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Supplementary Figures
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SUPPLEMENTARY FIGURE S 1: Testing the embedding method in synthetic networks (I). In a we show an example
of the local log-likelihood of node i (Eq. (25)), having the coordinates of all other nodes fixed at an intermediate step of the
mapping process. In b we show inferred angular coordinates vs. real ones for the 250 most connected nodes in a synthetic S1

network with the same properties as the real Internet: γ = 2.1, β = 2, N ≈ 24000, k̄ ≈ 5. The LMH kernel and Alg. 1 are used
for coordinate inference. Notice that both inferred and real angular coordinates correlate up to an arbitrary rotation.



3

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

k>19  algorithm 1

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

k>7  algorithm 2

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

k>5  algorithm 2

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

k>4  algorithm 2

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

k>3  algorithm 2

0 1 2 3 4 5 6
0

1

2

3

4

5

6

0 1 2 3 4 5 6
0

1

2

3

4

5

6

k>2  algorithm 2

real

in
fe

rre
d

a b

c d

e f

SUPPLEMENTARY FIGURE S 2: Testing the embedding method in synthetic networks (II). In a, we show the same
as in the bottom plot of Supplementary Fig. 1 for nodes of degrees k ≥ 20. All other plots (b-f) show the results of adding
layers of lower degree nodes using the second MLE wrapper with klcritic = 20. According to Alg. 2, nodes in newly added layers
infer their coordinates using the coordinates of nodes in existing layers, without running the MLE kernel, and the coordinates
of existing nodes do not change as new nodes are added.
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SUPPLEMENTARY FIGURE S 3: Testing the embedding method in synthetic networks (III). Empirical connection
probability based on the inferred node coordinates, compared to the connection probability used to generate the synthetic
network. The inset shows the details in the small distance region.
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SUPPLEMENTARY FIGURE S 4: Measuring β. Success ratio of greedy forwarding as a function of β for the Internet graph
mapping. We chose the value of β that maximises ps.
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SUPPLEMENTARY FIGURE S 5: Measuring congestion in the Internet. a standard normalized betweenness as a
function of the AS degree for shortest path forwarding and greedy forwarding. The solid line is a power law of exponent 1.2.
b normalized betweenness divided by number of routers in the AS, with source and destination ASs chosen with a probability
proportional to the number of routers in them.
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Supplementary Methods

MAPPING METHOD

To find our hyperbolic Internet map, we use the equivalence between the Einsteinian–H2 [40] and the Newtonian–
S1 [41] models. This equivalence establishes a relationship between the expected degree κ of a node in the Newtonian–
S1 model, and its radial coordinate r in the Einsteinian–H2 model (Eq. (7) in the main text). The angular coordinate
θ is the same in both models. Thus, for a given node i we aim to find its expected degree and angular coordinate,
{κi, θi}, that best match the Newtonian–S1 model. We then use the κ-to-r mapping to place nodes in the hyperbolic
plane according to the Einsteinian–H2 model.

Thanks to their equivalence, the Newtonian–S1 and Einsteinian–H2 models generate statistically the same network
topologies. However, the efficiency of greedy forwarding in the Einsteinian–H2 model is higher, because hyperbolic
geodesics are exceptionally congruent with the topologically shortest paths in scale-free networks [40, 42]. The reason
for this congruency is that the effective distance used as an argument of the connection probability in the Newtonian–
S1 is actually hyperbolic [40], and the Einsteinian–H2 model simply translates this effective distance to the real
hyperbolic one. For these reasons we prefer the Einsteinian–H2 model for routing purposes, although we use the
Newtonian–S1 one to find the Internet map. We could use directly the Einsteinian–H2 model for this purpose, but
the Newtonian–S1 model is technically simpler since the statistical inference in it can be performed independently for
the two variables κ and θ.

We first recall the Newtonian–S1 model, which generates networks according to the following steps:

1. Distribute N nodes uniformly over the circle S1 of radius N/(2π), so that the node density on the circle is fixed
to 1 [68].

