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ABSTRACT
Network tarpits, whereby a single host or appliance can mas-
querade as many fake hosts on a network and slow network
scanners, are a form of defensive cyber-deception. In this
work, we develop degreaser , an efficient fingerprinting tool
to remotely detect tarpits. In addition to validating our tool
in a controlled environment, we use degreaser to perform an
Internet-wide scan. We discover tarpits of non-trivial size in
the wild (prefixes as large as /16), and characterize their dis-
tribution and behavior. We then show how tarpits pollute
existing network measurement surveys that are tarpit-näıve,
e.g. Internet census data, and how degreaser can improve the
accuracy of such surveys. Lastly, our findings suggest sev-
eral ways in which to advance the realism of current network
tarpits, thereby raising the bar on tarpits as an operational
security mechanism.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection ; C.4 [Performance of Systems]:
Measurement techniques

Keywords
Tarpits; Internet Census; Sticky Honeypot; Deception

1. INTRODUCTION
Networks face a continual barrage of abusive and mali-

cious attacks. Among available network security defenses
is the class of deceptive network strategies. The high-level
idea is simple: provide to adversaries the illusion of vulnera-
ble targets, or promote an appearance of greater complexity
than actually exists. For example, network honeypots [31]
have long been used to attract abusive traffic and attacks.
Traffic that arrives at the honeypot can then be analyzed
in order to build databases of e.g. IP reputation [19, 34],
malware signatures [6, 37], and to provide early detection
of emerging attacks [25]. Such databases of abusive traffic
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characteristics can then be leveraged to help mitigate at-
tacks elsewhere in the network.

A more advanced view of deception includes not only pro-
viding a believable target, but actively influencing the ad-
versary through deceit [10, 28, 29]. For example, Trassare’s
work on deceptive network topology [32] seeks to alter the
adversary’s notion of the attack surface in an effort to change
their decision making process, whereas moving target defense
systems [18] frequently change the IP addresses of resources
to increase the complexity of an attack against them.

By extension, network “tarpits” (or “sticky honeypots”)
seek to slow automated scanning traffic or frustrate and
confuse a human adversary [21, 35, 13, 16, 30, 15]. These
tarpits can be configured to use inactive IP addresses or ad-
dress blocks within a network, thereby providing the illusion
of a large pool of active hosts. For each fake host, a single
tarpit machine can answer all incoming connection requests.
Some tarpits answer both to ICMP requests and on all TCP
ports – providing the illusion of both fake hosts and services.
In addition, by employing TCP flow control mechanisms to
hold the connection open without allowing data transfer, the
tarpit can both slow and penalize a scanning attacker.

In this work, we investigate the ability to detect network
tarpits, and provide empirical evidence of their presence on
today’s Internet. Our work is motivated by defensive secu-
rity objectives, where the efficacy of a tarpit is limited by
the degree to which the deception is believable; an adversary,
whether automated or human, will avoid known tarpits. For
instance, an automated scan that can detect tarpits in real-
time could skip those tarpits and tarpit networks, improving
the scan performance (both in time and accuracy).

We develop an active, on-line probing methodology to ef-
ficiently (2 to 6 packets per target) detect a variety of dif-
ferent tarpits in real-time. Our methodology is based on
TCP options fingerprints and TCP flow control behavior.
By sending a series of specially crafted probe packets, we
discern real TCP stacks from tarpit hosts. We synthesize
our methodology into a publicly available open source tool
[5], degreaser , that infers the presence of tarpits among a set
of input target networks.

In addition to validating our methodology against known-
ground truth tarpits, we utilize degreaser to perform an
Internet-wide scan. To facilitate large-scale scanning and
avoid triggering anomaly detectors, degreaser uses permu-
tation scanning [7, 12] to pseudo-randomly iterate through
the IP address space when probing. Our real-world Internet
scan, which probes at least one address in each /24 network
in the Internet, discovers 107 different tarpit subnetworks



ranging in size from /16 (with up to 216 fake hosts) to /24
(with up to 28 fake hosts). As some of these subnetworks
have both real hosts and tarpits interleaved, we characterize
the occupancy of fake addresses, both as a function of tarpit
type and network size. In all, we find over 215,000 active IP
addresses that are fake. These provider, customer, and uni-
versity networks spread across 29 different countries and 77
autonomous systems. While these numbers represent non-
trivial portions of address space, they are small relative to
the size of the Internet. However, we note that even small
blocks of tarpit addresses can greatly slow automated scans
as part of their intended capturing behavior.

To better understand how fake hosts and subnetworks are
observed in Internet measurement campaigns, we examine
publicly available measurement data from an Internet-wide
ICMP census [8] and HTTP scans [4]. We find that the
networks inferred by degreaser as filled with tarpits, appear
instead as fully occupied in the census data. Thus, not only
are tarpits affecting abusive network scans, they also suc-
cessfully deceive legitimate measurement surveys. As such
surveys are used in policy decisions (e.g. understanding IPv4
address space exhaustion and allocating new addresses), we
offer degreaser as a means to improve their accuracy.

In general, we demonstrate that tarpit deception is oper-
ationally deployed in the Internet. We therefore make four
primary contributions:

1. We devise fingerprinting techniques to efficiently de-
tect network tarpits in real-time. We synthesize our
approach in degreaser , an open source tool that dis-
cerns deceptive tarpit hosts and networks (Section 3).

2. We discover tarpits in the wild by running Internet-
wide scans using degreaser , showing that such security
tools are actually employed in real world scenarios and
characterizing their deployment (Section 4.1).

