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ABSTRACT
We attempt a systematic quantitative comparison of currently
available geolocation service providers. We add depth to
previous contributions by analyzing inconsistencies across
databases for different geographic (RIR) regions and orga-
nization (Autonomous Systems) types. We compare results
on a country granularity, using a methodology that compares
each database against the majority vote across all databases
with answers for a given IP address. On a finer granularity
than country, rigorous formal comparison gets trickier. Un-
like the discrete country labels, coordinates can have nom-
inally different values yet still represent approximately the
same location, We compare the databases at a lat-long gran-
ularity using an 80 km threshold for two lat-longs coordi-
nates to be in the same geographic region. We describe our
process for selecting this threshold, and our centroid-based
algorithm for comparing database lat-long results against a
majority of responses from the set of databases we evalu-
ated. While not a foolproof methodology – the databases
could all be converging to the same wrong answers over time
– it assumes that database providers successfully work to-
ward improving the accuracy of their databases over time.
In the absence of substantial ground truth, our method of-
fers a systematic way to study the geolocation databases to
reveal insights, summarized at the end of the paper. We in-
tend to re-run the comparison experiment using additional
databases later in 2011; we welcome constructive feedback
on the methodology so we can further improve our next ex-
periment.

1. INTRODUCTION
Governments, researchers, and commercial entities share

an interest in mapping Internet resources to physical loca-
tions, a process termed geolocation. For example, govern-
ments use this data to prepare and plan for adverse events
as well as to tax and regulate. Academics use this data to
more accurately capture the geographic deployment and uti-
lization of Internet resources. Commercial interests use this
data to provide better localized services, target pricing or
∗Support for this work is provided by DHS N66001-08-C-2029 and
NSF 05-51542.

ads, enforce digital rights management restrictions or data
privacy requirements, and assign incoming requests for con-
tent to the nearest data center storing it.

One can broadly categorize geolocation techniques based
on the main source of knowledge driving the geolocation:
delay, database, or topology. Delay-based methods typically
gather delay data from a collection of known geographic
landmarks and use that knowledge to triangulate a target IP
address [29, 34, 31, 37, 40, 30]. Database-driven methods
collect and aggregate static mapping information from pub-
lic and private databases [36, 32]. Topology-driven meth-
ods infer geolocations by assuming topologically close ad-
dresses are physically nearby each other [33, 34].

These techniques involve non-trivial hurdles that make
building one’s own service prohibitively difficult for the av-
erage user. Private databases, such as a web site’s listing
of its users’ IP addresses and contact information, are gen-
erally inaccessible. Public databases, such as the WHOIS
[27] and DNS [35], are difficult to parse, hard to keep cur-
rent, and also may have access controls. Topology and delay
data require extensive measurement infrastructure, and are
challenging to collect, process, and interpret. Therefore, the
majority of users rely upon third-party geolocation services.

Most geolocation databases, both publicly [14, 16, 19, 25]
and commercially available [6, 1, 11, 7, 8, 17, 18, 9, 10],
map blocks of consecutive IP addresses to geographic loca-
tions, usually at the country level. Some providers support
city mappings and/or resolve to latitude and longitude coor-
dinates. Most services offer little if any documentation on
which techniques they employ in the creation of their geolo-
cation databases, thus complicating systematic attempts at
evaluation and comparison. Previous comparison attempts [38,
39] have also noted that the lack of a large and diverse set of
ground truth further challenge rigorous comparison.

In this study we attempt a systematic quantitative compar-
ison of currently available geolocation service providers. We
compare only the geographic components of the participat-
ing databases; most providers offer additional features that
we did not evaluate. We add depth to previous contributions
by analyzing inconsistencies across databases for different
geographic regions and organization (Autonomous Systems)



types. We use Regional Internet Registries (RIR) delegation
data to classify addresses by the RIR to which the address
block was first delegated. We infer the organization type
corresponding to an IP address based on the characteristics
of its origin AS in the AS graph, building on the approach
in [28]. Section 2 describes previous comparative geoloca-
tion studies. Section 3 discusses the datasets we used in our
work. We present data analysis and results in Section 4 and
conclude in Section 5.

2. RELATEDWORK
Despite the unavoidable obstacles to systemic compari-

son, several research groups have made efforts to evaluate
geolocation services. Siwpersad et al. [39] examined the
geographic resolution of MaxMind GeoLite [19] and Hexa-
soft [8]. They calculated the distance between locations as
determined by each service and found that for 50% of ad-
dresses the difference was smaller than 100 km. They also
compared the database locations with inferences from active
measurement data collected by PlanetLab nodes probing 39
landmarks. The authors inferred geographic locations from
the collected data using a constraint-based approach with a
series of confidence regions. They found that for 90% of
probed IP addresses, their location fell outside the confi-
dence regions estimated by active measurements.