2. Assign to all nodes a hidden variable κ representing their expected degrees. To generate scale-free networks, κ
is drawn from the power-law distribution

ρ(κ) = κγ−1
0 (γ − 1)κ−γ , κ ∈ [κ0,∞), (8)

κ0 = k̄
γ − 2
γ − 1

, (9)

where κ0 is the minimum expected degree, and k̄ is the network average degree [69].

3. Let κ and κ′ be the expected degrees of two nodes located at distance d = N∆θ/(2π) measured over the circle,
where ∆θ is the angular distance between the nodes. Connect each pair of nodes with probability p(χ), where
the effective distance χ ≡ d/(µκκ′), and µ is a constant fixing the average degree.

The connection probability p(χ) can be any integrable function. Here we chose the Fermi-Dirac distribution

p(χ) =
1

1 + χβ
, (10)

where β = 1/T is a parameter that controls clustering in the network. With this connection probability, parameter µ
becomes

µ =
β

2πk̄
sin
[
π

β

]
. (11)

The expected degree of a node with hidden variable κ is k̄(κ) = κ and, therefore, the degree distribution scales as
P (k) ∼ k−γ for large k.

To go from the Newtonian–S1 to the Einstenian–H2 models, we leave the angular coordinate θ unchanged, while
the radial coordinate of a node with expected degree κ is given by

r = R− 2 ln
κ

κ0
, (12)

where the radius of the hyperbolic disk containing all nodes is

R = 2 ln
[

N

πµκ2
0

]
. (13)
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General theory behind likelihood maximization

We now fit the real AS graph to the model. Specifically, given the measured AS graph, we aim to find the set of
coordinates {κi, θi}, i = 1, · · · , N , that best match the Newtonian–S1 model in a statistical sense. To do so, we use
maximum likelihood estimation (MLE) techniques. Let us compute the posterior probability, or likelihood, that a
network given by its adjacency matrix aij is generated by the Newtonian–S1 model, L(aij |γ, β, k̄). This probability is

L(aij |γ, β, k̄) =
∫
· · ·
∫
L(aij , {κi, θi}|γ, β, k̄)

N∏
i=1

dθidκi, (14)

where function L(aij , {κi, θi}|γ, β, k̄) within the integral is the joint probability that the model generates the adjacency
matrix aij , and the set of hidden variables {κi, θi}. Using Bayes’ rule, we find the likelihood that the hidden variables
take particular values {κi, θi} in the network given by its observed adjacency matrix aij

L({κi, θi}|aij , γ, β, k̄) =
L(aij , {κi, θi}|γ, β, k̄)
L(aij |γ, β, k̄)

=
Prob({κi, θi})L(aij |{κi, θi}, γ, β, k̄)

L(aij |γ, β, k̄)
, (15)

where

Prob({κi, θi}) =
1

(2π)N

N∏
i=1

ρ(κi) (16)

is the prior probability of the hidden variables given by the model,

L(aij |{κi, θi}, γ, β, k̄) =
∏
i<j

p(χij)aij [1− p(χij)]1−aij (17)

is the likelihood of finding aij if the hidden variables are {κi, θi}, and

χij =
Nk̄∆θij

β sin (π/β)κiκj
, (18)

∆θij = π − |π − |θi − θj ||. (19)

The MLE values of the hidden variables {κ∗i , θ∗i } are then those that maximize the likelihood in Eq. (15) or, equiva-
lently, its logarithm,

lnL({κi, θi}|aij , γ, β, k̄) = C − γ
N∑
i=1

lnκi +
∑
i<j

aij ln p(χij) +
∑
i<j

(1− aij) ln [1− p(χij)], (20)

where C is independent of κi and θi.

