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ABSTRACT

RIPE IPmap is a multi-engine geolocation platform operated by the
RIPE NCC. One of its engines, single-radius, uses active geolocation
to infer the geographic coordinates of target IP addresses. In this
paper, we first introduce the methodology of IPmap’s single-radius
engine, then we evaluate its accuracy, coverage, and consistency,
and compare its results with commercial geolocation databases. We
found that 80.3% of single-radius results have city-level accuracy
for our ground truth dataset, and 87.0% have city-level consistency
when geolocating different interfaces on the same routers. Single-
radius provided geolocation inferences for 78.5% of 26,559 core
infrastructure IP addresses from our coverage evaluation dataset.
The main contributions of this paper are to introduce and evaluate
the IPmap single-radius engine.
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1 INTRODUCTION

Geolocation of Internet edge hosts is a service offered by several
commercial players, because parties such as online retailers and
advertisement companies need locations of existing and potential
customers to tailor content or comply with license restrictions.
Corporations like Google and Skyhook Wireless have developed
systems to collect GPS coordinates from consumer devices [26]
and determine customer locations based on their Wi-Fi network
[34]. YouTube uses such technology to serve region-specific con-
tent or balance load in the face of congestion [33]. In contrast to
end hosts, geolocation of core infrastructure such as routers has a
smaller market and thus less attention from commercial players.
But Internet researchers need to geolocate core infrastructure for
many studies, including analysis of interconnection topology and
congestion [17], evaluating impacts of regulations [25], and classi-
fying malicious activity [15]. Over the last decade researchers have
explored geolocation inference using active measurements.

In 2017, Trammell et al. [45] showed that the accuracy of active
geolocation methods such as constraint-based-geolocation (CBG)
[21] varies significantly depending on the proximity of vantage
points to the targets. Accurate CBG requires vantage points within
sufficiently small round trip time (RTT) from targets, which re-
quires geographic proximity to targets. In 2018, Trammell et al. [46]
described such situations as “lucky," since the worldwide coverage
of vantage points determines the probability of finding one close to
the target. With over 10K measurement nodes distributed across 179

countries [42], the RIPE Atlas [43] measurement platform provides

researchers with by far the best opportunity for this luck.

In 2017, RIPE Atlas introduced an RTT-based module to its [Pmap
geolocation platform [41], including a public API to access geoloca-
tion inferences for specific target IP addresses. This module, called
the single-radius engine, infers the coordinates of a target IP address
using the location of the Atlas probe with the lowest RTT to the
target [11]. This methodology seeks out Trammell’s lucky situa-
tions, which leads to questions about its performance: How often
is it lucky, and how accurate are the results? We approach these
questions by evaluating four aspects of single-radius:

e Accuracy: We validate single-radius inferences against our ground
truth dataset and compare them with commercial databases (Ne-
tAcuity [5] and MaxMind [3]).

e Probe Selection Effectiveness: we calculate the distance be-
tween the selected probe and the target in our ground truth
dataset.

e Coverage: We examine how many addresses from our intercon-
nection IP dataset single-radius geolocated.

e Consistency: We compare single-radius geolocation inferences
for different interfaces known to be on the same routers.

2 BACKGROUND AND RELATED WORK

Existing IP geolocation techniques fall into two main categories:
passive geolocation and active geolocation.

Passive geolocation exploits information such as DNS hostnames,
DNS LOC records (RFC1876 [16], rarely populated), crowd-sourced
user location reports, resource registry information, and commer-
cial databases. DNS hostname-based geolocation exploits conven-
tions that some ISPs follow to encode geographic information such
as airport codes or city names in router hostnames. This approach
maps an IP address to a hostname through a reverse DNS lookup,
and extracts encoded geographic hints from the hostname. Huffaker
et al. [23] explored naming conventions for second-level domains
and used active measurements, location dictionaries, and machine
learning to extract geographic hints from domain-specific naming
conventions. Scheitle et al. [44] mixed passive and active geoloca-
tion techniques by extracting a list of candidate cities from host-
name substrings and confirming them with ping measurements.