Shavitt et al. [38] examined HostIP [14], IP2Location
[8], IPInfoDB [16], MaxMind GeoIP [18], and Software77
[25]. They evaluated these databases through the lens of
the DIMES Project’s [26] Points of Presence (PoP) level
map. The authors attributed IP addresses to PoPs using their
own interface-graph-based inference algorithm [38], and as-
sumed that IP addresses in the same PoP should map to
the same geographical location. They found that MaxMind
GeoIP, GeoBytes, and Digital Envoy placed between 74%
and 82% of a PoP’s IP addresses within 1 km of each other
while for HostIP the percentage was slightly less (57%). To
compare across databases, Shavitt et al. defined PoP coordi-
nates as the median latitude and longitude of all the coordi-
nate values found in all databases for all IP addresses at the
given PoP. They considered two levels of proximity: a “city”
range (40 km), and a “region” range (500 km). For IPli-
gence, MaxMind GeoIP, and IP2Location, the probability of
identifying the location of an IP address within the “city”
range of its PoP ranged between 62% and 73%, while for
GeoIP, HostIP, and Digital Envoy it was between 33% and
47%. MaxMind GeoIP placed over 80% of IP addresses,
while Geobytes, HostIP, and Digital Envoy placed 48% to
almost 60% of IP addresses into the PoP “region” range.

3. DATA SETS

3.1 Geolocation Databases
Our goal was to include as many geolocation databases as

possible into this study. However, despite our best efforts,
we could not obtain data from all the databases we know

about. GeoBytes [7] and IP2location [8] did not respond to
our inquiries. Quova [9] and Akamai [6] were prohibitively
expensive, requesting more than $10,000 a year for their ser-
vices. We used free services from Software77 [25], Max-
Mind GeoLiteCity [19], HostIP [14], and IPInfoDB [16] and
purchased access to Cyscape [1]. CAIDA has an ongoing
research agreement with Digital Envoy [11] as our primary
geolocation data provider.

In this paper we refer to the database with the name of the
organization providing it, e.g., NetAcuity is labeled Digital
Envoy. Table 1 lists free and commercial databases evalu-
ated in this study and their basic statistics: the date of the
database snapshot; the cost of service; the percentage of
the IPv4 address space covered (relative to the range dele-
gated in the RIR delegation files, described in Section 3.1.1);
the number of unique address blocks; and the numbers of
countries, cities, and latitude/longitude values found in each
database.

RIR delegation files, though never intended as a geoloca-
tion service, are included in the Table 1 as a baseline. Soft-
ware77’s database is essentially a processed version of the
RIR delegation files. Of the databases examined, HostIP
covers the smallest fraction of the IPv4 address space be-
cause this free, open database is populated by volunteers
submitting their geographic locations. IPligence is the least
expensive commercial database among those of our study.

We did not receive a full dump of Cyscape’s geolocation
database, so we sampled its database to infer the full table
using the blocks from the largest two other databases: IPli-
gence [17], and MaxMind GeoIP [18]. If geographic an-
swers for two contiguous blocks were identical, we merged
these blocks into a single larger block; if the answers for
the first and the last address of a particular block differed,
then we subdivided the block further until every address in a
block had the same geolocation mapping.

IPligence’s database had a larger number of unique cities
than unique lat-long coordinate pairs, due to some typograph-
ical variance in city names. For example in addition to Up-
plands Vasby we also found Upplandsvasby and Upplands-
Vasby. In a few cases many suburb names shared lat-long
coordinates, e.g., Kungsholmen, Stockhom, Bandhagen, Jo-
hannehov, Johanneshov, Stochholm, and Stockholm are all
part of Stockholm City and share 59.33, 18.05.

MaxMind GeoLite is a publicly available less accurate
version of MaxMind GeoIP. As described on their web page,
IPInfoDB derives its results largely from the MaxMind Geo-
Lite dataset [15], and the two databases performed indistin-
guishably for most of our metrics. Therefore, we have ex-
cluded IPInfoDB data from our plots; the reader can safely
assume its answers are the same as those of MaxMind Geo-
Lite.

Digital Envoy’s Netacuity1 database contains the largest

1Digital Envoy also offers NetAcuity Edge, which relies on anony-
mous user supplied data from some of their partners, combined
with infrastructure targeting. We hope to test this database in our
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Table 1: Geolocation service provider database statistics.
Database cost1 date addr2 blocks countries cities lat,long
RIRf - 2010.10.31 100.0% 105,380 229 - -

Software77f - 2010.12.01 99.5% 105,334 229 - -
HostIPf - 2010.10.04 15.9% 780,287 216 - 23,906
IPligence $ 2010.10.26 95.7% 3,155,326 232 59,194 56,353
Cyscape $$ 2010.08.31 96.8% 54,788 234 - -
MaxMind GeoIP $$$3 2010.12.01 100.0% 5,774,006 239 128,368 130,707

MaxMind GeoLitef -4 - - - - - -
IPInfoDB5

f - 2010.12.01 100.0% 3,533,709 228 113,209 115,950
Digital Envoy $$$$ 2010.12.02 100.0% 6,082,327 241 33,247 33,195

Indented databases are derived from the database in the row above.
1 cost of unlimited geolocation for one year: $ = $1-$300 $$ = $300-$900 $$$ = $900-$1800 $$$$ = $1800+
2 out of RIR delegated addresses
3 $370 site license one month updates, $90 per month of updates thereafter
4 IPInfoDB is almost indistinguishable from MaxMind GeoLite and is not individually displayed in the rest of the paper.
f marks the free datasets

number of address blocks, mapping IP addresses into loca-
tions at the finest granularity. MaxMind’s GeoIP database
has only 4.2% fewer blocks than the Digital Envoy one, but
maps addresses to four times as many unique cities. How-
ever, as we will discuss in Section 4, this additional granular-
ity at the city level does not result in a performance benefit
that was captured by our testing.