3. We empirically examine how tarpits pollute network
measurement studies, including the Internet census [2]
(Section 4.2). With degreaser , we suggest that such
measurement surveys can return more accurate results.

4. We suggest improvements to make tarpit deception
more realistic (Section 5), thereby raising the bar for
this operational security mechanism.

2. BACKGROUND
Cyber-deception has been used to great effect in under-

standing and mitigating network attacks. For instance, hon-
eypots [31] may attempt to lure an attacker away from a true
network resource to some deceptive resource, thereby gain-
ing additional intelligence on the tools, techniques, and pro-
cedures (TTP) employed in an attack. Similarly, darknets
and network telescopes [24, 35] capture traffic destined to
unused blocks of address space, passively providing insight
into attack behaviors.

Not only does deceit permit intelligence gathering, it can
induce an attacker to expend time evaluating potential at-
tack vectors on fake resources, slows their progress and keep-
ing them in an intelligence gather phase – increasing the
likelihood of being discovered [29].

In this work, we restrict our analysis to a particular type of
deception: fake hosts of network tarpits. In this section, we
review the salient features and operation of network tarpits,
as well as prior work in identifying network deception.

2.1 Network Tarpits
Network tarpits were originally conceived in response to

aggressive scanning worms, e.g. code-red [23]. Analogous
to physical tarpits (which trap animals in sticky tar), net-
work tarpits attempt to hold open remote incoming TCP
connections that are likely to be abusive. Once held (or
“stuck”), the tarpit both actively prevents data transfer over
the connection and discourages the remote end from discon-
necting. By preventing such connections from performing
any useful work, the tarpit both slows the scanner and con-
sumes the scanner’s resources. Penalizing abusive connec-
tions, whether from spammers, worms, or other malicious
activities, not only makes the target appear less attractive,
it helps to slow the global rate of scanning and permits in-
trospection over the behavior of the scanner.

Network tarpitting has been applied at both the transport
and application layers. For instance, SMTP tarpits attempt
to slow and penalize email spammers once the application-
layer detects that the incoming email is likely spam [13, 16].
The tarpit mechanism employed by an email server could
be at the SMTP-layer, for instance by taking an arbitrarily
long time to respond to incoming SMTP commands.

Other tarpits are able to extend their deceptive operation
by co-opting unused addresses on their local subnetwork.
Network tarpits such as those in LaBrea [21] and the Netfil-
ter TARPIT plugin [15] can answer and hold connections to
multiple IP addresses on a network, including addresses that
are not in use. In this fashion, not only do these tarpits slow
connections to active machines on the network, they fake the
existence of servers for every IP address in network prefix.

2.2 Tarpit Operation
Network tarpits employ three primary mechanisms: 1) a

means to determine which IP addresses on a subnetwork are
unused and thus may be faked; 2) a strategy to impersonate
hosts by responding to TCP, UDP, or ICMP probes destined
to fake IP addresses; and 3) a method to hold the TCP
connection open.

The IP addresses for which the tarpit responds may be
statically configured, or dynamically inferred. When in-
ferred, the tarpit typically acts conservatively and relies on
the lack of a layer-2 address resolution protocol (ARP) re-
sponse as a indication that the IP address in question is
not in use by a real host. For example, Figure 1 shows the
sequence of packets observed on a subnetwork running an
instance of LaBrea [21]. The local router, 10.1.10.1, has a
packet with destination 10.1.10.210 to deliver. Because the
network is an Ethernet, it must first determine the layer-2
address of the destination and sends an ARP request. Note
that the first three ARP requests in Figure 1 go unanswered
and are spaced roughly one second apart. LaBrea promis-
cuously listens on its network interface and observes these
unanswered ARP requests. On the fourth request, LaBrea
conservatively infers that there is no true host with the re-
quested IP address and instead responds with its own layer-2
address on behalf of that IP address. In this way, LaBrea
takes over responsibility for the IP address, and will do so
similarly for other unused addresses.

Next, TCP connections must be held open. A TCP-level
tarpit typically listens on all TCP ports and responds to
SYN connection initiation with a SYN/ACK. However, the
general strategy of the tarpit is to use the 16-bit window
field in the TCP header [26] to lock the client in a fully



06:20:44.848758 ARP, Request who-has 10.1.10.210 tell 10.1.10.1, length 46
06:20:45.953257 ARP, Request who-has 10.1.10.210 tell 10.1.10.1, length 46
06:20:46.962535 ARP, Request who-has 10.1.10.210 tell 10.1.10.1, length 46
06:20:47.970023 ARP, Request who-has 10.1.10.210 tell 10.1.10.1, length 46
06:20:47.970130 ARP, Reply 10.1.10.210 is-at 00:00:0f:ff:ff:ff, length 28

Figure 1: LaBrea layer-2 conservative host proxy. On a subnetwork, LaBrea waits for three ARP timeouts
before it infers that the host is not present. LaBrea then commandeers the host as part of the tarpit.

