










Figure 2: Hilbert map visualization comparing merged pas-
sive (UCSD, MERIT and SWITCH) datasets with ISI Inter-
net Census data. The IPv4 address space is rendered in two
dimensions using a space-filling continuous fractal Hilbert
curve of order 12 [18, 21]. Each pixel in the full-resolution
image [7] represents a /24 block; red indicates blocks ob-
served only in the passive data, green blocks are only ob-
served in ISI Census data, and blue blocks are in both. Un-
routed networks are grey. The map highlights differences
between inferences from passive and active measurements,
including significant activity (according to the former) in
two /8 legacy allocations.

block (a /8 network) exhibiting this behavior, suggests that
most responses observed by ISI are from routers that consis-
tently respond to ICMP echo requests to addresses ending
with the same byte (e.g., routers may be configured with vir-
tual interfaces ending in .1 for multiple /24 subnets). Our
/24-granularity aggregation of ISI Census data leads us to
infer, in such /8 block, nearly 12,000 active /24 blocks (59%
of all /24 blocks marked as active) solely due to responses
to probes toward addresses ending in .1. Responses to these
probes indicate an initial TTL of 255, almost exclusively
used by routers and Unix boxes [20]. Similarly, blocks that,
when aggregating ISI Census data in /24 blocks, appear as
heavily populated, but we inferred as only lightly populated
(mostly green with some blue in Figure 2) are also likely due
to routers. Another possible interpretation of this discrep-
ancy is that both phenomena occur: (i) networks match-
ing such blocks have a lower fraction of infected machines
compared to other networks and/or policies that block out-
going known malicious traffic (e.g., a filter on port TCP
445 would block all Conficker-like traffic), resulting in their
under-estimation from darknet measurements; (ii) such net-
works do not exchange traffic with the SWITCH research
network.

Another type of discrepancy we identify is blocks that are

solely present in the passive datasets (solid red in Figure 2).
Manual inspection of three of these cases reveals two possible
causes. If only the darknet, but not the live network, shows
these blocks as largely populated, it may be spoofed traffic
that our filters did not catch. However, in two of these three
cases, we observed traffic from such network blocks in both
the dark and live networks; we speculate that the ISI Census
may have under-estimated the population, either because
they did not probe the network (due to operator request) or
because those networks filter ICMP requests.

Perhaps of most interest are the approximately 15 /8 net-
works that the ISI Census finds to be largely unused. These
are mostly legacy allocations to organizations that vastly
under-utilize them. Our passive measurement techniques
also confirm that the majority of these networks appear as
unused, although at least two of them, both legacy alloca-
tions, appear largely active. One block is allocated to a
large electronics company, and while both the ISI Census
and darknet datasets show limited use of the block (83 and
245 /24 blocks respectively), the SWITCH dataset reflects
much higher use (942 /24 blocks). This difference may mean
that the organization (i) filters ICMP requests, thus limiting
its visibility by the ISI Census, and (ii) has little darknet-
observable malware on internal hosts, or filters it outbound,
limiting its visibility by darknets. The other /8 network
is allocated to a large communications provider which also
likely filters ICMP requests, reducing its visibility via active
measurements. In this case, 99% of the networks identified
as active exclusively by the passive technique are found in a
single /10. Of this /10, the passive approach identifies 6,777
/24 blocks as active, while none are active according to the
ISI Census dataset.

We also verified that the portions of both /8 networks that
our traffic measurements show are active are mostly not
considered active even in the latest (2013) ISI Census [14].
These examples illustrate that a passive traffic-based estima-
tion can reveal insight into IPv4 address utilization beyond
what can be seen with active measurements.

Finally, our passive measurements show active blocks in a
few unrouted networks (shaded in grey in Figure 2). We ex-
pected all unspoofed traffic coming from unrouted space to
use private IP addresses. However, in our darknet measure-
ments we found about 140 unrouted, non-private networks
sending traffic that is unlikely spoofed. One of the largest
classes of traffic seen in general by the UCSD network tele-
scope is “conficker-like,” or TCP packets to port 445. Such
traffic has some consistent idiosyncracies: (i) a bug in the
pseudorandom number generator that causes them to send
packets to only a quarter of the address space [8]; (ii) TCP
SYN retransmits in attempts to open a connection, with
specific inter departure times [4]. We observed exactly these
traffic patterns from these unrouted blocks. This traffic is
not visible in the SWITCH measurements because is filtered
out by our live-network filtering heuristic. Such unspoofed
traffic from unrouted space could result from organizations
using their assigned space privately without globally adver-
tising it, or privately using IP addresses not assigned to them
as if they were RFC1918 addresses [1].