MLE for expected degrees κ

The derivative of Eq. (20) with respect to expected degree κl of node l is

∂

∂κl
lnL({κi, θi}|aij , γ, β, k̄) = − γ

κl
− β

κl

∑
j 6=l

p(χlj)−
∑
j

alj

 . (21)

The first term within the parenthesis is the expected degree of node l, while the second term is its actual degree kl.
Therefore, the value κ∗l that maximizes the likelihood is given by

k̄(κ∗l ) = κ∗l = kl −
γ

β
. (22)
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Since κ∗l can be smaller than κ0 in the last equation, we set

κ∗l = max
(
γ − 2
γ − 1

k̄, kl −
γ

β

)
. (23)

MLE for angular coordinates θ

Having found the MLE values for expected degrees κ, we now have to maximize Eq. (15) with respect to angular
coordinates θ. This task is equivalent to maximizing the partial log-likelihood

lnL(aij |{κ∗i , θi}, γ, β, k̄) =
∑
i<j

aij ln p(χij) +
∑
i<j

(1− aij) ln [1− p(χij)]. (24)

The first term in this equation involves only pairs of connected nodes, whereas the second term accounts for pairs
of disconnected ones. Since the connection probability p(χ) is a monotonously decreasing function of the effective
distance χ, the first term in Eq. (24) is large if pairs of connected nodes are placed close to each other. In contrast,
the second term is large if pairs of disconnected nodes are far apart. Therefore the optimal MLE solution will balance
both effects, and place connected nodes as close as possible while keeping disconnected ones as far as possible.

Unfortunately, the maximization of Eq. (24) with respect to the angular coordinates cannot be performed analyti-
cally. We thus have to rely on approximations. At their core lie MLE algorithms, or kernels, which we discuss first.
We present two such kernels, standard Metropolis-Hastings (SMH) [43], and our “localized” version of it (LMH).

MLE kernels

In the standard Metropolis-Hastings (SMH) algorithm, a node is chosen at random, and given a new angular
position chosen uniformly in the interval [0, 2π]. The change is accepted whenever the likelihood in Eq. (24) computed
after the change, Lnew [70], is larger than the likelihood computed with the old coordinate, Lold. Otherwise, the change
is accepted with probability Lnew/Lold. The SMH algorithm samples the angular phase space, and produces angular
configurations with a probability proportional to the likelihood. The SMH’s computational complexity depends on a
particular system to which SMH is applied. We find that in our case the number of node moves sufficient for SMH to
converge is O(N2), meaning that the total running time complexity is O(N3), since each move attempt involves the
O(N) computation of the likelihood change.

Our localized Metropolis-Hastings (LMH) algorithm is not MH per se. In fact it bears stronger resemblances
to extremal optimization and genetic search algorithms than to MH. We first define the local contribution ln Li of
node i to the total log-likelihood lnL in Eq. (24):

lnLi =
∑
j 6=i

aij ln p(χij) +
∑
j 6=i

(1− aij) ln [1− p(χij)], (25)

so that lnL = 1/2
∑
i lnLi. We can interpret function lnLi as the fitness of node i, which we can then use to maximize

the total likelihood. Specifically, in LMH nodes are visited in rounds, and during each round all nodes are visited
one by one. At each node visit, the node is moved to the angular position that maximizes its fitness ln Li, having
fixed the positions of all other nodes at that particular node visit. An example of the log-likelihood landscape that a
node sees during its move is shown in the top plot of Supplementary Fig. S1. The total number of rounds of all-node
visits needed for LMH to converge is of the order of the network average degree. Indeed, even though after each node
move, the fitness of other nodes changes, the node fitness is mostly affected by changes of coordinates of the node
neighbors, whose average number thus roughly determines the number of rounds. The maximization of the fitness of
a node takes O(N2) time, having fitness lnLi sampled at intervals with ∆θ = 1/N . Therefore for sparse graphs, the
overall computational complexity of LMH is O(N3).

Applied to the real Internet and synthetic Internet-like networks below, both SMH and LMH yield similar good
results. However, we prefer LMH since by its localized nature, it can be implemented in a distributed manner, an
important property for deployment in the real Internet. Even more importantly, with LMH, new-coming ASs can
compute their coordinates in a distributed manner without knowing the global Internet topology. Indeed, to compute
its coordinates using Eq. (25), a new-coming AS i has to know the status of connections only to its neighbors; the
status of connections between any two ASs other than i does not contribute to lnLi in Eq. (25). All results shown in
this paper are for LMH.
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First MLE wrapper

If we näıvly applied any MLE kernel to the Internet, we would have to wait forever for good results. We see in the top
plot of Supplementary Fig. S1 that the characteristic likelihood profile has abundant local maxima. Therefore an MLE
kernel is not guaranteed to converge to the global maximum in a reasonable amount of time. It is thus imperative to
find a heuristic procedure, i.e., an MLE wrapper, helping an MLE kernel to find its way towards the global maximum
without being trapped in local maxima. This procedure is equivalent to using all available information to make an
educated guess of the initial node coordinates.

