Fig. 4. For large
R this terse exact expression is closely approximated by

k̄(r) = N

{
4

π
e−r/2 −

(
4

π
− 1

)
e−r
}
≈ 4

π
Ne−r/2, (12)

where the last approximation holds for large r.
The average degree in the network is then

k̄ =

∫ R

0

ρ(r)k̄(r)dr ≈ 8

π
Ne−R/2, (13)
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FIG. 4: (Color online) Average degree at distance r from the
origin for a network with N = 10000 and R = 16.55.

from which we conclude that if we want to generate an
N -node network with a target average degree k̄ we have
to select the disk radius R = 2 ln[8N/(πk̄)]. We see that
R scales with N as R ∼ lnN , i.e., the same way as the
depth of a balanced tree with its size. We also observe
that by fixing

N = ν eR/2, (14)

we gain control over the average degree in a network via
parameter ν = πk̄/8, using which we rewrite (12) as

k̄(r) =
k̄

2
e(R−r)/2 ∼ e−r/2. (15)

To finish computing the degree distribution P (k) we
treat the radial coordinate r as a hidden variable in the
terminology of [40], yielding P (k) =

∫ R
0
g(k|r)ρ(r) dr,

where the propagator g(k|r) is the conditional proba-
bility that a node with hidden variable r has degree k.
For sparse networks this propagator is Poissonian [40],

g(k|r) = e−k̄(r)k̄(r)k/k!, using which we finally obtain

P (k) = 2

(
k̄

2

)2
Γ(k − 2, k̄/2)

k!
∼ k−3. (16)

That is, the node degree distribution is a power law.
This result is remarkable as we have done nothing to

enforce this power law. Network heterogeneity has natu-
rally emerged as a direct consequence of the basic proper-
ties of hyperbolic geometry underlying the network. In-
deed, the observed power law is a combination of two
exponentials [41], node density ρ(r) in (7) and average
degree k̄(r) in (15), both reflecting the exponential ex-
pansion of space in hyperbolic geometry discussed in Sec-
tion II.

B. Quasi-uniform node density at arbitrary
negative curvature

We next relax two constraints in the model. The first
constraint is that the node density is exactly uniform.
We let it be quasi-uniform,

ρ(r) = α
sinhαr

coshαR− 1
≈ α eα(r−R) ∼ eαr, (17)

that is, exponential with exponent α > 0. In terms of
the analogy with trees in Sections II,III, this relaxation is
equivalent to assuming that the hidden tree-like hierarchy
has the average branching factor b = eα. Second, we let
the curvature of the hyperbolic space be any K = −ζ2

with ζ > 0. The node density is exactly uniform now
only if α = ζ.

The exact expression for the average degree k̄(r) of
nodes at distance r from the origin is the same as before,

k̄(r) =
N

2π

∫∫
S(r)

ρ(y) dydθ (18)

= N

{∫ R−r

0

ρ(y) dy +
1

π

∫ R

R−r
ρ(y)θy dy

}
,

but we cannot compute it exactly to yield an answer anal-
ogous to (11). However, approximations are easy. The
main approximation deals with the angle θy in Fig. 3.
Instead of (10), we now have according to (5)

cosh ζR = cosh ζr cosh ζy − sinh ζr sinh ζy cos θy, (19)

which for large R, r, and y yields θy = 2eζ(R−r−y)/2.
Substituting this θy in the integral for k̄(r) (18), using
there the approximate expression for ρ(y) in (17), and
introducing notation ξ = (α/ζ)/(α/ζ − 1/2), we obtain

k̄(r) = N

{
2

π
ξe−ζr/2 −

(
2

π
ξ − 1

)
e−αr

}
(20)

=


N(2ξ/π)e−ζr/2 if α > ζ/2,

N(1 + ζr/π)e−ζr/2 if α→ ζ/2,

N(1− 2ξ/π)e−αr if α < ζ/2.

(21)

The average degree k̄ in the whole network is now

k̄ =
2

π
ξ2N

{
e−ζR/2 + e−αR

[
α
R

2

(
π

4

(
ζ

α

)2

− (π − 1)
ζ

α
+ (π − 2)

)
− 1

]}
, (22)
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and its limit at α→ ζ/2 is well defined,

k̄ −−−−→
α→ζ/2

N
ζ

2
R

(
1 +

ζ

2π
R

)
e−ζR/2. (23)

If α/ζ > 1/2, we can neglect the second term in (22),
leading to

k̄ =
2

π
ξ2Ne−ζR/2. (24)

That is, the condition controlling the average degree in
the network changes from (14) to

N = ν eζR/2, (25)

where the control parameter ν = πk̄/(2ξ2). This control
is the less accurate, the closer the α to ζ/2. Indeed, as
α approaches ζ/2, the relative contribution to the total
average degree coming from the second term in (22) in-
creases. In particular, if α/ζ = 1/2, then ξ is undefined,
meaning that ν can no longer be πk̄/(2ξ2). If instead of
solving Eq. (23) to find radius R for given N and k̄, we
fix R according to (25) with some ν ≡ ν0, then similar
to [42], the average degree in (23) will grow polylogarith-
mically with the networks size,

k̄ = ν0 ln
N

ν0

(
1 +

1

π
ln
N

ν0

)
. (26)

If we neglect the second terms in (22,20) at α/ζ > 1/2,
then using (25), we rewrite (20) as

k̄(r) =
k̄

ξ
eζ(R−r)/2 ∼ e−ζr/2. (27)

That is, somewhat surprisingly, the scaling of the aver-
age degree k̄(r) with radius r does not depend on the
exponent α > ζ/2 of the node density. Proceeding as in
Section IV A, the degree distribution P (k) for α > ζ/2 is
then

P (k) = 2
α

ζ

(
k̄

ξ

)2α/ζ
Γ(k − 2α/ζ, k̄/ξ)

k!
∼ k−(2α/ζ+1).

(28)
For arbitrary values of α/ζ > 0 the degree distribution
scales as

P (k) ∼ k−γ , with γ =

{
2αζ + 1 if α

ζ > 1
2 ,

2 if α
ζ 6 1

2 .
(29)

We observe that the node density exponent α and
the space curvature ζ affect the heterogeneity of net-
work topology, parameterized by γ, only via their ra-
tio α/ζ. This result is intuitively expected in view of
the analogy to trees discussed in Sections II,III, since a
tree with branching factor b = eα is metrically equivalent
to the two-dimensional hyperbolic space with curvature
K = −α2. In other words, the branching factor of a tree

and the curvature of a hyperbolic space are two differ-
ent measures of the same metric property—how fast the
space expands. Result (29) states then that the topol-
ogy of networks built on top of these metric structures
depends only on the appropriate normalization, α/ζ, be-
tween the two measures.