Commercial geolocation datasets provide a static mapping be-
tween IP address ranges and geographic locations. The method-
ology for updating such datasets is proprietary, but likely relies
on a combination of public datasets, e-commerce logs, active ge-
olocation, and manually-provided updates by network operators.



They often start with public datasets such as the Regional Internet
Registries (RIRs) WHOIS databases which provide a contact address
for allocated IP address ranges. E-commerce logs enable mapping
users’ IP addresses to geographic information they provide such
as shipping addresses. Operators may also actively submit correc-
tions to such databases. These commercial databases are primarily
used for e-commerce, targeted advertising, and meeting geograph-
ically scoped legal requirements; thus, they focus on accurately
locating end users (edge hosts) in the developed world. As such
they often provide low accuracy for IP addresses used on Internet
infrastructure such as routers and servers [20, 22, 38].

Active constraint-based geolocation uses probes, usually ping or
traceroute, from a set of vantage points with known locations to
collect end-to-end delay and IP topological measurements between
vantage points and targets. Delays are converted into geographical
distances using some distance-delay coefficient that constrains the
target’s set of possible locations. This set can be further constrained
using topology knowledge, such as a shared path with a different IP
address whose location is known, or heuristics such as preferentially
inferring locations with higher populations.

The simplest approach, introduced by Venkata et al. [36], is
to geolocate the target to the location of the vantage point with
the lowest latency. A more advanced approach is multilateration,
presented by Gueye et al. [21], which geolocates a target to the
intersection of distances calculated by multiple points of view, thus
establishing a continuous space of answers instead of a discrete
one. Other researchers have used information about intermediate
hops in traceroutes (RTTs, reverse DNS, and alias resolution) to
infer target locations [19, 27, 30].

In many geolocation methodologies, the distance-delay coeffi-
cient adopted is derived from % of the speed of light, which is the
speed of a signal traversing an optical fiber [27, 45]. Candela et
al. [13] suggested that infrastructure diversity leads to distance-
delay coefficients that vary by region. For example, it is common for
the Middle East to experience inflated RTTs from indirect routing
since many interconnection links for this region are in Europe [12].
Hence, Candela et al. divided the world into seven regions and
calculated a coefficient for each region by means of latency mea-
surements and a ground-truth dataset.

Most active geolocation techniques require either significant
computation or preprocessing. The single-radius engine in the RIPE
IPmap platform is designed to be closer to a real-time active ge-
olocation solution, and therefore chooses computational efficiency
over more complex measurement approaches.

3 SINGLE-RADIUS METHODOLOGY

Single-radius performs four steps for every geolocation request:

(1) Map the target IP to the AS announcing its containing pre-
fix using RIPE RIS BGP data [39]. Find a set of RIPE Atlas probes
topologically close to the target IP 3.1. Schedule a ping measure-
ment from the selected probes. Return an estimated measurement
duration to the user.

(2) Collect all resulting RTTs and discards those above 10ms.
Convert remaining RTTs to one-way latencies, RTT /2. This filtering
assumes that geolocation using distant probes (e.g. on another
continent) is not effective [45].
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(3) Select probe p with minimum latency, and convert it to dis-
tance d using a distance-delay coefficient of %c.

(4) Use location of p as center of circle C with radius d. Select 100
closest cities to p using the RIPE Worlds database [8], based on the
shortest distance between p and the city. Select only cities inside
circle C, hence lower latencies yield fewer cities. Finally, rank cities
3.2 and return the highest ranked one to user.

3.1 Initial Probe Selection

Unlike most previous efforts, which used all available vantage
points, single-radius limits the number of probes it dedicates to a
single geolocation measurement. While using all vantage points
provides maximum possible coverage [13], it does not scale in
practice. For RIPE Atlas, this approach requires 10, 000 ping mea-
surements for each geolocation of a single IP address. Not only
would this drastically increase the usage of the Atlas platform and
the time needed for measurements to be scheduled and collected,
but it would also cause ICMP rate limiting close to the probes [24],
and trigger anti-flood and DDoS alerts [47].