3.1.1 Regional Internet Registries Breakdown
The Regional Internet Registry (RIR) delegation files [20,

21, 22, 23, 24] provide a regional baseline for our compar-
ative study since each RIR is responsible for a certain geo-
graphic region: AfriNIC for Africa; ARIN for the United
States, Canada, and several parts of the Caribbean region;
APNIC for Asia, Australia, and neighboring countries; LAC-
NIC for Latin America and parts of the Caribbean region;
and RIPE for Europe, the Middle East, and Central Asia.
We limited our study to the addresses covered by address
blocks in RIR delegation files. To determine which RIR del-
egated a given address, we downloaded and parsed the dele-
gation files from October 31, 2010.

Figure 1 displays the breakdown of the whole IPv4 ad-
dress space explored in our study and of each database ad-
dress blocks in RIR delegations. The leftmost column is a
baseline showing the percentages of addresses in the evalu-
ated address space delegated by each registry. All remaining
columns show the percentages of blocks in each geolocation
database by RIR geographic region. Comparing these per-
centages to the baseline, we notice that databases subdivide
the address space into blocks unevenly, sampling different
geographic regions with blocks of different average sizes.
The majority of databases have a disproportionately large
number of blocks from RIPE (Europe), reflecting a higher

next experiment.
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Figure 1: Database breakdown by RIR. Most databases
have more blocks from RIPE NCC than other regions, re-
flecting the higher number of connected countries in the
European region.

number of countries in that region and a necessity to use
blocks of smaller average size for these countries. In con-
trast, the fraction of APNIC region blocks is smaller then the
fraction of addresses in this region for almost all databases
– meaning that these geolocation databases have relatively
larger address blocks for Asia, Australia, and neighboring
countries. Finally, block sizes used by Cyscape to cover
the ARIN region are larger then those by other geoloca-
tion providers, therefore the fraction of ARIN blocks in the
Cyscape column is disproportionally small.

3.1.2 Organizational Breakdown
In order to analyze whether some geolocation databases

perform better for certain organization types than others, we
classified BGP-announced address blocks by organization
type. First, we determined origin ASes for address space

3



0 10 100

customer degree

0

10

100

pr
ov

id
er

 d
eg

re
e

1 - 2 enterprise
3 - 8 enterprise
9 - 26 enterprise
1 - 2 small transit
3 - 8 small transit
1 - 2 content provider
3 - 8 content provider
enterprise
small transit
large transit

Degree clustering for known AS
Routeviews 2 and RIPE RRC12 2010/01/29

(a) Density plot for the training set of 50 ASes with manually
drawn bounding boxes that separate most ASes of a given type
from other types.
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(b) Density plot for the full AS dataset mapped on the boundaries
defined from the training dataset.

Figure 2: Classification of ASes into four types: Enter-
prise Customers, Content/Access/Hosting Providers, Small
Transit Providers, and Large Transit Providers.

blocks probed in our study using tables from the Route Views
database [4] and RIPE NCC [3] Border Gateway Protocol
(BGP) collectors from the January 29, 2010.

Next, following the approach in [28], we considered four
classes of ASes: Enterprise Customers (EC), typically or-
ganizations, universities and companies at the edge com-
prised of mostly users; Content/Access/Hosting Providers
(CAHPs), also at the edge, but typically provide content
and/or Internet access (e.g. DSL, cable modems, etc); Small
Transit Providers (STP), which provide transit to smaller
ASes, in addition to any content and access services, but pur-
chase transit for some routes from a large Transit Provider;
andLarge Transit Providers (LTP), which provide the same
services as the STP, but have sufficient topological coverage
(reach) that they do not need to pay any provider for transit.

In [28], Dhamdhere and Dovrolis manually classified 50
ASes creating a training set and classification rules that can

    RIRfaddresses
RIRf Softf HostIPf  IPlig

blocks
Cys MaxG MaxLf DigE

providers

0

0.2

0.4

0.6

0.8

1

fr
ac

tio
n 

ad
dr

es
se

s/
bl

oc
ks

CAHP
EC
LTP
STP
mixed
none

Number of Blocks 
by organization type

Figure 3: Database breakdown by organization type. Al-
most 28% of addresses and 34% of RIR blocks are not yet
announced and so classified as None. HostIP, IPligence,
Maxmind, and Digital Envoy have fewer then 2% of their
blocks in this category, reflecting understandably greater
attention on the part of geolocation providers to the actu-
ally routed address space.

be applied to a larger population. For a sample of ECs,
they picked well-known universities and corporations. For
STPs, they selected transit providers that are mostly regional
in terms of their coverage and customer size. For CPs and
AHPs, they picked well-known content providers, hosting
sites, and large broadband/dial-up residential and/or busi-
ness access ISPs.

For each AS, both in the training set and in the full set,
we determined the number of its customers and providers
as inferred in the January 29, 2010 version of CAIDA’s AS
Rank [2] AS Relationship dataset. Using the training set, we
selected boundaries separating AS types in the two-dimensional
space with customer degree on the X-axis and provider de-
gree on the Y-axis (Figure 2(a)). We then mapped the full
set of 35577 ASes onto those boundaries (Figure 2(b)). Our
categories are essentially regions of this two-dimensional
(customer degree, provider degree) space, established from
a ground truth sample of 50 well-known ASes.