6. RELATED WORK



Heidemann et al. [10] was the first published census of IPv4
address activity using active network probing; they mini-
mized probing overhead and associated complaints by spread-
ing the scan over a 30+-day window. Zander et al. [26] es-
timated the number of IPv4 addresses actually used on the
Internet by combining active probing and additional data
such as IP addresses in Wikipedia logs, spam blacklists, web
server logs. They estimated approximately 1 billion IPv4
addresses used, which is around 40% of the publicly routed
space. The popularity of active probing methods motivated
the deployment of several efficient scanning tools, including
zmap [9], which uses ICMP to scan the entire IPv4 address
space in under 45 minutes using a single machine. An anony-
mous individual (or group) recently published the results of
a series of illegal (botnet-orchestrated) scans of the IPv4
Internet address space [11] from over 400 thousand bots.
Their ICMP scanning results resemble ISI’s Census findings,
since they found 4.3M /24 blocks containing about 420M
“pingable IPs”. They elicited responses from more (36M) IP
addresses when scanning for open TCP/UDP ports. How-
ever, their probing methodology is not well-documented, and
their measurements may be skewed due to local transparent
proxies intercepting probes from the bots [2]. They also used
the botnet to perform reverse DNS lookups as an alterna-
tive method to infer address space usage; their inferences
match ours for two legacy /8 allocations not visible by the
ISI Census (see Section 5).

We developed a methodology that relies only on passive
measurements to infer macroscopic network activity; pas-
sive techniques avoid some methodological issues with active
probing, most notably policies that prevent responses to ac-
tive probes or induce responses from addresses other than
those probed. However, inferences based on passive data
also have limitations, most notably the presence of traffic
using spoofed source IP addresses, especially in traffic data
that is easiest to obtain, i.e., from IP darknets. The most
important contribution in this work is our heuristics to filter
out spoofed IP traffic from both darknet as well as opera-
tional network traffic flow data (Section 4).

Spoofing is a persistent threat [5, 19, 25], and at least two
other studies have used TTL-based inference with active and
passive measurements to detect spoofed packets [6,23]. Both
approaches try to establish reference values of TTL for dif-
ferent traffic classes, inferring that packets with diverging
values are spoofed. In [23], the authors observe TTL val-
ues of distinct source IP/protocol pairs over time, to learn
which values legitimate hosts use. Beverly [6] developed a
supervised learning classification algorithm that considers
the TTL value as an indicator of the length of the path
an IP packet traverses. His algorithm classifies incoming
packets into legitimate IP addresses based on valid origin-
destination path lengths (i.e., TTL value). Neither of these
methods work for darknet traffic, since we cannot identify
a reference TTL value for /24 blocks originating a limited
amount of traffic.

7. CONCLUSION
We developed and evaluated a methodology for removing
spoofed traffic from data sets collected on both darknets
and live networks, and found the resulting filtered data to
effectively support census-like analyses of IP address space

utilization. Although some spoofed traffic required manual
removal, we also identified several general classes of spoofed
traffic that enabled us to create heuristic filters to remove
them. Passive traffic data allowed us to identify ≈ 450K
/24 IPv4 blocks as active that were not inferred as active
by ISI’s most recent census measurements; visibility into
other parts of the IPv4 address space would expand with
additional vantage points.

One possible future direction of this work is a hybrid ap-
proach that first infers active IP address blocks based on
passive measurements from one or more (live or dark) van-
tage points, then probes only addresses that cannot be con-
fidently inferred as active. Using all three passive datasets
we gathered, a hybrid approach would not only yield addi-
tional discovery of active /24 blocks, it would also reduce
the active probing using ISI’s method by 38.5%. Using only
the SWITCH traffic vantage point with a hybrid approach
would increase the inferred active /24 blocks and reduce
measurement by ≈ 400K and 35.5%, respectively. In this
hybrid approach, the marginal utility of adding measure-
ments from the darknets thus seems limited (≈ 75K addi-
tional active /24 blocks), but a passive-only measurement
scenario would benefit significantly from these additional
vantage points (≈ 300K more active /24 blocks than when
using only SWITCH data).

This preliminary investigation inspires many additional ques-
tions on the strengths and limitations of this methodology.
How much does the vantage point matter, in terms of lo-
cation and size of address space observed? Would traffic
measurements from IXPs provide considerably more insight
over a shorter time period? Can we improve our ability to
detect (and validate) spoofed traffic, perhaps by responding
to darknet traffic? For a given segment of address space, do
traffic characteristics correlate with present or future address
utilization patterns? How well will this technique work for
IPv6? We hope our results encourage others to investigate
the potential to exploit passive Internet traffic measurements
to perform Internet-wide census studies.
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