The design goal is to use the fewest measurements possible to
find probe p with the lowest RTT x to the target. We would like
p to be a member of the initial set of probes. Single-radius tries
to achieve this by selecting probes that are topologically, if not
geographically, near the target ¢ by selecting probes either in AS(z),
the AS of target, or in AS-level neighbors of AS(t). Single-radius
creates a list of cities C and a list of ASes A as follows.

(1) Add AS(t) to A.

(2) Add to C the cities where AS(t) has a probe.

(3) Add to A the ASes neighbors (BGP distance 1) of AS(¢). Data
from [40].

(4) Add to C the cities with Internet Exchange Points (IXPs)
where AS(t) is present. Data from PeeringDB [37].

(5) Add to A the ASes present at the IXPs identified instep 4.

(6) Add to C all the cities corresponding to the facilities where
AS(t) is present. Data from PeeringDB [37].

(7) Add to A the ASes peering at facilities identified in (6).

Once the lists are populated, single-radius places up to 500 probes
into the probe-list, in the following order: 1) Select up to 100 random
probes from AS(t); 2) Select up to 10 random probes from each AS
in A; 3) Select up to 50 probes for each city in C. If the engine is not
able to infer the inter-domain topology and the A and C lists are
empty, select 700 random probes worldwide (the effectiveness of
this approach is examined in § 6.2).

3.2 Ranking Cities

Single-radius creates a list of at most 100 possible cities, sorted
in order of probable location of ¢. The rank is weighted by three
parameters: 1) the distance of the city from p; 2) the number of
facilities and IXPs present in the city [37]; 3) the population of
the city [8] (similarly to what done by Cicalese et al. [14]). The
distance of the city from p has a weight inversely proportional to
the latency (i.e. weight = 10 — 7). When the returned RTT 7 is
high, the distance from p has a lower impact in the final rank. The
reason behind using the number of facilities and IXPs present in
the city as a parameter is that IPmap focuses on geolocation of core
Internet Infrastructure.
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Cont Ark NLNOG M-Lab | Ark-prox Total
O Ip ASN| IP ASN|IP ASN|IP ASN| IP ASN

AF 26 25 8 7 7 6 0 0 41 34
AS 26 21 28 20 14 10 | 90 17 158 57
EU 60 50 | 359 323 | 55 16 | 35 17 | 509 375
NA 80 59 89 71 69 22 4 2 242 140
oC 9 7 11 11 5 3 56 32 81 46
SA 16 15 11 11 5 5 21 5 53 29

Table 1: Number of IPs and AS coverage per continent.

4 DATASETS

4.1 Commercial Geolocation Databases

We compare city-level accuracy of single-radius against two com-
mercial databases using data from October 2019: Digital Element’s
NetAcuity and MaxMind’s free GeoLite2. NetAcuity claims to be
99.99% accurate on the country-level and 97% on the city-level [5],
and MaxMind states its GeolIP2, the paid version has 99.8% country-

level accuracy and 86% city-level accuracy within the U.S.in 2019 [32].

We consider these values to be upper bounds on their accuracy.
Gharaibeh et al. [20] find that for 4,869 known IP address locations
in the RIPE NCC service region, NetAcuity and MaxMind GeoLite2
achieve 90.0% and 70.5% country-level accuracy, respectively. In the
ARIN service region, they find NetAcuity and MaxMind are 88.6%
and 78.9% country-level accurate, respectively, on 10,711 ground
truth addresses.

4.2 Ground-Truth Dataset

Our ground-truth dataset is composed of hosts belonging to three
measurement platforms: NLNOG Ring Nodes [35], M-Lab Pods [29],
Ark Monitors [1]. The location of the hosts is retrievable from each
platform’s website. A summary is presented in Table 1.

Netherlands Network Operators’ Group’s (NLNOG) Ring is a col-
lection of virtual machines on participating organization’s servers.
Each organization has its own AS number and is connected to the
Default Free Zone. As of October 2019 there were 515 Ring nodes
in 55 countries. We include the IP addresses of 500 nodes that were
reachable by ping.