Figure 3 presents the breakdown of the whole IPv4 ad-
dress space explored in our study and of each database ad-
dress blocks by organization type. Similar to Figure 1, the
leftmost column is again a baseline showing the percentages
of RIR addresses in the tested address space announced by
ASes of different types. The remaining columns show the
percentages of blocks announced by different organization
types for the compared geolocation databases. Note that our
classification of ASes is based on the BGP tables and there-
fore available only for routable addresses. However, almost
28% of addresses and 34% of blocks in RIR files are dele-
gated, but not yet announced in the BGP tables. We labeled
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Table 2: Ground Truth set statistics.
Database date addr1 countries cities lat,long
PlanetLab 2010.12.03 1,067 (0.0%) 1 - 397
French networks 2010.12.24 6,010,880 (0.2%) 1 2,694 2,680
US Tier 1 2011.01.27 23,644 (0.0%) 28 133 133

1 out of RIR delegated addresses

these addresses as none. Also, some delegated blocks be-
come split and announced by organizations of different type
according to our classification. These blocks are labeled as
mixed.

As noticed in Section 3.1, Software77’s database is an im-
mediate progeny of the RIR delegation files. Therefore, the
breakdowns of their blocks by organization types are very
similar. In all other databases in our study, the percentage
of the unclassified blocks (none) is much lower because un-
derstandably, geolocation providers focus their attention on
mapping the actually routed address space.

HostIP, IPligence, Maxmind GeoIP and Digital Envoy have
50% or more of their address blocks classified as LTP or
STP, in contrast to less than 16% of such blocks in RIR
data. Transit-providing organizations can typically justify
sizable allocations from the RIRs, thus their fractions are
much larger in the leftmost “RIR addresses” column than in
the next “RIR blocks” column. Large transit providers also
usually cover a wide geographic region, the largest of them
being present on at least three continents. They suballocate
parts of their address space to their customers in different ge-
ographic locations. This expansive geographic reach means
that geolocation providers have to cut their address space
into smaller and smaller blocks in order to capture the re-
sulting geographic diversity.

We use this classification of address blocks to compare
geolocation databases as a function of inferred organization
(AS) type.

3.2 Calibration Datasets

3.2.1 Ground Truth Data
Table 2 lists the three separate ground truth datasets we

used as a baseline for our comparisons. PlanetLab is a glob-
ally distributed set of computers available as a testbed for
computer networking and distributed systems research. Plan-
etLab publishes latitude and longitude coordinates of its 398
participating sites [13]. Freebox provides a list of French
ADSL networks by geographic region [12]. Finally, a large
U.S. transit provider gave us a full dump of their DNS host-
name to IP address mappings and the heuristic to map the
names to geographic locations.

3.2.2 Archipelago Round Trip Time Datasets
As additional calibration data, we used Round Trip Time

(RTT) data collected in the course of CAIDA macroscopic

IPv4 topology measurements on the Archipelago infrastruc-
ture [5]. Ark monitors continuously probe the routed IPv4
address space recording RTT values from each responding
hop along the forward path.

RTT is the amount of time it takes for a probe packet to
be sent from a monitor to a target address, the target to gen-
erate a reply, and that reply to return to the monitor. Many
factors that a monitor cannot observe affect the RTT – from
congestion delay to indirect paths – thus adding noise to the
recorded RTT value. Nevertheless, in Section 4.4 we discuss
how we estimate the expected value of RTT, given the known
location of our Ark monitor and the latitude/longitude loca-
tion of the target address provided by each database. We then
compare the estimated and actually observed RTT values.

4. ANALYSIS
To compare participating providers, we tried to geolocate

every IPv4 address in an RIR delegation and performed four
evaluations: consistency of country-level resolution; consis-
tency of lat/long coordinate resolution; comparison with a
limited ground truth sample; and calibration against mea-
sured RTT. All evaluations included only resolved addresses,
i.e., if a database did not have an answer for a given ad-
dress, then we excluded this address from all counts for this
database.

4.1 Consistency of IP-to-country Resolution
Since we lack ground truth for the full dataset, we evalu-

ated the consistency of the country-level resolution by com-
paring the location provided by a given database with the
location provided by the majority of the databases, and then
counting incidents of each database agreeing or disagreeing
with the majority answer.

To have a successful election of the majority answer, there
must be at least two databases resolving an address, and one
country must receive more votes than others. We determined
the majority answers from the databases of the six providers
listed in Table 1. We excluded MaxMind GeoLite and IPIn-
foDB from the election process since they both derive from
MaxMind GeoIP and counting all three would skew the ma-
jority answers toward the MaxMind GeoIP version.

We found that for 94.5% of addresses, a majority of databases
were able to agree on a single country, and for 1.2% there
was a tie. As shown in Figure 4, all but one (IPligence) ge-
olocation databases in our study agreed with the majority
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Table 3: Pairwise country comparison between databases. The number in each cell is the percentage of addresses
for which the country determined by the row database matched the country provided by the column database. For
example, the RIR data matched 99.9% of Software77’s country-level answers, but Software77 only matched 99.4%
of RIR’s country-level answers (since Software77’s database is a little smaller). HostIP’s low agreement with other
databases is due to its small size, while IPligence answers are indeed different from other databases.