The H2 model described so far has thus only two pa-
rameters, α/ζ > 1/2 and ν > 0, controlling the degree
distribution shape and average degree. The model pro-
duces scale-free networks with any power-law degree dis-
tribution exponent γ = 2α/ζ + 1 > 2. The uniform node
density in the hyperbolic space corresponds to α = ζ,
and results in γ = 3, i.e., the same exponent as in
the original preferential attachment model [43]. Since
ξ = (α/ζ)/(α/ζ − 1/2) = (γ − 1)/(γ − 2), the average
degree of nodes at distance r from the origin (27), and
the total average degree in the network k̄ = 2νξ2/π are

k̄(r) = k̄
γ − 2

γ − 1
eζ(R−r)/2, (30)

k̄ = ν
2

π

(
γ − 1

γ − 2

)2

. (31)

A sample network is visualized in Fig. 5.

V. HETEROGENEOUS TOPOLOGY IMPLIES
HYPERBOLIC GEOMETRY

In the previous section, we have shown that networks
constructed over hyperbolic spaces naturally possess het-
erogeneous scale-free degree distributions. In this sec-
tion we show the converse. Assuming that a scale-free
network has some metric structure underneath, we show
that metric distances can be naturally rescaled such that
the resulting metric space is hyperbolic.

To accomplish this task we use the S1 model from [12]
where the underlying metric structure is abstracted by
the simplest possible compact metric space, circle S1.
This model generates networks as follows. First, N nodes
are placed, uniformly distributed, on a circle of radius
N/(2π) so that the node density on the circle is fixed
to 1. Then each node is assigned its expected degree,
which is a random variable κ drawn from the continuous
power-law distribution

ρ(κ) = κγ−1
0 (γ − 1)κ−γ , κ ≥ κ0, (32)

where γ > 2 is the target degree distribution exponent,
and κ0 is the minimum expected degree. Finally, each
node pair with expected degrees (κ, κ′) and angular co-
ordinates (θ, θ′) located at distance d = N∆θ/(2π) over
the circle (∆θ = π − |π − |θ − θ′||) is connected with
probability p̃(χ), which can be any integrable function of

χ =
d

µκκ′
, (33)

where µ > 0 is the parameter controlling the average de-
gree in the network. This form of the argument of the
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FIG. 5: (Color online) A modeled network with N = 740
nodes, power-law exponent γ = 2.2, and average degree k̄ = 5
embedded in the hyperbolic disk of curvature K = −1 and
radius R = 15.5 centered at the origin shown by the cross.
For visualization purposes, we use the native hyperbolic space
representation (2). Therefore, the shown network occupies a
small part of the whole hyperbolic plane in Fig. 1. The shaded
areas show two hyperbolic disks of radius R centered at the
circled nodes located at distances r = 10.6 (upper node) and
r = 5.0 (lower node) from the origin. The shapes of these
disks are defined by (5) with ζ = 1, and according to the
model, the circled nodes are connected to all the nodes lying
within their disks, as indicated by the thick links. In par-
ticular, the two circled nodes lie within each other’s disks.
The peculiar shape of these disks shows that the hyperbolic
distance between any two points other than the origin is not
equal to the Euclidean distance between them. In particular,
the farther away from the origin are the two nodes, located at
the same Euclidean distance in the tangential direction, the
longer is the hyperbolic distance between them, which ex-
plains why peripheral nodes are not connected to each other,
and why a majority of links appear radially oriented.

connection probability function is the only requirement
to ensure that the average degree k̄(κ) of nodes with ex-
pected degree κ in the constructed network is indeed pro-
portional to κ, specifically k̄(κ)/k̄ = κ/κ̄, where k̄ is the
average degree in the network as before, and

κ̄ =

∫ ∞
κ0

κρ(κ)dκ = κ0
γ − 1

γ − 2
. (34)

Due to this proportionality, the degree distribution in the
network is indeed power-law distributed with exponent γ.

To see that condition (33) ensures k̄(κ)/k̄ = κ/κ̄, set
θ = 0 without loss of generality, let I =

∫∞
0
p̃(χ) dχ, and

observe that [40]

k̄(κ) =
N

2π

∫∫
ρ(κ′)p̃(χ)dκ′dθ′

= 2µκ

∫ ∞
κ0

κ′ρ(κ′)dκ′
∫ N/(2µκκ′)

0

p̃(χ)dχ

= 2µIκ̄κ. (35)

Since

k̄ =

∫
k̄(κ)ρ(κ)dκ = 2µIκ̄2, (36)

we conclude that k̄(κ) = κk̄/κ̄, and confirm that µ
controls the average degree in the network. We also
note that κ0 is a dumb parameter, which can be set to
κ0 = k̄(γ − 2)/(γ − 1) leading to k̄(κ) = κ.

We now establish the equivalence between this S1

model and the H2 model described in the previous sec-
tion. To do so, we need to find a change of variables
from κ, expected degree of a node, to r, its radial coor-
dinate on a disk of radius R, such that if variable κ is
power-law distributed according to (32), then after this
κ-to-r change of variables, variable r is exponentially dis-
tributed according to (17). The change of variables that
accomplishes this task is

κ = κ0e
ζ(R−r)/2, (37)

where ζ > 0 is a parameter defining α in (17) after this
change of variables. The resulting value of α is α =
ζ(γ − 1)/2, which is the same relationship among α, ζ,
and γ as in (29). In other words, after the κ-to-r mapping
above, the nodes get distributed on the disk as in the H2

model, suggesting that parameter ζ is actually the space
curvature.

