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ABSTRACT
We present the design, implementation, evaluation, and validation
of a system that automatically learns regular expressions (regexes)
to extract network names from Internet hostnames assigned by op-
erators using their own conventions. Our fully automated method
does not rely on a human to provide a starting regex, labeled ex-
amples of valid extractions, or a dictionary of network names. Our
method first learns the dictionary of network names, and then auto-
matically generates and evaluates regexes that extract these names.
We validate our dictionary against ground truth, finding that 97.3%
of the names our regexes extract are valid names for the networks.

CCS CONCEPTS
• Networks → Naming and addressing.
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1 INTRODUCTION
Every Internet-connected network device requires an Internet Pro-
tocol (IP) address to communicate with other Internet devices. Since
the numbers in IP addresses provide little context to people, the
Domain Name System (DNS) provides mappings between IP ad-
dresses and hostnames – a sequence of alphanumeric characters
and punctuation that people can understand. To participate in the
DNS, an organization registers a suffix (e.g., zayo.com), and can use
any sequence of characters they choose in the hostname, prior to
the suffix.
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zayo-netflix.iad10.us.zip.zayo.com

netflix.sgix.sg

netflix-gw.customer.alter.net

netflix1.fra.ecix.net

netflix1-lacp-100g.hkix.net

netflix-inc.ear2.sanjose1.level3.net

nflx1.ix.fl-ix.net

as2906.saopaulo.sp.ix.br

zayo.vdms.mpr4.atl6.us.zip.zayo.com

verizondigitalmedia-com.customer.alter.net

edgecast-gw.customer.alter.net

verizondms.jfk10.atlas.cogentco.com

as15133.cr2-nyc6.ip4.gtt.net

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

(K)

(L)

(M)

Figure 1: Example hostnames for connections with Netflix
(A-H) and Verizon Digital Media Services Edgecast (I-M). Each
operator, indicated with their underlined suffix, has its own
convention. We highlight network names with a bold green
font, and geographic locations with a blue font.

This paper focuses on extracting network names that network
operators embed in hostnames to convey interconnection struc-
ture. When two networks interconnect in the Internet, one network
will provide an IP address and associated hostname to the other
network to facilitate interconnection. How operators embed a ref-
erence to the interconnecting network, and any other information
they choose to disclose in the hostname, is solely up to the operator
assigning the name. Figure 1 shows operators placing references
to “Netflix” and “Verizon Digital Media Services Edgecast” in the
hostnames. Each network operator – identified by their suffix –
uses its own conventions to convey information; e.g., hostname
A shows that Zayo connects with Netflix in the Washington, D.C.
(“iad”) area. These hostnames are important to operators when trou-
bleshooting network-level problems, since diagnostic tools output
IP addresses that require additional context. These hostnames also
prove immensely valuable to Internet infrastructure researchers, as
identifying the network that operates a router is critical to under-
stand connectivity within and between organizations. For example,
recent work that required accurate identification of the network
that operated a router examined patterns of congestion between
networks [8, 10, 31], the connectivity and performance of cloud
providers [23, 26, 32, 33], macroscopic impacts of submarine ca-
ble deployments [9], load balanced paths within and between net-
works [25, 28], routing detours [12], and the ability of a certificate
authority to defend against domain validation attacks [3].
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64.125.13.86
zayo-netflix.iad10.us.zip.zayo.com

64.125.13.85
ae0.er5.iad10.us.zip.zayo.com

Zayo - AS 6461

64.125.12.237
xe-3-3-0.er5.iad10.us.zip.zayo.com

64.125.13.165
xe-4-2-2.er5.iad10.us.zip.zayo.com

Netflix - AS 2906

64.125.13.166
zayo-iij.iad10.us.zip.zayo.com

IIJ - AS 2497

64.125.12.238
zayo-ft.iad10.us.zip.zayo.com

FT - AS 5511

Zayo Router: er5.iad.us ^zayo-([a-z\d]+)\.[a-z]{3}\d+\.[a-z]{2}\.zip\.zayo\.com$

R1

R2

R3

R4

Figure 2: A logical diagram showing how a single router operated by Zayo (R1) interconnects with routers operated by Netflix
(R2), Internet Initiative Japan (R3, IIJ), and France Telecom (R4, FT). Each of these networks has their own Autonomous System
(AS) number that uniquely identifies them. Our method first automatically learns the mapping of AS numbers to network
names, and then automatically learns regexes to extract these network names.