06:20:47.971276 IP 1.2.3.4.51161 > 10.1.10.210.http: Flags [S], seq 3536100821, win 65535,
options [mss 1460,nop,wscale 4,nop,nop,TS val 1194569089 ecr 0,sackOK,eol], length 0

06:20:47.971475 IP 10.1.10.210.http > 1.2.3.4.51161: Flags [S.], seq 1457023515, ack 3536100822, win 10, length 0

Figure 2: LaBrea layer-3 tarpit behavior. LaBrea replies to incoming TCP connections with an option-less
SYN/ACK with a window size of 10. LaBrea then either stops replying or flow controls the connection with
ACKs with window size 10 (persistent mode).

established TCP connection, while simultaneously prevent-
ing it from transmitting data. In the TCP protocol, the
window field implements flow control – providing an indica-
tion to the sender of the number of bytes the host is able
to accept [26], thus relieving the network of the burden of
transmitting packets that can only be dropped by the re-
ceiver. The tarpit exploits such mechanism by advertising a
small initial window, and then replying to incoming packets
with a window size of zero. Per the TCP specification, the
remote host will send “zero-window” probes periodically to
the tarpit to determine when it can resume sending data.
The tarpit will never increase the window, keeping the re-
mote host locked in a persistent connection. In practice,
most operating systems at the client will eventually termi-
nate the TCP connection after a certain amount of time has
elapsed without an increase in the window size. When the
remote host decides to terminate the connect using the nor-
mal FIN process, the tarpit ignores these packets forcing the
operating system to maintain connection resources until the
FIN-WAIT period expires. During the whole connection,
the client’s socket resources are consumed to keep connec-
tion state (while the tarpit instead maintains no state), but
the client is unable to perform any useful work.

While the mode of operation described above is known as
persistent mode, tarpits support also a non-persistent mode
in which all the subsequent packets on the connection sent
by the client after the initial handshake are simply ignored.
Figure 2, shows an example SYN/ACK response packet from
LaBrea with a window size of 10 bytes and no TCP options
– a behavior we show in §3 to be different than legitimate
TCP connections.

Two of the most widely known tarpit applications are
LaBrea [21] and the Linux Netfilter TARPIT plugin included
in the xtables-addons package [15]. In total, we consider
the following types of tarpits in this work:

• LaBrea: LaBrea [21] runs as a user-space applica-
tion using raw sockets to intercept all packets arriving from
the network. TCP responses are crafted without using
the operating system network stack, thus requiring no per-
connection resources. LaBrea supports hard capturing a
specific list of IP addresses, or it can utilize unused IP
addresses within a network block using its ARP-timeout
mode. In ARP-timeout mode [21], LaBrea will intelligently
release IP addresses it responds for if another device joins
the network. This allows a subnet to remain “full” even as
hosts join and leave the network. LaBrea can be run in

either persistent or non-persistent modes. Herein we refer
to these as “Labrea-P” and “Labrea-NP” respectively.

• Netfilter: The xtables-addons package [15] includes
two deceptive plugins: TARPIT and DELUDE. Netfilter in-
terfaces directly with the operating system, providing addi-
tional target firewall rules to which packets can be directed.
Netfilter rules are implemented by the user via the ipta-

bles application. Because the plugins are integrated in to
Netfilter, it permits use of the full compliment of firewall
rules, for instance permitting more complex decisions than
LaBrea when choosing which connections to tarpit. How-
ever, Netfilter is more limited when establishing a tarpit
over a wide range of addresses, since the network interface
must be bound to all IP addresses covered by the tarpit.
Additionally, Netfilter does not provide an ARP-timeout
mode, requiring all tarpit IP addresses to be specified.

The xtables-addons TARPIT plugin holds TCP connec-
tions in the same fashion as LaBrea, but does so in a unique
what that allows us to distinguish it from LaBrea as we
discuss in the next section. In addition, xtables-addons

includes a DELUDE plugin that replies to incoming SYN
connections with a zero-window SYN/ACK, but sends a
RST to terminate the connection for all other packets. De-
lude is designed to fool network scanners looking for open
ports. While DELUDE does not explicitly attempt to hold
the connection open, it provides deception by responding
for non-existent IPs and services. Herein, we refer to the
Netfilter TARPIT plugin as “iptables-T” and the Netfilter
DELUDE plugin as “iptables-D.”

• Other: Last, we find a class of tarpitting addresses
that act as tarpits, but do not behave in a way that is
consistent with either LaBrea or the Netfilter plugins as
configured by default. The primary distinguishing char-
acteristic of these addresses is that they deterministically
respond with a zero-window in the SYN/ACK. We observe
that some of these addresses respond once, but then imple-
ment a timed blacklist whereby subsequent connections go
unanswered for a period of time. While we cannot defini-
tively attribute the variety of behaviors in the group to a
particular implementation, they act as tarpits. We there-
fore herein refer to this group as “Other.”

2.3 Detection
Fundamentally, the tarpit detection problem is based on

fingerprinting. Both active and passive network stack fin-
gerprinting has been employed with large success to iden-
tify operating systems [36, 22]. These methods rely on
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Figure 3: Ground-truth testing on LaBrea network
in a /29 subnetwork.

implementation-specific differences as exhibited by various
TCP/IP fields, for example IPID, TTL, options, etc. How-
ever, these existing fingerprinting tools fail to identify tarpits.
More complex physical device fingerprinting [20] techniques
similarly fail due to the lack of TCP timestamp option sup-
port in tarpits.
Instead, this work seeks to use additional characteristics

to identify tarpits by eliciting tarpit-specific behavior via
active probing. To the best of our knowledge, degreaser is
the first tool to reliably infer the presence of tarpits.

3. METHODOLOGY
In this section, we seek to identify traffic characteristics of

network tarpits. We empirically analyze various traffic prop-
erties of real production networks as compared to tarpits,
and describe features that we find to not provide sufficient
power to discriminate tarpits. Then, by running known
tarpits in a controlled environment, we develop a set of dis-
criminating traffic characteristics as the basis for degreaser .
From these characteristics, we detail degreaser’s inference
algorithm. Last, we describe the permutation scanning used
by degreaser to perform Internet-wide probing.
To verify our hypotheses, we establish a ground-truth

LaBrea network on the Internet. As shown in Figure 3, we
install LaBrea on a /29 subnetwork and use PlanetLab [9]
to probe from multiple vantage points the entire /24 aggre-
gate to which the /29 belongs. We scan the /24 network by
attempting to establish TCP connections to each IP address
in the subnet and capture the packets for further analysis.