Our MLE wrapping strategy is based on statistical independence of edges in our graphs. Thanks to this indepen-
dence, the coordinates of a set of nodes can be inferred based only on the partial information contained in a subgraph
formed by the nodes in the set, ignoring the rest of the network. Consider a small subgraph of the whole network, for
our purposes made of high degree nodes, and remove all nodes and connections not belonging to this subgraph. Since
edges in this subgraph are statistically independent of other edges, we can maximize the likelihood corresponding to
the subgraph, and infer the coordinates of the nodes in it based only on this partial information. If the subgraph is
small and dense enough, finding the optimal MLE solution is easy. Once this solution is found, we can add more nodes
to the network, and use the previously inferred coordinates as the initial configuration for the new MLE problem.
However, this method works only if the subgraph forms a single connected component. As explained in the main text,
this property holds for synthetic networks in our model, and for the real Internet [41].

Formally, let k1, k2, · · · , km, with k1 > k2 > · · · > km, be a set of predefined degrees, and let G(kl), l = 1, · · · ,m,
be the subgraphs formed by all nodes of degrees larger or equal to kl, plus all connections among them. We thus have
G(k1) ⊂ G(k2) ⊂ · · · ⊂ G(km), forming a hierarchy of nested subgraphs. The main idea behind our MLE wrapper
is to run the MLE kernel, either SMH or LMH, in iterations, starting with the smallest subgraph, and feeding the
coordinates inferred at each iteration to the MLE kernel at the next iteration.

This idea must be implemented with care. First, subgraph G(k1) is different from other subgraphs. Indeed, in
scale-free networks, all nodes of degrees larger than ∼ N1/2 are connected almost surely. Therefore all such nodes
would appear identical to the MLE kernel, which would thus place them all at the same location, something that we
have to avoid. To solve this problem, we remove all connections among nodes of degree larger or equal to k1 ∼ N1/2

and start the wrapper algorithm with the G(k2) iteration. Second, iterating from G(kl) to G(kl+1), we still need to
specify the initial coordinates of the nodes that belong to G(kl+1) but not to G(kl) [71]. While the assignment of
random coordinates to new nodes is possible, it is much more efficient to try to maximize the likelihood in G(kl+1)
from the very beginning. In other words, we assign to each new node i ∈ G(kl+1) \ G(kl) the coordinate maximizing

lnLi [G(kl)] =
∑

j∈G(kl)

aij ln p(χij) +
∑

j∈G(kl)

(1− aij) ln [1− p(χij)] (26)

We note that node i uses information contained only in G(kl) to get its initial coordinate. After all new nodes
corresponding to a given iteration are introduced and assigned initial coordinates, we apply the MLE kernel to the
resulting system. This heuristic MLE wrapping procedure is summarized in Alg. 1.

Algorithm 1 First MLE wrapper
activate nodes in G(k1)
assign random angular coordinates to nodes in G(k1)
remove links among nodes in G(k1)
for l = 2 to (# of layers) do

for j = 1 to (# of nodes in G(kl) not active) do
i← label of new node in G(kl) not active
if # of connections of i with nodes in G(kl−1) ≥ 2 then

activate new node i
assign to node i coordinate θi maximizing lnLi [G(kl−1)]

end if
end for
run the MLE kernel on the set of active nodes

end for

In the bottom plot in Supplementary Fig. S1 we show the test results for this procedure wrapping the LMH kernel,
applied to a synthetic Newtonian–S1 network generated with the parameters similar to the real AS graph. We observe
that the inferred coordinates are very close to the real ones, except for a global phase shift, which can take any value
in [0, 2π] due to the rotational symmetry of the model.
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Second MLE wrapper

As mentioned above, it is not necessary to consider the full graph to infer the coordinates of the most connected
nodes. We now use this observation to speed up the mapping process significantly. Specifically, we run our first MLE
wrapper up to a subgraph of a certain size, and then add the rest of the nodes assigning to them their coordinates
maximizing Eq. (26) without subsequent running the MLE kernel, see Alg. 2.