There is no universal convention for embedding information in
these hostnames. They evolve over time to convey new or different
information as networks and operators change. Hostnames often
use abbreviations and common identifiers that other network opera-
tors understand. But, they lack a universal, well-defined format and
dictionary that would make them easily decipherable by machines.
Instead, each network typically decides on a small number of pat-
terns and identifiers that they use when generating hostnames in
their suffix.

Regular expressions (regexes) are the dominant method of prac-
tically extracting information from text that contains information-
encoding patterns [15]. Most regexes are hand-crafted with a hu-
man in the loop (HITL) to account for complex expressions [34].
However, a HITL approach does not scale for our problem; there
are tens of thousands of networks (suffixes) in the Internet with
varied conventions, but only a few hundred networks (suffixes)
embed interconnection information. In this paper, we describe a
method for automatically learning regexes to extract and interpret
the name of the network that operates a router in the Internet from
hostnames. Unlike hand-crafted regexes, our approach is easily
reproducible, does not rely on a set of manually labeled training
data, and adapts to changes in suffix conventions over time.

Our primary contribution in this work is to design, implement,
and validate an automated method that (1) learns a dictionary of
network names, and (2) learns regexes that extract network names
from hostnames. We apply this method to the most comprehensive
Internet topology data available to researchers. In the interest of ex-
tensibility and reproducibility, we publicly release our software [17]
and datasets [22].

2 BACKGROUND AND RELATED WORK
2.1 Internet Interconnections
This paper focuses on extracting information from Internet router
hostnames; we briefly discuss how network operators interconnect
routers, and thus the significance of the hostnames. We illustrate
with an example using router R1 in Zayo’s global ISP network on
the left hand side of figure 2, which connects with three routers
on the right hand side operated by Netflix, Internet Initiative Japan

(IIJ), and France Telecom (FT), so that these networks can exchange
traffic. Zayo controls IP addresses beginning with IP address prefix
64.125, and provides addresses starting with this prefix to Netflix,
IIJ, and FT so that these networks can connect to Zayo.

Because Zayo controls IP addresses beginning with the address
prefix 64.125, it also controls the hostnames associated with those
addresses. Zayo’s convention is to begin those hostnames with
the string “zayo”, followed by a string that identifies the neighbor
network in the hostname, a three-character string identifying the
geographic location where they connect, and the corresponding
two-letter country code. There is no database that identifies the
name of the network that controls a router with a given IP address
or hostname, presenting a challenge to any method that seeks to
automate learning these conventions.

The Internet is organized into Autonomous Systems (ASes) –
each AS typically maps to a single organization and is identified
by a unique number (an ASN). The Internet’s routing protocol uses
ASNs to organize dynamic routing; i.e., determine how to get traffic
between two Internet users. There is no public ground truth that
identifies which ASes use which IP addresses – e.g., that AS 2906
uses 64.125.13.86. There are heuristic algorithms that imperfectly
infer this mapping, such as RouterToAsAssignment [13] (RTAA)
and bdrmapIT [24]. bdrmapIT is the current state of the art, which
inferred the correct ASN for 95.3% of addresses according to ground
truth from four network operators [24].

While there is no database that identifies the name of the network
that controls a router with a given IP address or hostname, there
are two databases that record network names for ASNs. The first,
known as “WHOIS”, contains information that a network operator
submits to their Regional Internet Registry (RIR) when the operator
obtains an ASN, including contact information for the network, as
well as an organization name. While every AS in the Internet has
a record in WHOIS, operators update these records infrequently
and so the records can become out of date [5]. The second, known
as “PeeringDB”, is self-reported by vetted operators at each net-
work, who use it to help coordinate interconnections. PeeringDB
contains more information than WHOIS, such as specific physical
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W OrgName:

W ASName:

PDB Name:

PDB Website:

PDB A/K/A:

PDB IRR:

MCI Communications Services, Inc.

d/b/a Verizon Business

EDGECAST

Verizon Digital Media Services

(EdgeCast Networks)

https://www.verizondigitalmedia.com/

EdgeCast Networks

AS-EDGECAST

(a) AS 15133 - Verizon Edgecast

W OrgName:

W ASName:

PDB Name:

PDB Website:

PDB A/K/A:

PDB IRR:

Orange S.A.