3.1 Non-Features
We first describe features that, intuitively, might provide

an indication of a tarpit host. These features, however,
proved unreliable or unfeasible.

• Layer-2 Address: An observer with access to the
same network segment as LaBrea can trivially discern traf-
fic from fake hosts by examining the link-layer addresses.
LaBrea uses a specific, hardcoded, Ethernet MAC address
(00:00:0f:ff:ff:ff) for all of its responses regardless of
its physical network adapter address.

In contrast to a fixed address, the Netfilter plugin uses the
network adapter’s MAC address for all packets it gener-
ates. However, in normal operation, a single interface may
have multiple assigned IP addresses. Thus, the same MAC
address across multiple IP addresses is only a weak indica-
tor of a Netfilter tarpit. Since a tarpit would typically be
used to combat threats outside the local network, our ef-
forts instead focus on remotely identifiable characteristics,
i.e. those that are discernible from outside the network seg-
ment containing the tarpit host.

• Active IPs in a Subnet: Intuitively, we might ex-
pect high-occupancy subnets to be good indicators of pos-
sible tarpits. To this end, we initially investigated using a

hitlist of probable tarpits as inferred from the /24 subnets
with more than 240 responding web hosts in the scans.io

[4] survey. However, we found this to be a poor selection
criterion as many of these subnets belong to well known
Content Distribution Networks and web hosting services.
We did however, make use of other aspects of the data in
[4] when building degreaser as detailed in §3.3.

• Open TCP Ports: An IP address that answers for
all TCP ports is indicative of a tarpit. However, ascertain-
ing the set of open ports requires 216 probes per host. Even
a search for hosts with more than a particular threshold
of open ports imparts an exponential impact on the total
number of probes required to scan the Internet. Further,
some tarpits answer only to one or a small number of ports.
We therefore use open TCP ports only as a last test to dis-
ambiguate instances of possible tarpits.

• Response Time: As described in §2.2, LaBrea can
use ARP-timeout mode where it waits for multiple ARP re-
quests to go unanswered before using an IP address. The re-
mote host will therefore observe a delayed response time be-
tween sending the SYN packet and receiving the SYN/ACK.
Intuitively, the default timeout period of three seconds pro-
vides a discriminating characteristic to identify a possible
LaBrea host. However, this ARP-induced behavior is un-
reliable as it only occurs when the router’s ARP cache is
not already populated. Given the large amount of typical
network scanning traffic and noise, we could not reliably
use such criterion to detect our ARP-based tarpit.

More importantly, in §4 we show that LaBrea typically op-
erates in hard-capture mode, where it does not utilize ARP
and does not introduce extra delay. The Netfilter tarpit
instead, does not provide an ARP-timeout mode and is not
susceptible to exploitation of this characteristic.

3.2 Discriminating Characteristics
We identify two characteristics which, taken together, en-

able reliable remote detection, via active probing, of fake
hosts created by tarpits: TCP window size and options.

3.2.1 TCP Window Size
Fundamental to the tarpit-like behavior of both LaBrea

and the Linux Netfilter TARPIT plugin is TCP flow control
(§2.2). We observe that LaBrea and the Netfilter plugin re-
turn by default a TCP window size of 10 and 5 respectively.
While LaBrea’s window size is configurable, Netfilter’s value
is hard-coded into the source.

Given these known window values, we first examine the
more general distribution of window values (scaled as re-
quired by any TCP window scaling option) as observed in
two different traffic captures and summarized in Table 1:

1. Equinix: One minute of traffic from a 10Gbps link
within the San Jose Equinix exchange point on De-
cember 19, 2013 as anonymized and made available by
CAIDA [1]. This trace contains approximately 5.4M
flows, 31M packets, and 24Gbytes of traffic (average of
456Mbps). 94.8% of the traffic is TCP.

2. Campus: One hour of traffic from our academic de-
partment’s border router. This trace contains approxi-
mately 1.2M flows, 48M packets, and 34Gbytes of traf-
fic (average of 9Mbps). 94.7% of the traffic is TCP.
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Figure 4: Distribution of receiver window size ob-
served in campus and Equinix traces. Over 99.7% of
connections have an initial window size > 512 bytes.

Table 1: TCP option and window sizes of two traces.
Since < 0.5% of connections use no TCP options, this
is a good indicator of tarpit hosts.

Trace Length Pkts Flows
Min Non-Zero
Window Size

No TCP
Opts

Equinix 60s 31M 5.4M 246 0.5%

Campus 3660s 48M 1.2M 2, 920 0.0%

As shown in Figure 4, ∼99.7% of TCP connections used
window sizes greater than 512 bytes. Only 401 (0.3%) ex-
perienced a zero window, while none saw the characteristic
tarpit windows of either 5 or 10. Thus, by default, degreaser
looks for TCP connections with initial window sizes less than
20 as the first indicator that a host is a tarpit.

3.2.2 TCP Options
The TCP protocol enables hosts to negotiate additional

functionality in the form of TCP options. Typically, these
are negotiated by the operating system during connection
establishment and are transparent to application layer pro-
grams. We again examine the traffic traces to gain intuition
over the distribution of TCP options. As shown in Table 1,
none of the connections in our campus trace and only 0.5% of
connections in the Equinix trace contained no TCP options.