To check if it is indeed the case, and if the two models
are indeed equivalent, we have to verify that the pairs
of nodes connected or disconnected in the S1 model with
expected degree κ mapped to radial coordinate r corre-
spond to, respectively, connected or disconnected nodes
in the native H2 model. That is, we have to demonstrate
that the connection probabilities in the two models are
consistent, p(x) = p̃(χ). To show this we first fix the
disk radius R to its value in the H2 model (25), and then
observe that if we set

ν = πµκ2
0, yielding k̄ = νI

2

π

(
γ − 1

γ − 2

)2

, (38)

then the change of variables (37) maps the argument χ
of the connection probability in the S1 model (33) to

χ = eζ(x−R)/2, (39)

where x is equal to the second approximation of the hy-
perbolic distance in (6). Therefore, the connection prob-
ability p(x) in the H2 model is approximately equal to the
connection probability p̃

(
eζ(x−R)/2

)
in the S1 model. In
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particular, the step function connection probability (8)
in the H2 model corresponds to

p̃(χ) = Θ(1− χ) (40)

in the S1 model. The integral I of this connection prob-
ability is obviously 1, so that the k̄ vs µ relationship (36)

in the S1 model becomes k̄ = 2µ [κ0(γ − 1)/(γ − 2)]
2
,

which is consistent with the condition ν = πµκ2
0 (38)

given the k̄.vs.ν relationship in the H2 model (31). As
the final consistency check, we observe that the substitu-
tion of the κ-to-r mapping (37) into the proportionality
k̄(κ) = κk̄/κ̄ in the S1 model yields (30) in the H2 model.
That is, the average degrees k̄(r) of nodes with radial co-
ordinate r in the S1 and H2 models are the same.

The two models are thus equivalent, and with the
appropriate choice of parameters, generate statistically
the same ensembles of networks, which one can con-
firm in simulations. In this section the network metric
structure has been modeled the simplest way, by cir-
cle S1 = ∂H2, which by no means is the only possi-
bility for the hyperbolic space boundary ∂X, see Sec-
tion II. Therefore, the established equivalence between
the S1 and H2 models suggests that as soon as a hetero-
geneous network has some metric structure induced by
distances d on ∂X, this metric structure can be rescaled
by node degrees κ to become hyperbolic, using appro-
priate modifications of (33,39). The heterogeneous de-
gree distribution effectively adds an additional dimen-
sion to ∂X (the radial dimension in the S1 = ∂H2 case),
such that the resulting space X (H2 in the considered
case) is hyperbolic, a mechanism conceptually similar to
how time in special relativity, or gravity in [8–10] makes
the higher-dimensional (time)space hyperbolic. In other
words, hyperbolic geometry naturally emerges from net-
work heterogeneity, the same way as network heterogene-
ity emerges from hyperbolic geometry in the previous
section.

VI. HYPERBOLIC GEOMETRY VERSUS
STATISTICAL MECHANICS

In this section we relax the final constraint in the model
that the connection probability is a step function, and
provide a statistical mechanics interpretation of the re-
sulting network ensemble.

Since p̃(χ) can be any integrable function in the S1

version of the model, p(x) can be any function in the H2

version. Given this freedom, we consider the following
family of connection probability functions,

p(x) =
1

eβ(ζ/2)(x−R) + 1
=

1

χβ + 1
= p̃(χ), (41)

parameterized by β > 0. The p̃(χ) function is integrable
for any β > 1,

I =

∫ ∞
0

p̃(χ) dχ =

(
β

π
sin

π

β

)−1

. (42)

However, we will not restrict β > 1, and will also consider
β ∈ [0, 1).

The main motivation for the connection probability
choice (41) is that it casts the ensemble of graphs in
the model to exponential random graphs [13–17]. Ex-
ponential random graphs are maximally random graphs
subjected to specific constraints, each constraint associ-
ated with an auxiliary field or Lagrangian multiplier in
the standard entropy maximization approach, commonly
used in statistical mechanics. Each graph G in the en-
semble has probability weight P (G) = e−H(G)/Z, where
H(G) is the graph Hamiltonian, and Z =

∑
G e
−H(G)

is the partition function. For example, the ensemble
of graphs in the configuration model, i.e., graphs with
a given degree sequence {ki}, is defined by Hamilto-
nian H(G) =

∑
i ωiki =

∑
ij ωiaij =

∑
i<j(ωi + ωj)aij ,

where ωi are the auxiliary fields coupled to nodes i, and
{aij} is G’s adjacency matrix. A natural generaliza-
tion of this ensemble [14] is given by the Hamiltonian
H(G) =

∑
i<j ωijaij in which the auxiliary fields are

coupled not to nodes i but to links ij. The partition
function is then

Z =
∏
i<j

(
1 + e−ωij

)
, (43)

and the probability of link existence between nodes i and
j is given by [14]

pij = −∂ lnZ

∂ωij
=

1

eωij + 1
. (44)

The connection probability (41) thus interprets the aux-
iliary fields ωij in this ensemble as a linear function of
hyperbolic distances xij between nodes in the ensemble
of graphs generated by our model,

ωij = β
ζ

2
(xij −R), (45)

which makes the two ensembles identical.
The connection probability (41) is nothing but the

Fermi-Dirac distribution. It appears because we allow
only one link between a pair of nodes. If we allowed mul-
tiple links, or if we considered weighted networks, the
resulting link statistics would be Bose-Einstein [14, 15].
Hyperbolic distances x in (41) can now be interpreted as
energies of fermionic links, whereas hyperbolic disk ra-
dius R is the chemical potential, 2/ζ is the Boltzmann
constant, and β = 1/T is the inverse temperature. The
ensemble is grand canonical with the number of particles
or links M fixed on average. The standard definition of
the chemical potential is then

M =

(
N

2

)∫ 2R

0

g(x)p(x) dx, (46)

where g(x) is the degeneracy of energy level x. In our
case, g(x) is the probability that two nodes are located
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at distance x from each other. We can compute this
probability to yield

g(x) =
ζ

π

(
γ − 1

γ − 2

)2

eζ(x−2R)/2+(a+ bx) eα(x−2R), (47)

where a, b are some constants, and γ = 2α/ζ + 1. Sub-
stituting this g(x) in definition (46), using M = k̄N/2
there, and keeping the leading terms, we get

k̄ = N

[
I

2

π

(
γ − 1

γ − 2

)2

e−ζR/2 +
e−βζR/2

(1− β)c

]
, (48)

where c is another constant which we determine in the
next section. If β > 1, we neglect the second term above,
and observe that the standard definition of the chemical
potential in statistical mechanics (46) yields the same
result as (25), obtained using purely geometric argu-
ments. The same observation applies for the parameter
ν = Ne−ζR/2 that we get from (48): it is the same as
in (36) with µ = ν/(πκ2

0) and κ̄ in (34), or as in (31) if
temperature T = 0, so that I = 1.