Opentransit

Orange

https://wholesalesolutions.orange.com/

Opentransit - IP Transit 5511

AS-OPENTRANSIT

(b) AS 5511 - Orange France Telecom

Figure 3: Information available for ASes in the WHOIS (W)
and PeeringDB (PDB) databases. The unstructured informa-
tion in these databases is useful for cross-validating infer-
ences, but is incomplete.

locations (buildings) where the network can interconnect. Peer-
ingDB records are updated more regularly because the interface is
easier to use [16]. However, there are fewer networks recorded in
PeeringDB; as of March 2021, there are ≈19K routed networks in
PeeringDB, compared to ≈71K routed networks in WHOIS.

Figure 3a shows WHOIS and PeeringDB information for Edge-
cast, the network referenced in hostnames I-M in figure 1. While the
network names embedded in those hostnames relate to information
in WHOIS and PeeringDB, hostnames I and L contain derivatives
“vdms” and “verizondms”. Figure 3b illustrates information available
for FT, featured in router R4 in figure 2. Zayo uses an acronym (FT)
as a historic name for Orange (France Telecom) but neither WHOIS
nor PeeringDB contain a reference to France Telecom.

2.2 Regular Expression Grammar Induction
Learning structure from example text is known as grammar in-
duction in machine learning. Techniques in the literature generally
focus on identifying patterns in text, such as software names, phone
numbers, and university course numbers. ReLIE (2008) reduced the
manual effort in building a regex [15] but relied on a human provid-
ing a starting regex and input data, which their method would then
improve. In 2010, Babbar and Singh [1] introduced a technique that
could learn regexes even when the human providing the starting
regex had lower domain expertise than that assumed by ReLIE. In
2012, Murthy et al. [27] presented a technique to improve recall of
regexes that involved human feedback and improved input regexes
for identifying these patterns in general text. In 2018, Simoes et al.
[29] continued this line of work, where a human provides a seed
regex that is 100% precise, and their method improved recall.

Because writing regexes requires expertise, an alternate line of
work infers regexes using sample extractions [4, 11]. The current
state of the art, RegexGenerator (2016), relies on a human to provide
examples of valid extractions from a set of input data, for which

their method builds a regex [2]. There are tens of thousands of
suffixes in the Internet, each with their own convention; relying on
a human to identify extractions is not scalable, as conventions and
networks evolve.

The computer network research community has previously built
automated trial-and-error approaches to extract information from
hostnames, as the punctuation-oriented patterns in hostnames are
suited to this approach. In 2013, Chabarek and Barford [7] inferred
simple regexes to extract link speeds from hostnames using a dic-
tionary of known interface types. In 2014, Huffaker et al. [14] pre-
sented DRoP, which learned simple regexes to extract geographic lo-
cations from hostnames (the blue font in figure 1) using a dictionary
of known city names and airport codes. There are no equivalent dic-
tionaries for network names. In 2019, we introduced an automated
approach to extract meaningful structure from router hostnames,
which we called hostname orthography and embedded in a software
module called Hoiho [19]. Our first goal was to identify the router
name in hostnames, defined as substrings in common across all
interfaces of the same router – “er5.iad.as” from R1 hostnames in
figure 2. In 2020, we extended the Hoiho tool to automatically learn
regexes to extract the ASN that operates the router [21] – AS 2906
from hostname H and AS 15133 from hostname M in figure 1. In
2021, we extended Hoiho to automatically learn regexes that extract
geographic locations from hostnames [20] – “iad” from hostname
A and “sanjose” from hostname F in figure 1.

The Hoiho tool provides an ideal platform to accelerate research
on extracting information from hostnames, and we leveraged it
when we implemented our method (§3). In this work, we focus on
the problem of automatically building regexes to extract network
names from hostnames with no human in the loop. Our method
does not rely on a human providing a starting regex, examples of
valid extractions, or an input dictionary of network names.

3 METHOD
Because there is no database that identifies the name of the net-
work that controls a router with a given IP address or hostname,
or a corpus detailing which network operators embed network
names in hostnames and where they embed the names, our method
must weigh up evidence that specific lexical tokens are network
names. Our method has four phases: (1) automatically seeding a
dictionary that maps network names to ASNs, (2) automatically
learning seed regexes to extract these names for different networks,
(3) automatically refining the dictionary based on likely network
names extracted by those regexes, and (4) automatically refining
the regexes that extract these names.