Algorithm 2 Second MLE wrapper
activate nodes in G(k1)
assign random angular coordinates to nodes in G(k1)
remove links among nodes in G(k1)
lcritic ← maximum layer with full MLE calculations
for l = 2 to (# of layers) do

for j = 1 to (# of nodes in G(kl) not active) do
i← label of new node in G(kl) not active
if # of connections of i with nodes in G(kl−1) ≥ 2 then

activate new node i
assign to node i coordinate θi maximizing lnLi [G(kl−1)]

end if
end for
if l ≤ lcritic then

run the MLE kernel on the set of active nodes
end if

end for

This modification speeds the overall mapping process because once the coordinates of the coordinates of a relative
small number of high degree nodes are inferred, the rest of the process takes O(N2) steps to complete. This im-
provement reduces the total running time of the Internet mapping to few hours on a standard computer. Another
practically important feature of this second MLE wrapper is that new-coming ASs compute their coordinates without
existing ASs changing their coordinates. In other words, once the AS coordinates are inferred, they stay static as the
Internet grows.

We apply this procedure up to nodes of degree 3. Nodes of degree 2 and 1 must be analyzed separately since all
nodes of degree 1, and 40% of nodes of degree 2 do not form any triangles. As a consequence, the MLE kernel cannot
reliably infer their metric attributes, i.e., their coordinates. Therefore we assign to these nodes the angular coordinate
of their (highest-degree) neighbors, which makes sense, especially for nodes of degree 1, since the only path to such
nodes is via their neighbors. Forwarding to such nodes is thus equivalent to forwarding to their neighbors.

The test results of this second MLE wrapper are shown in Supplementary Fig. S2. The top left plot shows the
inferred vs. real coordinates in the same synthetic network for nodes with degrees k ≥ 20 using the first MLE wrapper.
The other plots show the corresponding coordinates for nodes with degrees larger than or equal to 8, 6, 5, 4, 3 using
the second MLE wrapper with klcritic = 20. That is, the MLE kernel is not run for these nodes. We observe that the
inference quality does deteriorate for smaller degrees, but it is remarkable that even in the worst case a majority of
coordinates are correctly inferred.

As an additional test, we show in Supplementary Fig. S3 the empirical connection probability among nodes in
each subgraph using the coordinates inferred by the second MLE wrapper, compared to the connection probability
p(x) = (1 + x2)−1 used to generate the network. We observe a good agreement for high degree subgraphs, which
slightly deteriorates for low degree nodes located at large effective distances χ.

To map the AS graph, we used the LMH kernel wrapped with the second MLE wrapper with klcritic
= 20 and the

subgraph hierarchy defined by k1 = 300, k2 = 200, k3 = 160, k4 = 130, k5 = 110, k6 = 100, k7 = 90, k8 = 80, k9 = 70,
k10 = 60, k11 = 50, k12 = 40, k13 = 30, k14 = 20, k15 = 10, k16 = 9, k17 = 8, k18 = 7, k19 = 6, k20 = 5, k21 = 4,
k22 = 3.

Parameter estimation and finite size effects

Our model has three parameters: the exponent γ of the degree distribution, the average degree k̄, and the exponent
β of the connection probability.



11

Estimating γ

We estimate the exponent γ via the direct inspection of the degree distribution, yielding γ = 2.1.