At T = 0 the system is in the ground, most degener-
ate state, and all M links occupy the lowest energy levels
until all of them are filled. In this ground state, Fermi dis-
tribution (41) converges to the step function (8), which
a posteriori justifies our choice there. At higher tem-
peratures the fermionic particles start populating higher
energy states, and at T = 1 we have a phase transition
caused by the divergence of p̃(χ) leading to a disconti-
nuity of the partition function (43). This discontinuity
is due to the discontinuity of the chemical potential R.
We see from (48,42) that R diverges as ∼ − ln(β − 1) at
β → 1+. If β < 1, then the second term in (48) is the
leading term, and instead of (25) we have

N = k̄(1− β)c eβζR/2, (49)

so that at β → 1−, the chemical potential R diverges as
∼ − ln(1−β). We investigate what effect this phase tran-
sition has on network topology in the next two sections.

VII. DEGREE DISTRIBUTION AT NON-ZERO
TEMPERATURE

A. β > 1

Since the connection probability p̃(χ) in (41) is in-
tegrable in this cold regime, we immediately conclude
that the degree distribution is the same power law as
at the zero temperature, while the average degree is
k̄ = 2µIκ̄2 (36) with I in (42). In view of the equivalence
between the S1 and H2 models established in Section V,
the power-law exponent γ > 2 is related to the H2 model
parameters ζ > 0 and α > ζ/2 via γ = 2α/ζ + 1, as at
T = 0. The chemical potential is R = (2/ζ) ln(N/ν) with
ν = πµκ2

0 (25,38).

B. β < 1

In this hot regime, the connection probability p̃(χ)
diverges, and we have to renormalize its integral I =∫
p̃(χ)dχ. Specifically, instead of integrating to infin-

ity as in (35), we have to explicitly cut off the inte-
gration at the maximum value of χmax = N/(2µκκ′).
The exact value of

∫ χmax

0
p̃(χ)dχ with p̃(χ) in (41) is

2H1(1, β−1; 1+β−1;−χβmax)χmax, where 2H1 is the Gauss
hypergeometric function. The leading term of this prod-
uct for large χmax and β ∈ [0, 1) is χ1−β

max/(1− β), substi-
tuting which into the expression for the average degree
in the S1 model (35) we get

k̄(κ)

〈k〉
=

κβ

〈κβ〉
, (50)

〈k〉 ≡ k̄ = (2µ)β〈κβ〉2N
1−β

1− β
, (51)

〈κβ〉 =

∫ ∞
κ0

κβρ(κ)dκ = κβ0
γ̃ − 1

γ̃ − β − 1
, (52)

where γ̃ is the input value of the γ-parameter in the S1

model, i.e., the distribution of the hidden variable κ is
ρ(κ) = κγ̃−1

0 (γ̃ − 1)κ−γ̃ . We introduce a new notation
for this parameter to differentiate it from the value of
power-law exponent γ in generated networks, which is
different from γ̃ in this hot regime. Indeed, since the
average degree k̄(κ) of nodes with hidden variable κ is
no longer proportional to κ but to κβ (50), the degree
distribution in the modeled networks is

P (k) ∼ k−γ , with γ = (γ̃ − 1)T + 1. (53)

The mapping to the H2 model is achieved via the
same change of variables (37), and by requiring that
χ = eζ(x−R)/2. Performing this change of variables, and
noticing that (γ̃ − 1)/(γ̃ − β − 1) = (γ − 1)/(γ − 2), we
obtain the following key relationships in the H2 model:

γ = 2
α

ζ
T + 1, γ̃ = 2

α

ζ
+ 1, (54)

k̄(r) = k̄
γ − 2

γ − 1
eβζ(R−r)/2, (55)

k̄ =
ν

1− β

(
2

π

)β (
γ − 1

γ − 2

)2

, (56)

N = ν eβζR/2, ν =
(
πµκ2

0

)β
N1−β . (57)

The last two equations fill in the c coefficient in the ex-
pression for the chemical potential (49).

Finally, we note that in the hot regime the admissible
range of input parameters controlling the degree distri-
bution exponent γ is γ̃ > β + 1 (S1) or α > βζ/2 (H2),
both yielding γ > 2.
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FIG. 6: (Color online) Average clustering c̄ as a function of
temperature T = 1/β ∈ [0, 1). The simulation results are
averaged across 100 networks with average degree k̄ = 6 and
N = 105 nodes each. The average clustering is calculated
excluding nodes of degree 1. The theoretical results are ob-
tained via the numerical integration of c̄ =

∫∞
κ0
c̄(κ)ρ(κ)dκ

with c̄(κ) given by Eq. (59). The stronger disagreement be-
tween simulations and theory for smaller values of γ is due to
the increasingly pronounced finite-size effects [44].

VIII. CLUSTERING AS A FUNCTION OF
TEMPERATURE

A. β > 1

In the cold regime, the average clustering c̄ is a de-
creasing function of temperature, see Fig. 6. Clustering
is maximized at T = 0, and it gradually, almost linearly,
decreases to zero at the phase transition point T = 1.

Unfortunately, c̄ cannot be computed analytically, but
some estimates for specific values of β are possible. The
average clustering c̄(κ) of nodes with expected degree
κ in the S1 model is the probability that two nodes
with expected degrees and angular coordinates (κ′, θ′)
and (κ′′, θ′′), both connected to node with (κ, 0) (we set
θ = 0 without loss of generality), are connected to each
other. Introducing notations for the three rescaled dis-
tances χ′ = Nθ′/(2πµκκ′), χ′′ = Nθ′′/(2πµκκ′′), and
χ = N∆θ/(2πµκ′κ′′), where ∆θ = |θ′ − θ′′|, this proba-
bility is given by [40]

c̄(κ) =

(
N

k̄(κ)

)2 ∫∫ ∞
κ0

dκ′dκ′′ρ(κ′)ρ(κ′′)

×
∫∫ π

−π
dθ′dθ′′p̃(χ′)p̃(χ′′)p̃(χ). (58)

Changing the integration variables from θ′ and θ′′ to χ′

and χ′′ in the second integral, extending the integration
limits to infinity, and using the expression for the average

χ'

χ''

1

1
-1

-1

|χ'|<1

|χ''|<1

κ|χ'/κ''-χ''/κ'|<1

κ''/κ
-κ''/κ

-κ'/κ

κ'/κ

FIG. 7: (Color online) The inner integral in (59) at the zero
temperature is the dark shaded area in the center.

degree in the model (35), yield

c̄(κ) =
1

(2Iκ̄)
2

∫∫ ∞
κ0

dκ′dκ′′κ′ρ(κ′)κ′′ρ(κ′′) (59)