Measurement Lab (M-Lab), operated by Google, hosts Pods in
data centers and ISPs around the world. As of October 2019, there
were 155 pods in 35 countries. We add public IP addresses of 148
M-Lab Pods that were reachable by ping.

CAIDA’s Archipelago’s (Ark) hosts are deployed in residential,
academic, and ISP networks. There were 217 hosts in 54 countries
as of October 2019. Many Ark monitors are behind firewalls and
only 123 responded to ping; we used the methodology from [20] to
geolocate IP addresses from Ark traceroutes in the September 2019
Routed 24 topology dataset [7] within 0.5ms from Ark monitors to
the same known location as the Ark monitor. These IPs are likely
within 26.5km [13] or at most 33.3km [27] from the Ark monitor.
We obtain 206 ark-proximity hosts that were reachable by ping,
which increases AS diversity by 55.6% compared to that of the
responding Ark monitors alone. After inspection, we remove nine
entries from our dataset due to malformed coordinates. Our final
dataset has 968 addresses in 651 ASes and 84 countries.

4.3 Consistency: CAIDA Topology Dataset

CAIDA’s Macroscopic Internet Topology Data Kit contains IPv4
router-level topology knowledge derived by performing alias res-
olution on traceroutes to each /24 prefix collected by Ark [6]. We
infer routers using two alias resolution techniques, MIDAR and
iffinder [10, 28]. We randomly select 540 routers and up to 4 in-
terfaces on each router from 82 million routers in the April 2019
router collection. We refer to this dataset as the ip-alias dataset. We
use this data set to evaluate whether single-radius geolocates a pair
of interfaces on the same router to the same location.

4.4 Coverage: MANIC Interconnection Dataset

We use CAIDA’s MANIC dataset to obtain IP addresses of inter-
domain links [4]. The interdomain link’s IP addresses are inferred
using CAIDA’s border mapping algorithm bdrmap from the tracer-
outes collected by CAIDA’s Ark monitors [31]. By choosing a week-
long snapshot since September 1, 2019, we obtain 26,559 intercon-
nection IP addresses that represent core Internet router infrastruc-
ture. We refer to this dataset as the manic-links dataset and use it
to evaluate the coverage of single-radius.

5 EVALUATION OF SINGLE-RADIUS

We describe our method for evaluating the accuracy, coverage, and
consistency of single-radius, as well as how we compare it with
NetAcuity and MaxMind GeoLite2. We use the great-circle distance
to calculate the geographical distance between any two coordinates,
denoted as GC(latlongg, latlongy,).

Accuracy: we evaluate the accuracy of single-radius results on
our ground truth dataset. We define error distance d¢,, using
Formula 1, which calculates the distance between true coordinates
latlong,cty,q; and the inferred coordinates obtained from single-
radius, NetAcuity, and MaxMind latlong;pferred-

derr = Gc(latlongactualvlatlonginferred) (0

Probe Selection Effectiveness: Section 3.1 explains how single-
radius attempts to select probes geographically near the target IP
address by selecting probes topologically close at the AS level. Since
larger ASes have greater geographical and topological diversity, we
suspect the single-radius probe selection mechanism will perform
poorly on very large ASes. Dhamdhere et al. [18] classifies ASes
into four types based their peer degree and customer degree. We
adopt this classification scheme with the modification where we
only consider the customer degree of an AS, and divide the ASes
into three classes to test probe selection performance:

e Enterprise Customers and Content/Access/Hosting

Providers (EC/CAHP): CustomerDegree < 2
e Small Transit Providers (STP): 2 < CustomerDegree < 180
e Large Transit Providers (LTP): CustomerDegree > 180

We obtain the customer degree of ASes from ASRank [2]. We
quantify probe selection effectiveness using probe proximity dis-
tance d;, ;4 defined by Formula 2. We collect from the RIPE Atlas
platform the coordinates L.j,.s; Of the Atlas probe closest to the
target IP, and Lg,j.creq coordinates of Atlas probe selected by
single-radius probe selection.

dppd = GC(LtargetyLselected) - GC(Ltargetchlosest) (2)
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Figure 1: Geolocation results vs. ground truth error.
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Figure 2: Regional breakdown of single-radius accuracy.