Since both LaBrea and the Netfilter plugin generate TCP
packets without the assistance of the operating system net-
work stack, any TCP options must be negotiated by the
tarpit application directly. In practice, both LaBrea and the
Netfilter plugin ignore all TCP options and return an empty
options list. We exploit this behavior by noting any TCP
connections with options set (other than MSS as we describe
later), and disregard those connections as non-tarpitting.

3.3 Transport versus Application Response
Based on two additional observations, we identified a list

of likely tarpits in the Internet for both manual investiga-
tion and probing by degreaser : (i) tarpits tend to fill the
subnet in which they operate; (ii) even if they accept TCP
connections, they do not generate any application-layer re-
sponse. We exploited these two properties in conjunction
with data we extracted from the logs of the HTTP scans
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Figure 5: Distribution of /24 subnets with at least
1 IP that accepts TCP port 80 connections but
does not generate application-layer HTTP responses
(half-responding IP). Data from Project Sonar’s
HTTP scan in April 2014 [4].

conducted by Project Sonar [4]. These scans send regular
HTTP GET requests to all IPv4 hosts found listening on
port 80/TCP, logging their HTTP response (we call such a
host fully responding) or null when no response is returned
(half responding). Even if half-responding hosts are not nec-
essarily tarpits (e.g., they may simply be running an applica-
tion listening on port 80/TCP which is not an HTTP server,
such as Skype), our intuition is that when they cover a large
percentage of the IP addresses within a subnetwork, they
are likely to be fake (e.g., tarpits or some form of firewall).
Figure 5, shows the distribution of the /24 subnets that – ac-
cording to the logs of Project Sonar’s HTTP scan from April
2014 – we found hosting between 1 and 256 half-responding
hosts (1,577,791 /24 subnets). Through manual active prob-
ing, and by comparing logs of subsequent (monthly) HTTP
scans available at [4], we found that: (i) there is a certain
probability of encountering, or to erroneously infer, a half-
responding host; this probability generates the main mode
visible in the distribution: a non-linear decay as the number
of half-responding hosts within the same subnet increases;
each time we manually verified a host which was the only one
half-responding within its /24 subnet, we found it was not
behaving as a tarpit but rather running an actual service;
(ii) however, another mode in the distribution breaks the
exponential decay trend roughly around 200 half-responding
hosts per subnet; manual verification of several of these cases
showed a behavior which either indicates a tarpit filling the
network or an unconventional behavior. By winnowing our
targets down to these likely tarpits, we were able to tune
degreaser ’s inference algorithm, as described next.

3.4 Degreaser
Based on our detection criteria, we build a publicly avail-

able open source tool, degreaser , to automatically detect
tarpitting hosts and networks. Degreaser runs on a standard
Linux host using raw sockets and supports multi-threaded
scanning. Degreaser is designed to scan a list of subnets
and classify each responding IP. When tarpit-like behavior
is detected, degreaser can determine which of the two most
popular tarpit applications, LaBrea or the Netfilter plugin,
is being used.



Algorithm 1 Degrease(Dst)

1: SY NACK ← SendSYN(Dst)
2: W ← Window(SY NACK)
3: if (Options(SY NACK) \MSS = ∅) and (W < 20) then
4: ACKResponse← SendACK(Dst)
5: if ACKResponse = RST then
6: return(delude)
7: else if Window(ACKResponse) = 0 then
8: return(iptables-T)

9: if W = 0 then
10: FINResponse← SendFIN(Dst)
11: if FinResponse = ∅ then
12: return(other)

13: else
14: DataResponse← SendData(Dst, size = W − 1)
15: if DataResponse = ∅ then
16: ZeroWinResp← SendZeroWinProbe(Dst)
17: if ZeroWinResp = ∅ then
18: return(labrea-NP)
19: else
20: return(labrea-P)

21: return(real)

3.4.1 Scanning Algorithm
Because degreaser circumvents the host TCP stack by

sending raw IP packets, we take care to prevent the op-
erating system from receiving unexpected replies. Degreaser
uses ports outside the ephemeral port range and integrates
with the Linux firewall to block incoming packets to that
port range. This ensures that the host’s operating system
does not receive probe responses and send RSTs.

The degreaser pseudo-code is given in Algorithm 1. The
scan is initiated by sending a TCP SYN packet to the remote
host. The packet is a standard SYN that contains common
TCP options (MSS, WSOPT, SACK, and TSOPT) [17]. A
response timeout of five seconds is used for all outgoing pack-
ets and if no response is received within the timeout, the host
is marked as not responding. If a SYN/ACK is received, de-
greaser classifies a host as non-tarpitting if the receive win-
dow size is greater than the 20 byte threshold determined in
3.2.1. Similarly, if the received SYN/ACK contains any TCP
options it classifies the host as non-tarpitting since neither
LaBrea nor Netfilter include TCP options in their replies.
During testing however, we observe that some paths proac-
tively add the MSS option for all TCP connections when
none is present. Previous work has shown that middleboxes
are known to add the MSS option[11, 14], therefore degreaser
can selectively ignore the presence of MSS.

This simple algorithm is sufficient to classify the nodes in
our test network as either tarpits or real hosts with perfect
accuracy and no false positives or negatives. However, it
is possible that a legitimate host would advertise a small
window and also not include any TCP options. In addition,
we wish to distinguish between the variety of different tarpits
defined in §2.2. The remainder of the algorithm provides this
functionality.

Next, degreaser sends an ACK to complete the three-way
handshake. If the response to this ACK is a RST, we infer
an iptables using delude. However, if the response contains
a window of zero, we infer an iptables tarpit.