×
∫∫ ∞
−∞

dχ′dχ′′p̃(|χ′|)p̃(|χ′′|)p̃
(
κ

∣∣∣∣ χ′κ′′ − χ′′

κ′

∣∣∣∣) .
At T = 0, I = 1, while p̃(χ) → Θ(1 − χ). There-

fore, the inner integral in the last expression reduces
to the area of the intersection of the square defined in
the (χ′, χ′′) coordinates by {|χ′| < 1; |χ′′| < 1}, and the
stripe κ|χ′/κ′′ − χ′′/κ′| < 1, see Fig. 7. For small κ, the
stripe is so wide for almost any combination of (κ′, κ′′)
that it fully contains the square, whose area is 4, so that
c̄(κ0) ≈ 1 proving that clustering is maximized at the
zero temperature. Recall that clustering cannot be 1 for
all node degrees because of structural constraints [45].
For arbitrary values of κ, the exact expression for the in-
tersection area involves cumbersome combinatorial con-
ditions for the mutual relationship among κ, κ′, and κ′′,
which make taking the outer integral in (59) problematic.
However one can check that for large κ, c̄(κ) = g(γ)κ0/κ,
where g(γ) is a decreasing function of γ.

For any other values of T ∈ (0, 1), the inner integral
in (59) can be taken by residues, but the number of poles
depends on β = 1/T . At β = 2, for example, the inner
integral is π2κ′κ′′/(κκ′ + κκ′′ + κ′κ′′), so that for γ = 3
we have the exact expression for c̄(κ)

c̄(κ) = κ0{(2κ+ κ0) ln(2κ+ κ0)− 2(κ+ κ0) ln(κ+ κ0)

+ κ0 lnκ0}/κ2, (60)

and c̄(κ0) = ln(27/16) = 0.52, while c̄(κ) = (ln 4)κ0/κ
for large κ. For other values of γ, one can show that
c̄(κ) = g̃(γ)κ0/κ, where g̃(γ) is also a decreasing function
of γ.

In other words, the degree-dependent clustering c̄(κ)
decays with κ as ∼ κ−1, an effect that was considered as
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a signature of the hierarchical organization of complex
networks [46, 47].

B. β < 1

In the hot regime, temperature has no effect on
clustering, which is always zero for large networks.
This effect can be confirmed in simulations, and seen
analytically. Indeed, observe that in view of (50-
52), the θ-to-χ change of variables, turning (58)
into (59), now yields the pre-factor in the latter equal to[
(µκ)

1−β
(1− β) /

(
2β〈κβ〉N1−β)]2 instead of 1/(2Iκ̄)2.

This new pre-factor is obviously zero in the thermody-
namic limit.

IX. CONNECTION TO THE CONFIGURATION
MODEL AND CLASSICAL RANDOM GRAPHS

Since clustering does not depend on temperature in the
hot regime, while the power-law exponent (54) depends
on temperature via the ratio T/ζ, we can let T →∞ and
ζ → ∞, but fix their ratio to be a new parameter η =
ζ/T . With this parameter the key equations (54,56,57)
in the H2 model become

γ = 2
α

η
+ 1, k̄ = ν

(
γ − 1

γ − 2

)2

, N = ν eηR/2. (61)

But since curvature ζ =∞, the last ∆θ-dependent term
in the expression for the hyperbolic distance (6) is zero.
Since this term reflects the presence of the metric struc-
ture in the network, its disappearance effectively destroys
this structure. More formally, the network metric struc-
ture becomes degenerate, because the hyperbolic dis-
tance xij between a pair of nodes i and j reduces to the
sum of their radial coordinates, xij = ri + rj , as a result
of which the auxiliary fields (45) decouple, ωij = ωi+ωj ,
where ωi = η(ri−R/2)/2. Therefore, the probability pij
of the existence of link ij in (44) depends now only on
the product of i, j’s expected degrees k̄(ri), k̄(rj) given
by (55), pij = [k̄(ri)k̄(rj)]/[k̄N ], so that the network en-
semble becomes the ensemble of networks in the config-
uration model, i.e., the ensemble of graphs with given
expected degrees [18].

Alternatively, we can keep both α and ζ finite while
heating the networks up by increasing T → ∞. In this
case, Eqs. (54-57) converge to γ →∞, k̄(r)→ k̄, k̄ → ν,
and R → ∞, while the Fermi-Dirac connection proba-
bility (41) becomes uniform p(x) → p = k̄/N . That is,
all nodes get uniformly distributed on the boundary at
infinity ∂H2, and each pair of nodes is connected with
the same probability p, independent of their distances.
We note that the distance between two points i, j ∈ ∂H2

with angular coordinates θi, θj is xij = sin(∆θij/2) [26]—
compare with (6) in H2 and with xij = ri+rj in the other

TABLE II: Network properties in the model—average de-
gree k̄, power-law exponent γ, and average clustering c̄—and
the model parameters controlling these properties, with ref-
erences to the corresponding equations.

Property
Cold regime Hot regime

S1 H2 S1 H2

k̄ µ (36) ν (38) µ (51) ν (56)

γ γ (32) α/ζ (29) γ̃ (53) α/ζ (54)

c̄ β = 1/T (Fig. 6) 0

limiting case, the configuration model. The limiting de-
gree distribution is Poissonian (γ →∞), and the network
ensemble converges to the ensemble of classical random
graphs GN,p with a given average degree k̄ = pN [19].
The network in this case loses not only its metric struc-
ture, but also its hierarchical heterogeneous organization.

Here, we finish the description and analysis of our ge-
ometric model of complex networks. To summarize, the
model can produce scale-free networks with any average
degree k̄, power-law exponent γ > 2, and average cluster-
ing c̄, controlled, respectively, by parameters (γ, µ, β) and
(α/ζ, ν, β) in the S1 and H2 formulations of the model,
see Table II. In Fig. 8 we observe a good match between
the basic topological properties of the real Internet and a
synthetic network generated by the H2 model with an ap-
propriate choice of parameters in the cold regime. In the
hot regime the model subsumes the standard configura-
tion model and classical random graphs as two different
limiting cases with degenerate geometric structures.

X. EFFICIENCY OF GREEDY NAVIGATION IN
MODELED NETWORKS

In this section we shift our attention from the analysis
of the structure of complex networks in our model to the
analysis of their function. Specifically, we are interested
in their navigation efficiency.