RIR Soft HostIP IPlig Cys MaxG MaxL DigE avg1

RIRf - 99.9 88.9 89.3 93.6 94.1 94.2 91.8 93.8
Software77v

f 99.4 - 88.8 88.6 93.0 93.5 93.6 91.2 91.6
HostIPf 14.1 14.2 - 13.9 15.4 14.4 14.4 14.9 14.6
IPligencev 85.4 85.3 83.8 - 89.3 89.5 89.6 86.2 87.6
Cyscapev 90.7 90.6 94.2 90.4 - 93.2 93.3 95.7 92.5
MaxMind GeoIPv 94.1 94.0 90.9 93.5 96.2 - 99.8 94.9 94.7

MaxMind GeoLitef 94.2 94.1 91.0 93.6 96.3 99.8 - 94.9 95.8
Digital Envoyv 91.8 91.7 93.9 90.0 98.8 94.9 94.9 - 93.9
average1 92.3 90.4 90.3 90.6 94.3 92.8 94.3 92.0 -

color key 0-59 60-69 70-79 80-89 90-100

1 average is only calculated across v voting databases
v databases used in the calculation of the average
f free databases

answer in more than 95% of cases. MaxMind GeoLite had
the lowest disagreement with the majority (0.9%), followed
by Cyscape with 1.6%. IPligence had the highest disagree-
ment ( 5.7%) with the majority on country determinations.
Country identification from RIR delegation files disagreed
with the majority answer for 4.4% of addresses, suggesting
the prevailing majority of addresses are typically being used
in the country to which they were delegated.

Pairwise disagreements between databases are shown in
Table 3. Each number is a percentage of the row database’s
addresses that had a matching country in the column’s database.
The corresponding average percentages of pairwise agree-
ments are in the last column and the last row. We excluded
the RIR data, HostIP, and MaxMind GeoLite from calcula-
tion of the averages: HostIP because it is too small, and RIR
and MaxMind GeoLite since they would bias upward the
influence of Software77 and MaxMind GeoIP, correspond-
ingly.

HostIP typically matched 14-15% of other databases’ an-
swers, while other databases matched 84-94% of HostIP’s
entries. This disparity is the result of HostIP’s small size.
Next, IPligence had the lowest agreement with others, match-
ing on average only 87.6% of other databases’ answers. Max-
Mind GeoLite matched the largest percentage of entries, 95.8%
on average.

Figure 5 explores the consistency of IP-to-country map-
ping across geographic regions (5(a)) and organization types
(5(b)). For each database, two columns are depicted, the
first one (marked with A) shows the breakdown for the an-
swers agreeing with the majority answer, while the second
one (marked with D) represents the breakdown of disagree-
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Figure 4: Agreement of each database with the majority
answers for IP-address-to-country mappings. The value
at the top of each column is the percent of addresses for
which this database disagreed with the majority. A super-
script v marks providers voting in the country election pro-
cess.
ing answers. To enable comparison of breakdowns for agree-
ment and disagreement columns, we normalize each column
to 100% (otherwise the A column, containing > 90% of
addresses for each provider, would dwarf the D column).
Generally, for each database, the A column’s breakdown
matches the overall distribution of addresses included in this
database.

Considering the breakdown by geographic regions (Fig-
ure 5(a)) we notice that the RIR database and its progeny
Software77 strongly correlate in how they disagree with the
majority, having most inconsistencies for addresses in the
RIPE region. HostIP, Cyscape and Digital Envoy also have
the largest fractions of their disagreements for RIPE addresses,
but with increased fractions for ARIN addresses. In contrast,
both MaxMind databases disagree with the majority primar-
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Figure 5: Consistency of country-level resolution. These graphs show the breakdown of addresses for which each database
agreed (A column) or disagreed (D column) with the majority vote. To enable comparison between the breakdowns of
agreement and disagreement columns, each column is normalized by the total number of addresses that it represents,
rather then by the total number of addresses from the given provider. Figure 4 shows the percentage of data represented in
the Disagreement columns.

ily for addresses in the ARIN region, while IPligence has the
largest fraction of disagreements for addresses in the APNIC
region.

The breakdown by organization types (Figure 5(b)) shows
that both MaxMind databases have disproportionately more
inconsistencies with the majority answers for STP addresses.
For all other providers the breakdowns of Agreement and
Disagreement columns approximately match.

4.2 Consistency of IP-to-coordinates resolution
On a finer granularity than country, rigorous formal com-

parison gets trickier. Unlike the discrete country labels, co-
ordinates can have nominally different values yet still repre-
sent approximately the same location, We developed a method
that we admit is imperfect, but in the absence of ground
truth, gives us a systematic way to explore the databases and
analyze the consistency of their latitude/longitude answers.

For each IP address, we looked up its coordinates in the
HostIP, IPligence, MaxMind GeoIP, and Digital Envoy databases.
(As for our country-level analysis, we did not include an-
swers from IPInfoDB and MaxMind GeoLite, since they are
essentially subsets of MaxMind GeoIP.) By our definition,
the resulting coordinate points obtained for a given IP ad-
dress from different databases form a cluster if they are all
within a certain threshold T distance of each other. Points
can belong to more than one cluster. A winning cluster con-
tains the largest number of points. For each winning cluster,
if there is one, we find its centroid, that is the point whose co-
ordinates are the average coordinates of all members of this
cluster. We consider this centroid position of an IP address as
the yardstick against which we compare coordinate locations
given for this address by individual databases. While not a
foolproof methodology – the databases could all be converg-
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Figure 6: Up to 11.5 km, the majority of winning clusters
are formed with only two members. After that point, the
majority of clusters have three or more members and the
rate of adding new clusters slows. The last jump in two
member clusters is at 77.7 km. We selected our threshold
value T = 80 km to include these addresses.
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Figure 7: CDFs of distances between database-provided
geolocations and the winning cluster’s centroid. For Dig-
ital Envoy, 93% of IP addresses with lat-long coordi-
nates were within 40 km of the winning cluster centroid.
The corresponding percentages for MaxMind GeoIP, IPli-
gence, and MaxMind GeoLite were 78%, 78%, and 73%,
respectively. HostIP only had a coordinate in the win-
ning cluster for 8% of addresses, 67% of which were within
40 km of the winning cluster’s centroid.