Typically, however, we do not expect nor receive a re-
sponse to the ACK packet. In this case, and when the
SYN/ACK window was zero, we send a FIN packet to elicit

a response from a valid host. If we receive no response to
our FIN, we infer that the target is an unknown tarpit.

Otherwise, if the SYN/ACK window was non-zero, we
wish to distinguish between a real-host with a small ad-
vertised window and the two types of LaBrea tarpits. We
transmit a data packet with a payload size one byte smaller
than the advertised receiver window from the remote host.
A legitimate host will respond in one of two ways. If the
legitimate host is still busy and has not drained its receive
buffer, it will send an ACK with the receive window de-
creased by the amount of data we send. Alternatively, a
legitimate host will increase its window if the buffer pres-
sure is relieved. In contrast, LaBrea will not respond. How-
ever, in persistent mode, LaBrea will respond to zero win-
dow probes. We therefore distinguish between persistent
and non-persistent LaBrea by sending a zero window probe
and observing whether we receive a response.

Thus, degreaser requires only one TCP connection and a
maximum of four packets per probed IP address, and avoids
non-deterministic network behavior such as response time
measurements.

3.4.2 Random Permutation Scanning
To facilitate large-scale network scanning and avoid trig-

gering anomaly detectors, degreaser includes the ability to
pseudo-randomly scan large network subnets using a cryp-
tographic cipher. We use the RC5 block cipher with a 32-
bit block size to create a pseudo-random permutation over
a much smaller domain. Degreaser automatically switches
between either a prefix-cipher or cycle-walking cipher, as de-
scribed in [7], depending on the number of addresses to scan.
Multiple disjoint subnets are combined in to a single contin-
uous domain to provide pseudo-random scanning across the
entire scan range.

4. FINDING TARPITS IN THE WILD
In our quest to find live tarpit hosts on the Internet, we

first searched on the web for organizations that publicly ad-
mit to using tarpits. Our search revealed only one company
that indicates using a tarpit. In fact, their website pro-
vides a publicly viewable statistics page that shows a list
of all the IP addresses captured by their three tarpitting
hosts. However, we sought to better understand the wider
operational deployment of unadvertised (and previously un-
known) tarpitting on the Internet.

4.1 Probing the Internet
Realizing that as a network defense mechanism, very few

organizations would provide detailed information revealing
tarpit hosts they are running, we scanned the Internet for
tarpits. We used degreaser with the pseudo-random permu-
tation scanning described in §3.4.2 to scan approximately
20 million IP addresses in May, 2014. Using permutation
scanning allowed us to scan at least one host in all of the
≈ 14.5M routed /24 subnets over the course of 30 days.
Out of the ≈ 20 million addresses probed, degreaser dis-
covered 1,451 IP addresses exhibiting tarpit-like behavior
(either LaBrea or the Netfilter TARPIT plugin). We manu-
ally verified a random sample of these hosts, and found that
they did indeed exhibiting tarpit-like behavior, confirming
that our detection methodology works correctly.

From these seed tarpit IP addresses, we used degreaser to
perform an exhaustive scan of each /24 subnet containing
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Figure 6: Distribution of tarpitting subnets based
on their inferred subnet size.

one of the 1,451 tarpit IPs. Often, the majority of these
subnets are completely full of fake tarpit IP addresses. Sev-
eral subnets however were mixed, having tarpits intermin-
gled with real hosts and non-responding IPs. We more com-
pletely characterize the tarpits in the next section.
We then expanded degreaser ’s search to adjacent subnets

to determine if the tarpitting /24 belonged to a larger aggre-
gate tarpitting subnetwork. Overall, we found several larger
subnets (up to /16 blocks) filled with tarpits and totaling
over 215,000 fake hosts.

4.2 Characterization
From our Internet-wide scan, we assimilate a list of 107

different tarpit subnetworks. These networks are spread
across 29 different countries and 77 autonomous systems,
indicating that multiple independent organizations are us-
ing network tarpits. Additionally, the subnet ownership was
diverse, with 51 university subnets, 36 provider subnets,
19 customer subnets, and 1 government subnet exhibiting
tarpit-like behavior. This non-trivial presence of operational
tarpits in the Internet speaks to one aspect of cyber decep-
tion currently used in real networks today. Our survey al-
lows us to understand more about their properties and to
validate some of our reasoning.
Figure 6 shows a breakdown of the various tarpit subnet

sizes, as a function of tarpit type. Of note are the existence
of six large /16 tarpit networks, where a /16 has a total of
216 possible IP addresses. The Netfilter plugins, delude in
particular, are the least prevalent of the tarpits we discover.
LaBrea in persistent mode is more commonly observed than
non-persistent mode, however the“other” tarpit type is most
common for all of the subnet sizes. Recall that “other” are
tarpits that advertise zero-window and behave like a flow-
controlling tarpit, but do not use the default LaBrea or ipt-
ables configuration (with a TCP window of either 3, 5, or
10). These other tarpits may be LaBrea in non-standard
configurations, or another class of tarpit software or device.
Among our tarpitting subnets, we examine the distribu-

tion of latencies we observe during a complete enumeration
of all addresses within those subnets. Figure 7 depicts a sub-
set of all tarpit subnets, where each subnet is represented by
an inter-quartile boxplot and obfuscated identifier. While
the inter-quartile range is small, there are significant out-
liers. However, none of the addresses exhibit a latency larger
than one second, indicating non-ARP based operation.
Next, we examine the occupancy of the tarpitting subnets.