One important function that many real networks per-
form is to transport information or other media. Exam-
ples include the Internet, brain, or signaling, regulatory,
and metabolic networks. The information transport in
these networks is not akin to diffusion. Instead informa-
tion must be delivered to specific destinations, such as
specific hosts in the Internet, neuron groups in the brain,
or genes and proteins in regulatory networks. In the lat-
ter case, for example, the network reacts to an increased
concentration of some sugar by expressing not all but
very specific proteins, the ones responsible for digesting
this sugar. At the same time the nodes in the network
are not aware of the global network structure, so that the
questions we face are if paths to specific destinations in
the network can be found without such global topology
knowledge, and how optimal these paths can be.

The salient feature of our model is that it allows one to
study the efficiency of such path finding without global
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FIG. 8: (Color online) The Internet as seen by the CAIDA’s Archipelago Measurement Infrastructure [48] vs. a network in the
H

2 model with α = 0.55, ζ = 1, and β = 2. (a) The degree distributions P (k) in both networks are power laws with exponent
γ = 2.1. The theoretical curve is given by (28). (b) The average nearest neighbor degrees k̄nn(k). (c) The degree-dependent
clustering. The theoretical curve is obtained by a numerical estimate of the outer integral in (59). The inner integral is
π2κ′κ′′/(κκ′ + κκ′′ + κ′κ′′) at β = 2. The numerical integration is performed by summation over the node degrees k in the
modeled network, i.e.,

∫
dκ ρ(κ) → ∑

k P (k), and by mapping κ’s to k’s via κ = kκ̄/k̄. Random graphs capturing the three
metrics in (a-c) reproduce also many other important structural properties of the Internet [49].

knowledge, because our networks have underlying geom-
etry which enables greedy forwarding (GF). Since each
node in the network has its address, i.e., coordinates in
the underlying hyperbolic space, a node can compute
the distances between each of its neighbors in the net-
work, and the destination whose coordinates are writ-
ten in the information packet, or encoded in the signal.
GF then accounts to forwarding the information to the
node’s neighbor closest to the destination in the hyper-
bolic space. Since each node knows only its own address,
the addresses of its neighbors, and the destination ad-
dress of the packet, no node has any global knowledge of
the network structure.

We report simulation results for two forms of GF, orig-
inal GF (OGF) and modified GF (MGF). The OGF algo-
rithm drops the packet if the current node is a local min-
imum, meaning that it does not have any neighbor closer
to the destination than itself. The MGF algorithm ex-
cludes the current node from any distance comparisons,
and finds the neighbor closest to the destination. The
packet is dropped only if this neighbor is the same as the
packet’s previously visited node.

These GF processes can be very inefficient. They can
often get stuck at local minima, or even if they suc-
ceed reaching the destination, they can travel along paths
much longer than the optimal shortest paths available in
the network. Furthermore, even if they are efficient in
static networks, their efficiencies can quickly deteriorate
in the presence of network topology dynamics, e.g., they
can be vulnerable with respect to network damage.

To estimate the GF efficiency in static networks, we
compute the following metrics: (i) the percentage of suc-
cessful paths, ps, which is the proportion of paths that
reach their destinations; (ii) the average hop-length h̄
of successful paths; and (iii) the average and maximum
stretch of successful paths. We consider three types of
stretch. The first stretch is the standard hop stretch
defined as the ratio between the hop-lengths of greedy

paths and the corresponding shortest paths in the graph.
We denote its average and maximum by s1 and max(s1).
The optimal paths have stretch equal to 1. The other two
stretches are hyperbolic. They measure the deviation of
the hyperbolic length, traveled by a packet along either
the greedy or shortest path, from the hyperbolic distance
between the source and destination. Formally, let (s, t)
be a source-destination pair and let s = h0, h1, ..., hτ = t
be the greedy or shortest path between s and t, and τ its
hop length. Further, let xi, i = 1...τ , be the hyperbolic
distance between hi and hi−1. The hyperbolic stretch is
the ratio

∑
i xi/xst, where xst is the hyperbolic distance

between s and t. For greedy paths, we denote the av-
erage and maximum of this stretch by s2 and max(s2);
for shortest paths those are denotes by s3 and max(s3).
The lower these two stretches, the closer the greedy and
shortest paths stay to the hyperbolic geodesics, and the
more congruent we say the network topology is with the
underlying geometry.

We first focus on static networks, where the network
topology does not change, and then emulate the net-
work topology dynamics by randomly removing one or
more links from the topology. For each generated net-
work instance, we extract the giant connected component
(GCC), and perform GF between 104 random source-
destination pairs belonging to the GCC. All the met-
rics converge after approximately 103 source-destination
pairs, but we evaluate an order of magnitude more com-
binations for more reliable results. The network size is
N = 104, and the average degree is k̄ = 6.5 in all the ex-
periments, while temperature T = 0 only in the following
two subsections.

A. Static networks

Figure 9 shows the results for static networks, aver-
aged, for each γ, over five network instances. We see
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FIG. 9: (Color online) Greedy forwarding in static networks.

that the success ratio ps increases and path length h̄ and
all the stretches decrease as we decrease γ to 2. Re-
markably, for γ = 2.1, e.g., equal to the γ observed in
the Internet, OGF and MGF yield ps = 99.92% and
ps = 99.99%, with the OGF’s maximum stretch of 1,
meaning that all greedy paths are shortest paths. Inter-
estingly, the hyperbolic stretch of shortest paths (s3 and
max(s3)) is slightly worse (larger) than of greedy paths
(s2 and max(s2)), which allows us to informally say that
for small γ’s, greedy paths are “shorter than shortest” as
they are shortest hop-wise, but GF tends to select among
many shortest paths those of least hyperbolic stretch.

In summary, GF is exceptionally efficient in static net-
works, especially for the small γ’s observed in the vast
majority of complex networks, including the Internet.
The GF efficiency is maximized in this case, and the two
algorithms exhibit almost the best possible performance,
with reachability reaching almost 100%, and all greedy
paths being optimal (shortest).

B. Dynamic networks

We next look at the GF performance in dynamic net-
works with link failures. For each γ, we randomly select
a network instance from above and remove one or more
random links in it. We consider the following two link-
failure scenarios. In Scenario 1 we remove a percentage
pr, ranging from 0% to 30%, of all links in the network,
compute the new GCC, and for all source-destination
pairs remaining in it, we recompute the new success ra-
tio pnews , and the average and maximum stretch snew1 and
max(snew1 ). In Scenario 2 we provide a finer-grain view
focusing on paths that used a removed link. We remove
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FIG. 10: (Color online) Greedy forwarding in dynamic net-
works.

one link from the network, compute the new GCC, and
for the source-destination pairs that are still in it, we find
the percentage pls of successful paths, only among those
previously successful paths that traversed the removed
link. For these still-successful paths, we also compute
the new average and maximum stretch sl1 and max(sl1).
We then repeat the procedure for 1000 random links, and
report the average values for pls and sl1, and the maximum
value for max(sl1).