We also examine the geolocation error using Formula 1 for IP ad-
dresses in each category.

Coverage: we count the number of manic-links IP addresses
that single-radius geolocated given a 3-day window and compute
its percentage of successfully geolocated IP addresses. We use our
ground truth data to explore the relationship between geolocation
accuracy and maximum RTT.

Consistency: we evaluate the consistency of single-radius re-
sults on our ip-alias dataset. All of a router’s interfaces should
geolocate to the same location. After obtaining the geographic
coordinates latlongi, latlongy, ..., latlongy, of n interfaces Iy, I, ...,
I, on each router, we calculate the router-level disagreement
distance dgyp using Formula 3:

drLD = mrzli_x GC(latlong;, latlong;) 3)
l’j

This formula first calculates the great circle distances between the
inferred geolocations of every pair of interfaces on the same router,
and then takes the maximum for each router as the router-level
disagreement distance.

6 RESULTS

6.1 Accuracy

We queried all 968 IP addresses from our ground truth dataset and
obtained 870 results, against which we evaluate the accuracy of
single-radius. We consider geolocations within 40 km of the true
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Figure 4: Error distances are greater for large transit
providers.

locations to be accurate, a threshold used in previous geolocation
studies [20] because it reflects a metropolitan area perimeter.

Figure 1 shows the error distance of single-radius, NetAcuity,
and MaxMind in log scale. Single-radius outperformed the other
two services on our ground truth dataset. Single-radius achieved
median, 75-th, and 95-th percentile error distances of 6 km, 26
km, and 344 km respectively. In contrast, those of NetAcuity and
MaxMind were 10 km, 80 km, 2867 km, and 17 km, 278 km, 2886
km, respectively. We found that 80.3% of single-radius results were
within the 40-km error threshold, represented as a vertical purple
dotted line. Figure 2 shows the regional breakdown of single-radius’
accuracy.

6.2 Probe Selection Effectiveness

To study how single-radius probe selection performs for the AS
categories defined in § 5, we downloaded 647 measurements tagged
with single-radius and active-geolocation from RIPE Atlas
and classified their target IPs: 274 IPs in EC/CAHP ASes, 292 IPs in
STP ASes, and 81 IPs in LTP ASes. Figure 3 shows the median probe
proximity distance for EC/CAHP, STP, and LTP ASes are 0.36
km, 0.27 km, and 17.63 km respectively. Median probe proximity
distances in LTP ASes are two orders of magnitude greater than that
of EC/CAHP and STP ASes, which indicates that single-radius’
probe selection mechanism is less effective for larger ASes.
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Figure 6: A 2-ms threshold keeps the error distance < 40 km.

To further illustrate the impact of probe selection on geolocation
accuracy, Figure 4 shows the distribution of error distances from
locations of IP addresses in our ground-truth dataset for each AS
category. We find that 80.6%, 76.1%, and 55.8% of single-radius
results are within the 40-km error threshold for EC/CAHP, STP,
and LTP ASes. That is, IPs classified in LTP ASes exhibit larger
error rates across for all sources.

6.3 Coverage

Of the 26,559 manic-link IP addresses, only 16,245 responded to
any RIPE Atlas ping. We kept only these addresses in our coverage
dataset and excluded those that were unreachable at the time of
the experiment. Single-radius provided results for 12,319 (78.5%)
of the reachable addresses. Figure 5 shows the relationship be-
tween coverage and RTT threshold. Switching from the default
10ms threshold to 5ms drastically dropped coverage to 51.1%, but
increased accuracy.

Figure 6 shows the relationship between accuracy and RTT
threshold using our ground truth dataset. The error distances were
almost all below 40 km. We see the 95-th percentile of error dis-
tances exceeds 40 km when the maximum RTT exceeds 2 ms. Were
a user to choose a 2-ms threshold, the manic-link coverage would
further decrease to 3,916 (24.1%) according to Figure 5.