Recall that all of the addresses of some subnets are tarpit-

Figure 7: Latencies from probing addresses within
a subset of our discovered Internet tarpits. Each
tarpit is represented by an inter-quartile boxplot
and obfuscated identifier. While the inter-quartile
range is small, the outliers are significant.

ting, while other subnets are a mix of real and tarpitting
IPs. Figure 8(a) shows the cumulative fraction of tarpit
networks versus their occupancy for each of the fix tarpit
types. We observe a variety of occupancy’s, with persistent
LaBrea being the most highly occupied.

Figure 8(b) again shows the cumulative fraction of tarpit
networks versus their occupancy, but broken down by the
subnet size. Approximately half of all /24’s have an occu-
pancy of 95% or greater, while more than 60% of the /22’s
and /23’s have an occupancy of 95% or more. The occu-
pancy’s of the six /16’s vary more widely; two of the /16’s
are fully occupied (more than 99%), while the other four are
between 15-30% occupied.

Next, we note that many tarpits answer all TCP ports. To
better understand the port-specific behavior of the tarpits
we discover, we probe all addresses within each tarpit subnet
for TCP ports 80, 443, and 34343. TCP port 34343 is not
assigned to any service, and therefore would not typically be
expected to respond. Figure 8(c) shows the cumulative frac-
tion of tarpit networks versus their occupancy as a function
of port number. Unsurprisingly, we observe that by probing
port 80 we find a higher occupancy than port 34343. Of note
however, is that the difference between port 80 and 34343 is
relatively small, suggesting that most of the tarpits we find
answer for all ports.

Finally, with a substantial list of subnets running network
tarpits, we sought out ground truth to further confirm that
our detection methodology is accurate. Since we were unable
to directly find confirmation on any of the subnet owner’s
websites, we utilized Whois[3] records to make email con-
tact. After waiting over two weeks, we had only received
responses from two of the organizations we queried. One or-
ganization’s response was the creation of a “trouble ticket,”
for which we never received further information. The second
organization that responded was helpful and confirmed that
they indeed were running LaBrea on the subnets in question.

The lack of ground truth and unresponsiveness of orga-
nizations suspected of running tarpits makes determining
degreaser ’s false-positive rate difficult to calculate. Lab test-
ing resulted in 100% accuracy, however, due to the numerous
configurable options in existing tarpit software and the pos-



(a) Distribution of inferred tarpits as
a function of their occupancy and
tarpit type.

(b) Distribution of inferred tarpits as
a function of their occupancy and
network size.

(c) Distributing of inferred tarpits as
a function of their occupancy and
TCP port.

Figure 8: Inferred tarpit occupancy (fraction of addresses within network prefix acting as a tarpit).

(a) A fake /22 tarpit subnetwork in an
otherwise high-occupancy region.

(b) 58 of the 256 /24 subnetworks
within this large /16 aggregate are
fake (23%).

(c) The only live addresses appearing in
the highlighted /20 subnetwork are
fake.

Figure 9: Visualizations of tarpits polluting the Internet address space. Data from USC/LANDER
internet address census it58w-20140122 [33], visualized with their IPv4 browser [27]. The red arrow anchor
and white window label points to the fake subnetwork.

sibility of tarpits not based on the stock LaBrea software
or the Netfilter TARPIT plugin, we can not claim perfect
accuracy in the wild. We have not publicly disclosed our list
of suspected tarpits due to security concerns, but we do en-
courage organizations or researchers interested in our work
to contact the authors for access to our results.

4.3 Effect on Internet Scans
With several identified tarpitting subnets we explored how

these tarpits were reflected across several different Internet
scans [4, 2]. For scans that utilized ICMP-based approaches
such as ping, we find these subnets appearing as fully occu-
pied with responding hosts.
For example, Figure 9 shows screenshots of three sections

of the IP address space as viewed from the ISI ANT Internet
census browser [2]. The census browser visualizes subnet uti-
lization by laying out subnets on a Hilbert Curve and then
using a heatmap where increasingly bright green corresponds
to proportionally higher occupancy. Dark regions indicate
regions inferred to be empty, while red indicates negative
replies. Figure 9(a) shows one of the /22 tarpit subnets we
discover, within a region of otherwise high-occupancy. Fig-
ure 9(b) highlights a /16 aggregate where all of the green
corresponds to the 58 of 256 tarpit /24 subnetworks within
the larger aggregate. Last, Figure 9(c) shows a region of
green surrounded by black – this green is a fake /20 tarpit-
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Figure 10: Density relationship of /24’s: inferred
tarpit occupancy vs. Project Sonar half-responding
count.

ting subnet within a larger aggregate that does not respond
otherwise.

Next, we examine the relation between the data we ex-
tracted from the logs of Project Sonar’s HTTP scan from
April 2014 [4] and our inferred tarpit subnets. To facilitate
comparison, we broke each tarpit network into its respective
/24’s. For each /24, Figure 10 evaluates the number of half-
responding IP addresses from the HTTP scan (introduced
in §3.3) versus the number of tarpit IP addresses we infer.

We observe two dominant characteristics of the density
plot. First, we see close agreement between the inferred oc-



cupancy’s of many of the /24’s between the two methods;
these appear along the diagonal and also the large cluster in
the upper right indicative of fully occupied tarpits. A small
number of /24’s with few tarpits but many half-responding
addresses is present. We postulate that these addresses be-
long to tarpits that implement various forms of temporal
timeouts and other non-deterministic behavior; §6 contains
further discussion of these.

A second cluster of /24’s with 40-70 tarpit addresses and
few half-responding addresses raises suspicion that these are
addresses missed by the Project Sonar probing, perhaps due
to timeout thresholds. Similarly, a cluster of fully occupied
tarpit /24’s with 100-150 half-responding addresses also sug-
gests at differences resulting from different probing method-
ologies. In general, we discover more addresses within our
tarpits than are present in the Project Sonar’s HTTP scan
logs. In future work, we plan to more rigorously investigate
these per-/24 discrepancies.