Figure 10 presents the results. We see that for small
γ’s, the success ratio pnews remains remarkably high, for
all meaningful values of pr. For example, MGF on net-
works with γ = 2.1 and pr 6 10%, yields pnews > 99%.
The simultaneous failure of 10% of the links in a network
such as the Internet is a rare catastrophe, but even after
such a catastrophe the success ratio in our synthetic net-
works is above 99%. The average stretch snew1 slightly
increases as we increase pr, but remains quite low. We
do not show max(snew1 ) to avoid clutter. For γ = 2.1,
max(snew1 ) 6 2. The percentage pls of MGF paths that
used a removed link and that found a by-pass after its
removal is also remarkably close to 100% for small γ’s.
The average stretch sl1 in Scenario 2 also remains low, be-
low 1.1, and the maximum stretch max(sl1) never exceeds
1.5.

In summary, GF is not only efficient in static networks,
but its efficiency is also robust in the presence of network
topology dynamics. In particular, for small γ’s matching
those found in real networks such as the Internet, GF
maintains remarkably high reachability and low stretch,
even after catastrophic damages to the network.
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FIG. 11: (Color online) Greedy forwarding as a function of
temperature T .

C. Role of clustering

Next we fix γ = 2.1, and investigate the GF perfor-
mance as a function of temperature in Fig. 11. The pic-
ture is qualitatively similar to Fig. 9. The GF efficiency
is the better, the smaller is the temperature, i.e., the
stronger the clustering, see Fig. 6. At zero temperature
where clustering is maximized, GF demonstrates the best
possible performance, as discussed in Section X A.

D. Random graphs

Finally, we look at the GF performance in the con-
figuration model and classical random graphs, which are
two different degenerate cases with zero clustering in our
geometric network ensemble, see Section IX.

To test the configuration model, we fix α = 1/2, so
that γ = 1/η + 1, compute distances between nodes i, j
according to xij = ri+rj , and show the results in Fig. 12.
We observe that the GF efficiency is poor in this case.
The success ratio ps never exceeds 40%, and drops to
below 10% for large γ’s. This poor performance is ex-
pected. Indeed, since xij = ri + rj , GF reduces to fol-
lowing the node degree gradient. Each node just for-
wards the packet to its highest-degree neighbor h since
this neighbor has the smallest radial coordinate rh, thus
minimizing the distance to the destination. If during this
process the packet reaches the highest-degree hub in the
network core, without visiting a node directly connected
to the destination, then it gets stuck at this hub, because
no angular coordinates instructing in what direction to
exit the core are any longer available—a problem, which
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FIG. 12: (Color online) Greedy forwarding in the configura-
tion model.

does not admit a simple and efficient solution [50].
To test classical random graphs, we assign to nodes

their angular coordinates θ uniformly distributed on
[0, 2π], connect each node pair with the same proba-
bility p = k̄N , and compute distances according to
xij = sin(∆θij/2). Greedy forwarding is extremely inef-
ficient in this case. The OGF and MGF average success
ratios ps are 0.17% and 0.21%.

In summary, the hierarchical organization (heteroge-
neous degree distribution) and metric structure (strong
clustering) in the network are both critically important
for network navigability.

E. Why hierarchical structure and strong
clustering ensure efficient navigation

We have seen that more heterogeneous networks
(smaller γ) with stronger clustering (smaller T ) are more
navigable. Here, we explain why it is the case.

We first recall that the congruency, measured by the
hyperbolic stretch, between the network topology and
hyperbolic geometry is the stronger, the smaller are the
γ and T , see Figs. 9,11. To visualize this effect, we draw
in Fig. 13(a) a couple of GF paths and their correspond-
ing hyperbolic geodesics. We see that the lengths of the
latter are indeed dominated by the sums of the radial co-
ordinates of the source and destination, minus some ∆θ-
dependent corrections (6). This domination of the radial
direction shapes the following hierarchical path pattern
of the hyperbolic geodesics, as well as of the correspond-
ing GF paths: (i) zoom-out from the network periphery
to the core, moving to increasingly higher-degree nodes,
that is, nodes covering increasingly wider areas by their
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(a)

θ∼κκ′/N
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N∼eζR/2

r′

κ∼eζ(R−r)/2

κ′∼eζ(R−r′)/2R

(b) (c)

FIG. 13: (Color online) (a) Two greedy paths, which are also shortest paths (s1 = 1), from the source at the top to two
destinations are shown by the solid arrows. The dashed curves are the hyperbolic geodesics between the same source and
destinations. The hyperbolic stretches s2 = s3 of the left and right paths are 1.51 and 1.68. (b) The inner triangular shape
(green) shows the angular sector θ that the outer shape (red), which is the hyperbolic disk of radius R centered at the circled
point located at distance r from the crossed origin, cuts out off the dashed circle of radius r′ centered at the origin. The
expected node degrees at r and r′ are κ and κ′. (c) The circled node is an example of a bridge node. It is connected to all
nodes in its hyperbolic disk of radius R (the outer shape (red)), including all nodes with expected degrees exceeding a certain
threshold, or, equivalently, to all nodes with radial coordinates below a certain threshold, shown by the innermost disk (green)
whose radius is R− r, where r is the radial coordinate of the circled node.

connections, see Fig. 5; (ii) turn in the core to the di-
rection of the destination; and finally (iii) zoom-in onto
it, moving to lower-degree nodes. This path pattern is
exactly the pattern of hierarchical paths in [51]. A path
is called hierarchical in [51] if it consists of two segments:
first, a segment of nodes with increasing degrees, and
then a segment of nodes with decreasing degrees. As
shown in [51] (see Fig. 2(a) there), the percentage of
shortest paths that are also hierarchical approaches 100%
with γ → 2. Remarkably, this hieratical path pattern
also characterizes the policy-compliant paths followed by
information packets in the Internet [52, 53]. Since the
GF paths, also the shortest paths in the network, follow
the shortest geodesic paths in the hyperbolic space, the
resulting hyperbolic stretch is small. Thanks to strong
clustering, the network has many partially disjoint paths
between the same source and destination, which all fol-
low the same hierarchical pattern. Therefore, even if
some paths are damaged by link failures, other congruent
paths remain, and GF can still find them using the same
hyperbolic geodesic direction, which explains the high ro-
bustness of network navigability with respect to network
damage. As clustering weakens, not only the path diver-
sity in the network decreases, but also the network metric
structure deteriorates, since the edge existence probabil-
ity (41) depends less and less on the hyperbolic distance
between nodes. In the extreme case of classical random
graphs, for example, the connection probability does not
depend on this distance at all. As a result, the congru-
ency between network topology and underlying geometry
evaporates.