Our method is informed by the largest available source of router-
level Internet topology data – CAIDA’s Internet Topology Data Kit
(ITDK) [6]. The ITDK contains a set of routers with their associated
hostnames, and an owning AS for each router imperfectly inferred
using a heuristic method (§2.1). Our method uses the inferred AS
for each router as a label for the likely AS that operates the router.
CAIDA has released 19 ITDKs between July 2010 and March 2021,
and we use them all in §4.

We implemented all four phases of our method in Hoiho (§2.2)
which contained code for processing the ITDK and a framework
for generating and evaluating regexes from prior work [19–21].
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Hostname

zayo-netflix.iad10.us.zip.zayo.com

zayo-level3.cdg11.fr.zip.zayo.com

netflix-gw.skt.cw.net

level3-gw.dus.cw.net

netflix-ic-324205-hls-b2.c.telia.net

level3-ic-347052-hls-b1.c.telia.net

ASN

2906

3356

2906

3356

2906

3356

Suffix

zayo.com

zayo.com

cw.net

cw.net

telia.net

telia.net

String

netflix

level3

zayo

iad10

cdg11

zip

Mapping

2906 (3) zayo.com, cw.net, telia.net

3356 (3) zayo.com, cw.net, telia.net

2906 (1) zayo.com — 3356 (1) zayo.com

2906 (1) zayo.com

3356 (1) zayo.com

2906 (1) zayo.com — 3356 (1) zayo.com

Figure 4: Seeding a dictionary to identify likely network
names in hostnames. Our method adds strings correlated
with an ASN to a seed dictionary (§3.1).

We designed and implemented new algorithms for learning the
network name dictionary, and a new method to evaluate regexes
that extract network names. We also modified Hoiho’s regex builder
to handle the extraction of network names. We integrated all of
this functionality into the public version of Hoiho [17] to enable
reproducibility, use, and extension by the research community.

3.1 Phase 1: Build Seed Name Dictionary
The goal of the first phase of our method is to learn strings in
hostnames whose presence is associated with the labeled AS for the
routers in the training data. Our intuition is that several operators
will generally use the same string to refer to the same AS, and we
can use this signal to seed a dictionary of likely network names.

Because operators use punctuation in hostnames to structure
hostnames to help humans interpret them, our method splits each
hostname into its component strings delimited by punctuation. For
the first hostname in figure 4, our method extracts “zayo”, “netflix”,
“iad10”, “us”, and “zip”. Our method then tags each string with the
labeled AS and suffix for the hostname. Our method repeats this
process for all hostnames in the input dataset. Figure 4 shows a
subset of the string mappings; the remainder we elide for space.

For the set of hostnames in figure 4, the string “netflix” is corre-
lated with AS 2906 and “level3” is correlated with AS 3356. This is
because three different network operators (Zayo, CW, and Telia)
have each labeled “netflix” and “level3” routers with those strings.
Other strings – “iad10”, “cdg11”, and “zip” – are not correlated with
any ASN. For example, Zayo used “zip” in hostnames for routers op-
erated by different ASes, and only Zayo used “iad10” in a hostname
for a router operated by AS 2906.

For each string, our method ranks ASN mappings by the number
of suffixes with that mapping – the number of suffixes is a proxy for
the number of network operators using that mapping. Our method
adds an entry to the seed dictionary that maps a string to an ASN
provided at least three different suffixes have each used that string
for that ASN, and that no other ASN associated with that string
also had at least three different suffixes using that string. This limits

Hostname

zayo-netflix.iad10.us.zip.zayo.com
zayo-level3.cdg11.fr.zip.zayo.com

zayo-tata.ams1.nl.zip.zayo.com
zayo-sprint.er2.ord7.us.zip.zayo.com
zayo-tata.mpr1.fra4.de.zip.zayo.com

zayo-telefonica.er2.dfw2.us.zip.zayo.com

ASN

2906
3356
6453
1239
6453
12956

(A)
(B)
(C)
(D)
(E)
(F)

^[^-]+-([^\.]+)\.[^\.]+\.[^\.]+\.[^\.]+\.zayo\.com$
True Positives: 3 of 6 — hostnames A, B, C

^[^-]+-([^\.]+)\.[^\.]+\.[^\.]+\.[^\.]+\.[^\.]+\.zayo\.com$
True Positives: 3 of 6 — hostnames D, E, F

^[^-]+-([^\.]+)\..+\.zayo\.com$
True Positives: 6 of 6 — hostnames A, B, C, D, E, F