Estimating N and k̄

The estimation of N and k̄ is more involved for two reasons. First, the Newtonian–S1 model generates nodes of
zero degree which are included in the computation of the average degree, k̄ =

∑
k=0 kP (k). However, in the real

Internet graph all nodes have non-zero degrees. Therefore we first have to estimate the number of nodes N in the
model, based on the number of nodes Nobs we observe in the real graph. The relationship between the two numbers
is

N =
Nobs

1− P (0)
, (27)

where P (0) is the probability that a node has zero degree in the model.
The second complication is due to finite size effects. These effects are particularly important when the exponent

γ is close to 2, which is the case with the Internet. Suppose we generate a finite size network of N nodes with our
Newtonian–S1 model with parameters γ, k̄, and β. Since the network is finite, there is a cut-off value for the expected
degree of a node, κc, which depends on the size of the network. The first moment of the distribution of expected
degrees ρ(κ) = κγ−1

0 (γ − 1)κ−γ with this cut-off is

〈κ(N)〉 = k̄

(
1−

[
κ0

κc

]γ−2
)
≡ k̄α(κ0, κc). (28)

In the thermodynamic limit κc → ∞ and α(κ0, κc) → 1. However, if γ is close to 2, the approach to these limits is
slow, and we have to take care of finite size corrections.

Accounting for these corrections, the expected degree of a node with hidden variable κ becomes

k̄N (κ) = α(κ0, κc)κ, (29)

with k̄∞(κ) = κ. This equation implies that the MLE of the hidden variable κ of a node of degree k changes from
Eq. (23) to

κ∗ = max
(
γ − 2
γ − 1

k̄,
1

α(κ0, κc)

[
k − γ

β

])
, (30)

while the average degree including zero degree nodes in a finite size network becomes

k̄N = [α(κ0, κc)]2k̄. (31)

If the average degree observed in the real Internet graph is k̄obs, our estimate of the parameter k̄ is then

k̄ =
1− P (0)

[α(κ0, κc)]2
k̄obs. (32)

Therefore, in order to estimate the values of N and k̄ for a finite network, we first have to estimate the values of P (0)
and α(κ0, κc). One can check [41] that

P (0) = (γ − 1)[α(κ0, κc)κ0]γ−1Γ(1− γ, α(κ0, κc)κ0), (33)

where Γ(x, y) is the incomplete Gamma function. We can also relate the maximum degree kmax
obs observed in the real

Internet to the expected degree cut-off κc via

kmax
obs = α(κ0, κc)κc. (34)

We thus have six unknown values—namely, N , P (0), κ0, κc, α(κ0, κc), and k̄—and the system of six equa-
tions (9,27,28,32,33,34) involving them. Substituting into these equations the given values of Nobs = 23752,
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k̄obs = 4.92, kmax
obs = 2778, and γ = 2.1 observed in the Internet, we compute numerically κ0 = 0.9, κc = 4790,

α(κ0, κc) = 0.58, and P (0) = 0.33, yielding N = 35685 and k̄ = 9.86.

Estimating β

To estimate β, we first compare clustering in synthetic networks with different β’s to the clustering observed in the
Internet, keeping all other parameters fixed. This procedure narrows down the possible values of β to β ∈ [1, 2]. We
then generate Internet maps for different values of β within this range, and perform hyperbolic greedy forwarding
in them. Supplementary Fig. S4 shows the success ratio of greedy forwarding as a function of β in this region. We
observe that the success ratio increases as β decreases, and then sharply drops at β ∼ 1. The value of β maximizing
the success ratio is β = 1.45, and we used this value in our final Internet map.
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DEALING WITH NEW-COMING ASs

In the main text we replay the AS Internet growth from January 2007 to June 2009 similar to [44]. Specifically,
we obtain 11 lists of ASs observed in the Internet at different dates as described in [44]. The AS lists are linearly
spaced in time with the interval of three months: time t = 0 corresponds to January 2007, t = 1 is April 2007, and
so on until t = 10, June 2009. We denote the obtained AS lists by At. The number of ASs in A0 is 17258, while the
numbers of new ASs in At′ with t′ = 1, 2, . . . , 10, but not in A0 are 806, 1614, 2389, 3103, 3973, 4794, 5434, 5843,
6207, and 6426. We then take our Archipelago AS topology [45] of June 2009, and for each t = 0, 1, . . . , 10 we remove
from it all ASs and their adjacent links that are not in At, thus obtaining a time series of historical AS topologies
Gt. We then embed G0 using the SMH kernel (24), but for each subsequent embedding of Gt′ with t′ > 0, we keep
the hyperbolic coordinates of ASs in Gt with t < t′ fixed, and compute coordinates for the new ASs using the LMH
kernel (25). That is, once an AS appears at some time t > 0 and gets its coordinates computed, using either the
SMH, t = 0, or LMH, t > 0, computations, the AS then never changes its coordinates for the rest of the observation
period. In Fig. 7 of the main text, we show the average success ratio ps and stretch s̄ for greedy forwarding in Gt.