6.4 Router-Level Consistency

Figure 7 plots the router-level disagreement distances of 540 routers
from § 4.3 according to equation 3 in § 5. The plot shows the median
and 75-th percentile router-level disagreement distances were 0

km and 16 km respectively. Using 40 km again as the city-level
consistency threshold, we found 470 out of 540 (87.0% of) geolocated
routers with city-level consistency. Next we analyze a case in which
the inferred geolocation of the interfaces on the same router were
more than 40km away from each other.
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Figure 7: 61.3% of routers had all interfaces geolocated by
single-radius to the exact same coordinates.

6.5 Case Study: Inconsistent Geolocation

We examine an interesting case: a single router with two IP ad-
dresses, one of which single-radius geolocated to Vienna, Austria
and the other single-radius geolocated to Budapest, Hungary. Using
traceroutes and reverse DNS lookup, we manually confirmed these
two addresses were from two interfaces on the same router located
in Budapest. We analyzed single-radius’ procedure (§ 3). Figure 8
illustrates the conflict that led to incorrect geolocation of one router
interface to Vienna, which followed these steps:

1. In the compiled prob-list, the probe with the lowest RTT, 7.86
ms, was in Vienna (red marker). We call this Atlas probe Pyienna-

2. Single-radius translated the RTT into geographical distance d
using %c as distance-delay coefficient. The red bold circle with ra-
dius d and center of Py jennq shows the inferred possible geographic
region of the target.

3. RIPE IPmap selected 100 cities inside the red bold circle closest
to Pyienna- The blue shaded region circumscribes the geographic
scope of the selected 100 cities.

4. Finally, the ranking module returned Vienna as the highest
among all 100 cities as it had the most population.

We identify two factors that contribut to this erroneous geolo-
cation. First and foremost, single-radius probe selection fails to
select an Atlas probe in Budapest for one router interface during its
final random selection process (§ 3.1), and instead, selects Pyienna-
Second, Budapest is not within the blue shaded circle centered
around Vienna (Figure 8), hence not considered during ranking.
Single-radius’ selection of only the closest-100 cities may not be
effective in areas with numerous small cities.

7 RECOMMENDATIONS

Our experience yields many insights that suggest potential improve-
ments to single-radius, although some require a deeper analysis of
trade-offs in scalability (including load on the RIPE Atlas platform),
reliability, and immediacy.

For users: We recommend that users make a conscious tradeoff
between accuracy and coverage, using Figures 5 and 6. Users must
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separately obtain the geolocation at https://ipmap.ripe.net/
api/v1/locate/[IP]/partials/single-radius and RTT from
selected Atlas probes to target at https://ipmap.ripe.net/api/
v1/single-radius/[IP]. Users can then choose to accept or reject
the geolocation result based on the corresponding RTT.

For RIPE IPmap developers: 1) Using %c as the distance-delay
coefficient ignores RTT inflation caused by factors such as queuing
delay and routing circuitousness, and likely overestimates geo-
graphic distance traveled by packets. We recommend customizing
this coefficient per region as described in Candela et al’s recent
study [13]. We experimented with changing the value of %c in§3
step (3) to region-specific distance-delay coefficients, and repeated
subsequent steps for the same IPs used for the accuracy analysis in
§ 6. This change improved (dropped) the geolocation error in only
0.96% of the cases; in no cases did the geolocation error increase.
The modest impact of the regional distance-delay coefficient is due
to the fact that single-radius nominates at most 100 cities closest to
the selected Atlas probe within the red circle. For example, in Fig-
ure 8, the red bold circle is drawn using a distance-delay coefficient
of %c, the smaller brown circle is drawn using a regional coefficient,
and the shaded blue area covers approximately the closest 100 cities.
The highest ranked city, used in our evaluation, is usually so close
to the probe returning the minimum RTT that the tighter constraint
introduced by the regional coefficient made no difference. However,
this tighter constraint significantly reduced the number of returned
cities for a target, by 60.53% on average, thus reducing result ambi-
guity. In no case did the tighter constraint erroneously exclude the
true city of the target. Such tighter geographical constraints would
work better with a multilateration approach.