5. BUILDING A BETTER TARPIT
Network deception has proven to be an effective tool to

thwart attackers. Our research has shown that in their cur-
rent state, tarpit applications are relatively easy to detect
and could easily be integrated into malicious scanning tools.
Below we present a few recommendations to improve net-
work tarpits to make them less easily distinguishable.

• TCP Options: Fingerprinting using TCP options
can be overcome by simply to supporting TCP options. In
Section 3.2.2 we showed that the relatively low number of
TCP connections that do not use options is a key indica-
tor of tarpit activity. An improved tarpit would respond
to an incoming SYN with similar TCP options. Append-
ing TCP options could be done easily with minimal perfor-
mance degradation and still maintains the advantage of not
require the tarpit to maintain per connection state.

• Window Obfuscation: Overcoming the TCP win-
dow size characteristic is a much more difficult task since
setting a small window size is fundamental to operation of
existing tarpit applications. The Netfilter TARPIT plu-
gin takes advantage of shrinking the window during the
three-way handshake. The SYN/ACK contains the hard-
coded 5 byte window, but once the client sends the final
ACK, the Netfilter plugin immediately responds with an-
other ACK, this time shrinking the window to zero. This
behavior, however, is easily detectable since it occurs im-
mediately after the connection establishment is complete.
An improved tarpit could take this concept and delay the
window shrinking until later in the connection.

The improved tarpit would send its SYN/ACK with a suf-
ficiently large window. The client would in turn attempt
to send a data packet. The tarpit would examine the data
packet and send an ACK, but only for part of the data
and reduce the window by an amount larger than the size
of the ACK. The client would attempt retransmission of
the “lost” data and the process would continue until even-
tually the window is reduced to zero. Unlike supporting
TCP options, this method requires the tarpit to maintain
a receive window and thus inducing per connection state.
The per connection state is minimal since the tarpit does
not need to keep any of the partial data packets it has re-
ceived. Additionally, once a zero window has been sent, all
per connection state information can be discarded.

By shrinking the window over the course of several data
packets, we continue to lure the client in to the trap, making
immediate tarpit detection more difficult. Of note, the TCP
standard specifically classifies “shrinking the window” as
strongly discouraged behavior, however, for robustness re-
quires conforming implementations to handle this behavior.
While violating the recommendations of the standard, this
robustness requirements assures that our improved tarpit
would continue to effectively trap hosts.

• TCP Retransmissions: One final improvement is in
exploiting the nature of TCP retransmission to improve the
stickiness of the tarpit. Since most TCP implementations
will attempt retransmission at least three times before clos-
ing the connection, an improved tarpit would discard the
first two packets, and wait for the third before responding.
This incurs the cost of having to remember unacknowledged
packets for each TCP connection, but can effectively slow
the connection by several RTTs. The space overhead of re-
membering packets could be reduced by only storing a hash
of the TCP header under the assumption that the host will
not change the header during a retransmit.

6. CONCLUSIONS
In this work, we build degreaser , a tool to infer the pres-

ence of fake tarpitting hosts and networks. By probing at
least one address in each /24 network in the Internet, de-
greaser uncovers more than 100 different tarpit subnetworks.
Notably six of the tarpits are /16’s with two of the /16’s us-
ing all of their addresses to tarpit. Overall, we find over
215,000 active IP addresses that are fake in 29 countries
and 77 autonomous systems.

While the size and extent of tarpits we discover on to-
day’s Internet is small relative to the entire Internet, we are
pleased that degreaser is able to discover these needles in
a haystack. However, even small blocks of tarpit addresses
can greatly slow automated scans as part of their intended
capturing behavior.

Further, our results emphasize that cyber-deception is real
and requires additional research attention. At present, it is
unknown whether the deception we observe is security or
policy related – for instance an attempt to influence address
allocation policies. In general, it is an open question as to
whether the use of deception is becoming more popular. We
thus plan to run degreaser periodically in order to perform
longitudinal study.

While we are confident that our classification of LaBrea
and Netfilter-based tarpits are accurate, our scans reveal
several other behaviors that are inconsistent with either type
tarpit or real hosts. We encounter non-tarpitting hosts that
accept TCP connections on well known ports, ACK data
packets, but provide no application layer response (such as
a HTTP Bad Request). Some of these hosts eventually ter-
minate the connection using FINs, others do not. More ex-
otic behaviors include networks that accept our connection
attempts but after scanning several hosts, suddenly stop re-
sponding. A second attempt scanning the same network
results in no successful connections, while scans from a dif-
ferent origin network are successful. The combined use of
deception and temporal blacklisting warrants future study.

The effectiveness of tarpits is difficult to measure against
the ever increasing range of attacks plaguing the Internet.
This work has shown the simplicity in detecting tarpits and



we can only assume that as malicious scanning tools evolve,
they will become more resilient to the effects of tarpits. Fur-
thermore, we believe that our detection methodology could
easily be incorporated into operating system TCP stacks in
order to automatically skip tarpits, providing immunity to
all network applications (abusive or otherwise).

Due to the negative effect these tarpitting subnets have
on a variety of legitimate network scans, we suggest more
explicit distribution of known-tarpits among whitehat com-
munities in conjunction with using techniques developed in
degreaser . Further, we presented avenues for future research
into making tarpits more resilient to detecting and more be-
lievable to adversaries. We thus hope this work serves to
raise awareness of a particular form of network deception
that is popular in the wild, and its present-day implications.
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