Remarkably, we observe only minor variations of success ratio and stretch over more than 2.5 years of rapid Internet
growth. The success ratio does decrease, but by less than 1%. We thus conclude that greedy forwarding using our
hyperbolic AS map is quite robust with respect to Internet historical growth. Existing ASs do not have to recompute
their hyperbolic coordinates when new ASs join the Internet. Recomputations of all AS coordinates may be executed
to improve the greedy forwarding performance, but the time scale for such recomputations exceeds the time scale of
Internet historical evolution, i.e., years, thus exceeding by orders of magnitude the time scale of transient dynamics
of failing AS links and nodes, i.e., seconds or minutes. That is why the existing AS coordinates are essentially static,
and can stay the same for years.
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SENSITIVITY TO MISSING LINKS

It is widely known that the existing measurements of the Internet topology miss a number of AS links [46–48].
However, in view of the robustness of greedy forwarding performance with respect to link removals, one could expect
that its performance would be robust with respect to missing links as well. Furthermore, if our hyperbolic map is
used in practice, then greedy forwarding will see and use those links that we do not see. Therefore one can intuitively
expect that, in this case, the efficiency of greedy forwarding will be actually higher than reported in the main text,
simply because these links that we miss but greedy forwarding would not miss, would provide additional shortcuts
between potentially remote ASs. If so, the routing results presented in the main text should be considered as lower
bounds.

To confirm this intuition, we perform the following experiment. It is known that the majority of missing links in
the Internet are peer-to-peer links among provider ASs of moderate size [47, 48]. To emulate the missing link issue,
we thus remove a fraction (ranging from 0% to 30%) of links among nodes with degree above a certain threshold
(k = 5) from our AS graph. We then map these graphs with different numbers of emulated missing links to H2 as
described in the Mapping Method section to find hyperbolic coordinates for each AS. Using these maps with missing
information, we then consider two different greedy forwarding scenarios for each map:

1. In the first scenario, we navigate an AS graph mapped with a fraction of links removed, and compute the
success ratio of greedy forwarding in the graph. This scenario tries to mimic the missing links issue directly.
We have incomplete topology measurements of the real Internet, but we have no other option as to use these
measurements to map the Internet to its hyperbolic space, and study navigability with this map, which we know
miss some information.

2. In the second scenario, we use the hyperbolic map obtained with missing links, but we then add back those
removed links, and navigate the complete graph. This scenario is motivated by the observation that even though
our map is constructed with some links missing, these missing links will still be used by ASs attached to them
to forward information if this map is used in practice.

The results of these two scenarios are shown in Fig. 8 of the main text. As intuitively expected, our mapping is quite
robust with respect to missing links: the success ratio decreases by less than 5% even if up to 14% of links are removed
from the topology before we map it. Also as expected, the missing links, when added back, increase the success ratio.
That is, even though the map has been constructed using partial information, navigability improves when missing links
are considered. These results confirm that the routing results reported in the main text are in reality lower bounds
for the success ratio that can be achieved if our map is used in practice. In fact, one may somewhat paradoxically
expect that the more links are missed in the measured Internet topology we used for mapping, the better the success
ratio would be in practice, since according to Fig. 8, the success ratio improvement due to re-adding of removed links
tends to increase with the number of removed links.
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MAPPING ASs TO COUNTRIES