ing to the same wrong answers over time – it assumes that
database providers successfully work toward improving the
accuracy of their databases over time.

First, we examined how different values of T affect the
clusterization. Figure 6 shows that for small thresholds T .
11.5 km, the majority of clusters contain only two members.
Three-member clusters begin to emerge at T & 1 km and be-
come the majority for T & 11.5 km where the rate at which
new addresses join clusters slows as a function of T .

We selected T = 80 km for our comparative analysis
based on the following considerations. For a given address,
a two-member coordinate cluster means that only two (out
of possibly up to four) coordinate locations are sufficiently
close to each other. In this case, the centroid location is
the arithmetic mean of their coordinates. The decline in
the number of the two-member clusters (starting at T &
11.5 km) indicates that the three-member clusters are be-
ing predominantly formed by adding a third point to what
was previously a two-member cluster. Correspondingly, the
centroid location shifts away from the previous arithmetic
mean of the two close locations toward the third, more dis-
tant point that merges into this cluster. However, we con-
sidered 11.5 km too small to delineate a meaningful geo-
graphic region, e.g., a medium size city. The largest thresh-
old which noticeably increased the number of two-member
clusters was T ' 77.7 km. Therefore, we chose T = 80 km

to include these clusterized addresses. This range is consis-
tent with a size of a large city-metropolis. For comparison,
Shavitt et al. [38] used ranges of 40 km as “city range” and
500 km as “region range”.

Using the selected threshold of 80 km, we were able to
find winning clusters for ∼80% of probed addresses and
determined the positions of their centroids. Next, for each
database, and for each address in a given database, we calcu-
lated the distance between the latitude-longitude coordinates
provided by this database for this address, and the position of
this address’ winning centroid (if there was one). Although
the lat-long coordinate answers provided by MaxMind Geo-
Lite did not participate in determining the winning clusters,
we included its results for comparison with other “voting”
databases.

Figure 7 plots the cumulative distribution functions (CDFs)
of the calculated distances from centroids. Each CDF is nor-
malized by the number of addresses with winning clusters
for this particular database, not as the percentage of all ex-
amined addresses. For 93% of the addresses for which Dig-
ital Envoy had lat-long coordinates and a winning cluster
existed, the coordinates were within 40 km of the winning
cluster centroid. The corresponding percentages for Max-
Mind GeoIP, IPligence, and MaxMind GeoLite were 78%,
78%, and 73%, respectively. Of the 8% of all addresses for
which HostIP had a coordinate in the winning cluster, 67%
were within 40 km of the winning cluster’s centroid.

Figure 8 further elucidates the distributions of distance
between a given database’s coordinate location and the cen-
troid of the winning cluster for an examined answer. In these
plots the thin vertical lines spread between the 10th and 90th
percentiles, the ends of color bars mark the 25th and the 75th
percentiles, and the black horizontal mark inside each color
bar indicates the 50th percentile.

Figure 8(a) presents the breakdown by geographic regions
as determined by RIR delegations. All databases located
50% of APNIC addresses within 3 km of the centroid, but
the variance for those addresses is noticeably larger than the
variance forARIN addresses – red bars are longer than green
bars for all databases except for Digital Envoy. (Note that
Digital Envoy had the tightest variances for all geographic
regions, placing 75% of addresses within 10 km and 90%
within 20 km of their winning centroids in all geographic re-
gions.) IPligence and both MaxMind databases geolocated
75% of the ARIN addresses within 10 km of their winning
cluster centroids. In contrast, HostIP located 25% of ARIN
addresses further than 100 km from the centroid. We found
the greatest variance for LACNIC addresses (blue bars) –
HostIP, IPligence and both MaxMind databases provided co-
ordinates that were further than 300 km from the centroid
for 25% of LACNIC addresses. Digital Envoy had 90% of
its LACNIC addresses within 15 km of the centroid. Al-
though IPligence had 50% of AFRINIC addresses’ coordi-
nates within 3 km of the centroid, 25% were further than
2600 km.
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Figure 8: This graphs show the 10th, 25th, 50th, 75th, and 90th percentiles for distance from the centroid for each database,
broken down by RIR or AS type.

We also examined the consistency of IP-to-coordinate map-
ping by organization type (Figure 8(b)). Looking across all
five databases, we found thatCAHP (Content/Access/Hosting
Providers, black bars) addresses had coordinates nearest the
centroid, with median distances from the centroid about half
that of the next organization type,EC (Enterprise Customers,
red bars). LTP (Large Transit Providers, green bars) had
the greatest variance, and median distances greater then any
other group type. Only for MaxMind GeoIP was the 75th
percentile of its LTP distances lower than the 75th percentile
of its STP (Small Transit Providers, blue bars) coordinates.
We surmise that the observed differences in variances reflect
more time and effort by the database providers on accurately
geolocating edge hosts, which are more likely connected to
humans and commerce, and thus more likely to be of type
CAHP or EC.