2) Single-radius uses only the result provided by the single probe
with the lowest RTT to the target. A multilateration engine that uses
results from multiple Atlas probes would allow IPmap to increase
coverage in regions where Atlas node deployment is sparse.

3) Removing intrinsic RTT inflation due to connection types (e.g.
DSL, satellite links) may improve accuracy. Bajpai et al. [9] show
last-mile latency on different residential network providers remains
stable over time. Since single-radius might select Atlas probes on
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residential networks, subtracting last-mile latencies from measured
RTTs may significantly improve accuracy.

4) Using the minimum of multiple RTTs collected over a longer
period would filter out noise from temporarily inflated latencies.

5) For cases where the ping RTT is high (e.g. greater than 5 ms),
single-radius could initiate a traceroute to the target, gathering
path information to help identify convoluted routing.

6) Single-radius could tune the number of cities close to the probe
based on the size of the metropolitan area of the target (§ 6.5).

8 LIMITATIONS

Ground truth inadequacy. Due to a small ground-truth dataset,
our accuracy evaluation is not comprehensive. IP geolocation ground-
truth data is hard to obtain. To avoid bias, we cannot consider RIPE
Atlas probes in the ground-truth dataset, since RIPE IPmap uses
RIPE Atlas for the measurements.

Geographical bias ground truth. Most IP addresses from our
ground-truth dataset are located in Western Europe and the con-
tiguous U.S. Single-radius accuracy appears to differ by region, so
the results shown here may not hold in all regions.

AS sampling bias. Most of our ground truth IP addresses belong
to EC/CAHP and STP ASes, which leads to an imbalanced number
of data points when analyzing the effectiveness of single-radius’
probe selection mechanism.

Limited access to RIPE NCC platforms. We only test some
of the recommendations for improving IPmap because certain ex-
periments require deploying system-wide changes to the platform.
We are collaborating with RIPE NCC for future experiments.

9 SUMMARY

We described in detail the methodology of RIPE IPmap’s single-
radius engine, and evaluated its accuracy, coverage, and consistency.
We evaluated its accuracy on 870 ground-truth addresses and com-
pared results against two commercial geolocation databases. We
find 80.3% of the inferred geolocations have city-level accuracy, and
higher accuracy than both commercials databases. We find that
single-radius’ median error distance is 17.27-km greater on larger
ASes compared to smaller ASes, consistent with the fact that for
larger ASes (which tend to have wide geographic footprints), single-
radius’ probe selection mechanism is more likely to select an Atlas
probe farther away from the target IP. We evaluated its coverage
on 16,245 core router infrastructure (interconnection) IP addresses
from September 2019 and find that single-radius produces results on
78.5% of them. We evaluated its consistency on multiple interfaces
of 540 routers from the April 2019 Internet Router Topology dataset
[6], and find that single-radius achieves city-level consistency on
87.0% routers. We believe the RIPE IPmap single-radius engine, and
the IPmap platform more generally, can contribute significantly to
Internet geolocation research.
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A REPRODUCIBILITY

All the datasets used in this research are of public access. We provide

here the complete list for easy access:

o RIPE IPmap single-radius engine: https://ipmap.ripe.net/
api/v1/single-radius/

o CAIDA Ark Monitors: https://www.caida.org/projects/ark/
locations/

e NLNOG Ring Nodes: https://api.ring.nlnog.net/1.0/nodes/
active

e M-Lab Pods: https://siteinfo.mlab-oti.measurementlab.
net/v1/sites/geo. json

e CAIDA Routed IPv4 /24 Topology Traceroute (ark-proximity
dataset): https://www.caida.org/data/active/ipv4_routed_
24_topology_dataset.xml

o CAIDA Macroscopic Internet Topology Data Kit (ITDK): https:
//www.caida.org/data/internet-topology-data-kit/

o CAIDA MANIC API: https://api.manic.caida.org/v1/

e CAIDA AS Rank: https://api.asrank.caida.org/v2/docs
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