The AS-to-country mapping is taken from the CAIDA AS ranking project [47]. It uses two methods for this task.
The first method is IP-based. It splits the IP address space advertised by an AS into small blocks, and then maps
each block to a country using [72]. If not all IP blocks of an AS map to the same country, then the other, WHOIS-
based method is used, which reports the country where the AS headquarters are located according to the WHOIS
database [73]. Since large ASs have points of presence in many countries, they tend to map to multiple countries
using the IP-based method. Therefore, if we did not apply the WHOIS-based method to them, they would no longer
map to a single country. If we ignored such ASs, the angular distributions of the remaining ASs belonging to a given
country would be even more localised, including the US, EU, and UK ASs. In our hyperbolic map data, we release
the AS-to-country associations using both methods, IP+WHOIS-based and IP-based. The latter has no country
information for many ASs with conflicting country mappings.
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GEOGRAPHIC ROUTING

To perform standard geographic routing we first map each AS to a collection of geographic locations (characterised
by their latitudes and longitudes) using the IP-based method, and then find the centre of mass for each collection.
We thus obtain unique geographic coordinates for each AS. We then perform standard greedy forwarding over the AS
topology, computing geographic distances between ASs using the spherical law of cosines. For hyperbolised geographic
routing, we keep the AS angular coordinates equal to their geographic coordinates, but also, based on the AS degree,
we assign to each AS a radial coordinate, according to the relationship between node degrees and radial positions in
the three-dimensional Einsteinian model, and then perform greedy forwarding in this three-dimensional hyperbolic
space.
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TRAFFIC AND CONGESTION CONSIDERATIONS

We measure a proxy for the amount of traffic that ASs would handle under greedy forwarding. Since greedy
forwarding almost always follows shortest paths, we expect the traffic load on an AS under greedy forwarding be
almost the same as under shortest path forwarding, which we confirm in Supplementary Fig. S5 where we juxtapose
the normalized betweennesses of shortest path and greedy forwarding. To compute those, we select a large number
of source/destination AS pairs chosen uniformly at random among all ASs. We then find two paths for each AS pair
using shortest path and greedy forwarding. Normalized betweenness of a given AS is then the fraction of all paths
going through this AS. We observe in Supplementary Fig. S5 that the normalized betweennesses for shortest path
and greedy forwarding are almost identical as expected. We also observe in the top plot, that in agreement with the
previous studies on this subject, e.g. [64], the normalized betweenness grows as a power law of the AS degree. This
observation may create an impression that high-degree ASs may suffer from traffic congestion problems. However,
this impression is wrong not only because of the results in [65], but also because of the following considerations.

In the real Internet, ASs are not singular nodes but differently sized networks composed of (many) routers. The
size of an AS, measured by the number of routers in it, is roughly proportional to the AS degree [66, 67]. ASs of
different size generate and consume different volumes of traffic. Also, a larger AS can handle larger transit traffic
volumes without being congested. These two observations suggest the following modifications to the top plot in
Supplementary Fig. S5. First, we model traffic with the more realistic assumption that the amount of traffic an AS
generates or consumes is proportional to the AS size. That is, instead of choosing source and destination AS pairs
at random, we chose each AS with a probability proportional to the number of routers in the AS using the data
from [67]. Second, we divide the normalized betweenness value for each AS by the number of routers in the AS, thus
estimating the per-router traffic load. The result shown in the bottom plot of Supplementary Fig. S5 demonstrates
that the important large ASs are, in fact, less prone to congestion problems.
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Supplementary Notes

AS-LEVEL ROUTING

Our approach belongs to a wide class of approaches proposing to reduce routing granularity to the level of Au-
tonomous Systems [49–61]. The key difference between ours and the existing approaches in this class is that the latter
require some form of routing on the dynamic AS graph. As soon as the AS topology changes, new AS routes must
be recomputed, so that routing communication overhead is unavoidable in this case. In our case such recomputations
are not needed since as we show in the main text, the efficiency of greedy forwarding sustains in presence of failing
AS nodes and links, even though ASs do not exchange any information about topology modifications, and do not
change their hyperbolic coordinates, i.e., even though they do not incur any communication overhead. A bulk of
routing overhead in the Internet today is due to traffic engineering and multihoming in the first place [62, 63]. How
the AS-level routing class of approaches helps to deal with and reduce this overhead is discussed in the literature cited
above.
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