Table 4 presents pairwise comparisons of coordinate lo-
cations between individual databases. Coordinates provided
by MaxMind GeoIP and MaxMind GeoLite are the same
for at least 75% of their answers. Both these databases and
IPligence mostly agree with Digital Envoy, the median dif-
ferences between provided locations being less than 9 km.
HostIP locations are the furthest from other databases, with
median distance differences exceeding 100 km between HostIP
and IPligence, and exceeding 500 km between HostIP and
Digital Envoy. These results are surprising since HostIP data
are voluntarily and manually contributed; presumably, these
contributors are well aware of their actual locations.

4.3 Comparison with ground truth data
To calibrate the results provided by the participating ge-

olocation databases against the available ground truth datasets
described in 3.2.1, we calculated the distances between the

identified locations and the known ground truth locations.
Figure 9 presents the resulting distance distributions, for the
five geolocation services that provide latitude/longitude co-
ordinates of IP addresses and for each ground truth source.

For the PlanetLab IP addresses (Figure 9(a)), all databases
placed more than 50% of addresses for which they had coor-
dinates within 10 km of the actual ground truth locations.
Digital Envoy had the highest accuracy for PlanetLab IP
addresses, with 62% of addresses within 10 km. Planet-
Lab hosts are primarily located in U.S. academic institutions,
typically with a single well-defined geographic location that
corresponds to the contact information in the WHOIS database.

We found the largest inconsistencies between geolocation
providers when comparing their answers to the French net-
work’s ground truth data (Figure 9(b)). MaxMind GeoIP had
58% of addresses within 10 km of the ground truth location,
while IPligence had 6%. Only HostIP failed to place all ad-
dresses within 700 km (the distance between all points in
France and Paris). Interestingly, this database, built on vol-
unteered data from users, located all but 17% of these truly-
in-France addresses in Germany. Are those French users in-
tentionally falsifying their location information or are those
really German customers using French networks?

The last ground truth dataset, Tier 1’s ISP addresses list,
includes primarily routers rather than end hosts. Most geolo-
cation providers do not claim to accurately capture geoloca-
tions of routers. Digital Envoy’s results were the closest to
the ground truth for this dataset (Figure 9(c)), placing over
70% of these Tier 1 addresses within 10 km of their actual
known locations. For MaxMind GeoIP this percentage is
27% and for IPligence it is 10%. IPligence reaches the 50%
mark at 950 km, lagging behind IPHost for this dataset.
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Table 4: Pairwise comparison of address coordinate locations. The three numbers represent the 25th, 50th, and 75th
percentiles of the distribution of distances between the row and the column database’s coordinates for those addresses
that had lat-long coordinates in both databases.

HostIP IPlig MaxG DigE
HostIPf - 3 / 107 / 1120 9 / 216 / 1140 20 / 511 / 2360
IPligence 3 / 107 / 1120 - 4 / 66 / 685 1 / 9 / 751
MaxMind GeoIP 9 / 216 / 1140 4 / 66 / 685 - 2 / 15 / 318
Digital Envoy 20 / 511 / 2360 1 / 9 / 751 2 / 15 / 318 -

color key 0-49 50-149 150-449 450-1049 1050-

4.4 Calibration vs. RTT
To approximate the expected RTT values, we assumed

that the path from the monitor to a target address is roughly
a geodesic line, most of the path is made up of fiber, and that
cross traffic has little effect on the resulting RTT. Using an
index of refraction of 1.538, we estimated the speed of light
in fiber as ∼195 km/ms.

Figure 10 plots a CDF of the percentage difference be-
tween the expected RTT and the observed RTT. We see two
distinct groups, the first one including HostIP, IPligence, and
Digital Envoy, and the second one consisting of MaxMind
GeoIP and MaxMind GeoLite. The first group has 50% of
the addresses only 1.3 times the expected RTT vs 1.5 times
the ”expected” RTT for the second group.

5. SUMMARY
Software77 provided a free downloadable database, with

more functionality available for purchase. Although it had
.5% fewer addresses than the RIR delegation files, the results
were almost indistinguishable. In determining countries for
tested IP addresses, it agreed with the majority for 95.5%
of addresses. Similar to Cyscape, Software77 has the most
inconsistencies with other databases for addresses in Euro-
pean, Middle East and Central Asian regions.
HostIP runs a free, open database populated by volunteer

submissions. It has many blocks, which only covered 15.9%
of the delegated addresses. Most (63%) of its blocks were
in the North American region. It agreed on country with the
majority for 94.5% of the addresses. It was within 40 km
of the winning centroid for 67% of its addresses. Among
all databases in our study, the latitude/longitude locations
given by HostIP were farthest from the French Network’s
addresses, with a median distance of 727 km.
IPligence offered the least expensive commercial database

(for geolocation only) that we examined. It had the least
agreement on country with the majority, at 94.3%. Most
disagreements were in the North American region. It had
78% of its addresses within 40 km of the centroid of dis-
tances provided by all databases. Its locations were farthest
from the centroid for addresses in the African region. Of
the databases we examined it was furthest from the Tier 1
address with an average distance of 1,401 km.