Heterogeneity is another key element responsible for
high navigability. This heterogeneity is nothing but a re-
flection of the hierarchical, tree-like structure of the un-
derlying hyperbolic space. Indeed, its hierarchical struc-
ture manifests itself in the hierarchy of node degrees,
and in the degree-dependent amount of space that nodes
cover by their connections. As Fig. 5 shows, nodes of
higher degrees, closer to the top of the hierarchy, cover
wider areas with their connections. To quantify, at T = 0
the angular sector θ(κ, κ′) that nodes with expected de-
gree κ cover by their connections to nodes with expected
degree κ′, see Fig. 13(b), is θ(κ, κ′) = 4πµκκ′/N . This
degree-dependent hierarchy of space coverage makes the
hierarchical zooming-out/zooming-in path pattern possi-
ble and successful.

Finally, the stronger the heterogeneity, the more
bridges are in the network, where by bridges we mean
nodes that connect to all nodes with expected degrees
exceeding a certain threshold, an example is shown in
Fig. 13(c). This threshold is given by the equation
θ(κ, κ′) = 2π, yielding that a node with expected de-
gree κ is connected to all nodes with expected degrees
κ′ > N/(2µκ). However such κ′-degree nodes may not
exist in the network, as the required κ′ may exceed the
maximum expected degree κmax = κ0N

1/(γ−1) [44]. Re-
quiring κ′ < κmax leads to κ > N (γ−2)/(γ−1)/(2µκ0).
That is, only such κ-degree nodes are expected to be
bridges. The equation for the expected bridge existence
is then κ < κmax, yielding N (γ−3)/(γ−1)/(2µκ2

0) < 1.
That is, bridges exist in any sufficiently large network
with γ < 3—the smaller the γ is, the more bridges and
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the longer they are—while networks with γ > 3 have
no bridges. The role of bridges in the network core is
straightforward: as soon as GF reaches a bridge, it can
cross the entire network, in any direction, at one hop [54].
Without bridges, GF is doomed to wander along the net-
work periphery, endangered by getting lost there at any
hop. The GF success ratio in networks with γ > 3 dete-
riorates to zero in the thermodynamic limit [55].

XI. CONCLUSION

We have developed a framework to study the struc-
ture and function of complex networks in purely geomet-
ric terms. In this framework, two common properties
of complex network topologies, strong heterogeneity and
clustering, turn out to be simple reflections of the basic
properties of an underlying hyperbolic geometry. Het-
erogeneity, measured in terms of the power-law degree
distribution exponent, is a function of the negative cur-
vature of the hyperbolic space, while clustering reflects
its metric property.

Conversely, a heterogeneous network with a metric
structure has an effective hyperbolic geometry under-
neath. This finding sheds light on self-similarity in com-
plex networks [12]. The network renormalization proce-
dure considered in [12]—throwing out nodes of degrees
exceeding a certain threshold—is equivalent to contract-
ing the radius of the hyperbolic disk where all nodes
reside. This contraction is a homothety along the ra-
dial direction, which is a symmetry transformation of
the hyperbolic space, and self-similarity of hyperbolic
spaces with respect to such homothetic transformations
has been formally defined and studied [26]. Self-similarity
of complex networks thus appears as a reflection of self-
similarity of hyperbolic geometry, or as the invariance
with respect to symmetry transformations in the under-
lying space.

The developed framework establishes a clear connec-
tion between statistical mechanics and hyperbolic geom-
etry of complex networks. The collection of edges in a
network, for example, can be treated as a system of non-
interacting fermions whose energies are the hyperbolic
distances between nodes. This geometric interpretation
may lead to further developments applying the standard
tools of statistical mechanics to network analysis.

The network ensemble in our framework subsumes
the standard configuration model and classical random
graphs as two limiting cases with degenerate geomet-
ric structures. The hyperbolic distance between two
nodes (6) delicately combines their radial and angular
coordinates. In the configuration model, the distance
degenerates to the sum of radial coordinates only, de-
stroying the network metric structure. In classical ran-
dom graphs, on the contrary, there is no radial distance
dependence. The connection probability between nodes
does not depend on any distances at all. As a result,
not only the metric structure of a network but also its

hierarchical heterogeneity gets completely destroyed.
We have shown that both these properties, strong clus-

tering and hierarchical heterogeneous organization, are
critically important for navigability, which is the network
efficiency with respect to targeted transport processes
without global knowledge. Such processes are impossible
without auxiliary metric spaces since global knowledge
of network topology would be unavoidable in that case.
The developed framework not only provides a set of tools
to study these processes, but also explains why and how
strong clustering and hierarchical network organization
makes them efficient.

We have observed that the strongest clustering and
strongest heterogeneity, often found in real networks,
lead to optimal navigability. The transport efficiency is
the best possible in this case, according to all efficiency
measures. Yet more remarkable is that this efficiency is
extremely robust with respect to even catastrophic dis-
turbances and damages to the network structure.

Complex networks thus appear to have the optimal
structure to route information or other media through
their topological fabric. No complicated and artificial
routing schemes or constructions, impossible in nature
anyway, turn out to be needed to route information opti-
mally through a complex network. Its geometric under-
pinning drastically simplifies the routing function, mak-
ing efficient the “dumb” strategy of transmitting infor-
mation in the right hyperbolic direction toward the des-
tination.

Does signaling in real networks, such as cell signaling
pathways or the brain, follow hyperbolic geodesics, and
if it does then what network perturbations might break
this signaling, potentially causing (lethal) diseases? To
answer these questions, one has first to map a real net-
work to its underlying space, finding the coordinates for
each node. In our recent work to reduce the routing com-
plexity in the Internet [56], we map the Internet to its hy-
perbolic space using statistical inference methods. These
methods work well, but require substantial manual inter-
vention, and do not scale to large networks. An inter-
esting open problem is thus to find constructive mapping
methods, e.g., deriving the underlying distances between
nodes from their similarity measures based on node at-
tributes and annotations in a given network.
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