Cyscape divided the address space into the fewest blocks,
but still agreed with the majority on country for 98.4% of
its addresses. Relative to the other databases examined, it
showed the largest percentage of blocks in the RIPE-NCC
region. Most of Cyscape’s disagreements came from ad-
dresses delegated in Europe, Middle East, and Central Asia.
MaxMindGeoIP is the commercial database provided by

MaxMind. It agreed with the majority on country for 99.1%
of the addresses queried. The majority of disagreements
came from the North American region and, disproportion-
ately, among CAHP (Content, Access, Hosting, Providers)
address space. Over 78% of its responses were within 40
km of the winning centroid. Its responses were closer to the
centriod for Asian addresses than addresses from other re-
gions. The responses were closest to ground truth for the
French networks, within 88 km on average.
MaxMind GeoLite, a free database provided by Max-

Mind, agrees with MaxMind GeoIP’s country responses 99.8%
of the time and had 75% of its coordinates within 40 km of
the centroid. It placed addresses further from all ground truth
datasets than MaxMind GeoIP. IPInfoDB is a free database
with additional functionality on top of MaxMind GeoLite.
Digital Envoy is a commercial database provider. It agreed

on country with the majority for 96.7% of addresses. Its dis-
agreements were disproportionately in Small Transit Providers
and from the European, Middle East, and Central Asian ad-
dress space. 93% of its responses came within 40 km of the
centroid. It was nearest on average to two of our ground
truth datasets, PlanetLab and the Tier 1 addresses. Digital
Envoy’s relatively solid performance on router infrastructure
IPs is good news for researchers. (Disclosure: For the last
seven years, CAIDA has had a Research Agreement to use
Digital Envoy’s NetAcuity database for many of its public-
facing core infrastructure analysis projects.)

6. CONCLUSIONS
We developed and tested a methodology to support a sys-

tematic quantitative comparison of geolocation databases, in
terms of how they map IP addresses to countries as well
as to actual lat-long coordinates. We analyzed inconsisten-
cies across databases as a function of geographic (RIR) re-
gion and organization (Autonomous System) type. To com-
pare country-level granularity, we compared each database
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(a) PlanetLab addresses geolocated closest to ground truth in
all databases, with the largest spread across databases at 80 km,
i.e., over 90% of Digital Envoy’s IP addresses but only 79% of
HostIP’s addresses were within 80 km of ground truth.
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Comparison with French Nets’ Groundtruth

(b) The database-provided answers were furthest from ground
truth for the French DSL network’s IP addresses. MaxMind
GeoIP had 70% of addresses within 10 km of ground truth for
this data set; IPligence had only 4% within 10 km. HostIP often
mapped these French addresses to Germany.
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Comparison with US Tier 1’s Groundtruth

(c) Digital Envoy’s mappings had the lowest disparity of all
databases against the U.S. Tier 1 ground truth data, capturing
the 10% that located at the headquarters and over 50% within
10 km of their known location. IPligence was only correct for
IP addresses near the Tier 1’s headquarters.

Figure 9: Comparison against three ground truth data
sets. All databases accurately placed PlanetLab addresses,
but Digital Envoy was closest. MaxMind was closer for the
French DSL network addresses. Digital Envoy was closest
for the Tier 1 router addresses.
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Figure 10: Difference between the estimated RTT, a func-
tion of the coordinates provided by the database and the
speed of light, and the measured RTT. The CDFs of
these percentage difference distributions are in two groups:
HostIP, IPligence, and Digital Envoy, which have 50% of
their addresses with a percentage difference less than 1.3,
and the two MaxMind databases, with a median percent-
age difference less than 1.5.

against the majority answer across all databases. For lat-long
coordinate comparison, we used a centroid-based algorithm
to derive a rough consensus across databases, and compared
each database’s answer to this approximate consensus.

The databases fell into three IP address block granular-
ities: small (Cyscape, Software77, and HostIP) containing
55K-786K blocks; medium (IPligence, IPInfoDB, and Max-
Mind GeoLite) with 3.1-3.5M blocks; and large (MaxMind
GeoIP and Digital Envoy) with 5.7M and 6.1M blocks, re-
spectively. IPInfoDB derives from and is essentially indis-
tinguishable from MaxMind GeoLite in our results.

We found that providers generally agreed on IP-address-
to-country mappings. MaxMind GeoLite and MaxMind GeoIP
had the highest level of agreement (99.1%) and IPligence
had the lowest, with 94.3% of IP addresses agreeing with the
majority on country location. The least agreement between
any two databases for country mappings was between IPli-
gence and HostIP at 83.8%. Cyscape, Software77, and Dig-
ital Envoy showed the greatest disagreement with the major-
ity for RIPE-NCC-assigned addresses.

Digital Envoy and MaxMind GeoIP lat-long coordinates
were closest to the winning cluster centroid, with 93% and
78% of addresses within 40 km, respectively. Database re-
sponse coordinates were closer to the centroid than to other
individual database answers, unsurprising since addresses
with the largest disagreement with the majority were not part
of the winning centroid. Digital Envoy had the shortest me-
dian distance to the Tier 1’s ground truth router dataset and
to PlanetLab’s addresses, although all databases fairly accu-
rately geolocated PlanetLab ndoes. MaxMind had the short-
est median distance to the French DSL network addresses.
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