RE1

RE2

RE3

netflix:2906 level3:3356 tata:6453
sprint:1239 telefonica:12956

Seed Name

Dictionary

Figure 5: Building and evaluating seed regexes to identify
where an operator embeds neighbor network names (§3.2).
Our evaluation method prefers regexes that extract more
congruent network names (e.g., RE3, 6 TPs) over regexes
extracting fewer congruent names (RE1 and RE2, 3 TPs).

adding common strings in hostnames to the seed dictionary, such
as geolocation (many operators embed “iad” because they have
routers in Washington, D.C). For the hostnames in figure 4, our
method would add {netflix⇒ 2906} and {level3⇒ 3356} to the seed
dictionary. This heuristic will still inevitably include strings that,
by chance, are correlated with an ASN but do not refer to its name.
However, the seed dictionary is good enough for Hoiho to use in
the next phase, which automatically builds and evaluates regexes
that extract apparent network names from hostnames.

3.2 Phase 2: Build Seed Regexes
Because the seed dictionary that our method built in phase one will
contain spurious entries, the goal of the second phase is to identify
where in the hostnames the operators for each suffix embed network
names. Learning this pattern will allow our method to automatically
discover that dictionary entries derived from a different portion
of the hostname are spurious. Therefore, this phase builds seed
regexes that allow our method to infer the lexical semantics of
hostnames for different suffixes.

We illustrate this phase in figure 5, which contains six hostnames
for neighbors of Zayo, their labeled ASN, as well as the seed dic-
tionary that our method inferred in phase one. This phase first
identifies which strings in a hostname, if any, have an entry in
the seed dictionary with an ASN matching the labeled ASN. Our
method uses Hoiho’s regex builder to build regexes that aim to
extract the string using the punctuation in the hostname as a tem-
plate. Hoiho builds structure in the regex recursively by using regex
components that exclude specific punctuation depending on the
punctuation at the beginning and end of each portion (e.g., [^\.]+
and [^-]+ match sequences of characters that do not contain a dot
or hyphen, respectively), or match anything (i.e., .+) at most once
per regex. For hostnames A-C in figure 5, our method builds regexes
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RE1 and RE3, and for hostnames D-F, our method builds regexes
RE2 and RE3, as well as other regexes that we elide for space.

We implemented a method in Hoiho that evaluates these regexes,
examining the effectiveness of the regexes for extracting network
names from all hostnames, using the following simple criteria. Our
method assigns a true positive (TP) if the regex extracted a string
whose dictionary ASN matched the labeled ASN. Our method as-
signs a false positive (FP) if the regex extracted a string whose
dictionary ASN is different to the labeled ASN. Our method assigns
a false negative (FN) if the regex did not extract a string that is in
our dictionary whose ASN matches the labeled ASN. Our method
does not penalize a regex that extracts a string that is not in the
dictionary; the string might reflect a network name that our method
did not learn because the training data lacked enough samples.

3.3 Phase 3: Refine Name Dictionary
The third phase uses the seed dictionary from phase one (§3.1) and
the seed regexes from phase two (§3.2) to automatically remove spu-
rious dictionary entries. Our method selects the best regex for each
suffix, provided that regex found names for at least three unique
networks – i.e., we have confidence that there is a convention for
embedding network names, and our method did not extract a string
coincidentally correlated with an ASN. We define the best regex as
the regex that maximizes TP-FP; i.e., our method prefers a regex that
extracts network names with dictionary ASNs matching the labeled
ASN over a regex that matches fewer hostnames or extracts strings
inconsistent with the labeled ASN. Using the example regexes in
figure 5, our method selects RE3 as the best regex because it has
the highest TP-FP sum of 6.

Our method then re-creates the dictionary from scratch using the
strings extracted by the regexes using the following process. First, our
method tags the extracted strings with the labeled ASN from their
corresponding routers, as well as the hostname’s suffix. Second, our
method populates the dictionary using the same criteria as in §3.1
– i.e., our method adds a string to the dictionary provided at least
three different suffixes have each used that string for routers with
the same ASN, and that no other ASN associated with that string
also had at least three different suffixes for that string. Third, our
method considers strings with fewer than three suffixes suggesting
the ASN mapping, adding a string if it is similar to another entry
for the ASN already in the dictionary. For example, the operator has
replaced a digit with its corresponding word form (e.g., “three” for
“3”) but the string is otherwise equivalent, or the string is a longer
version of an entry in the dictionary (e.g., “flagtelecom” where “flag”
is in the dictionary). Finally, our method adds strings with two
suffixes suggesting the ASN mapping, provided there are no other
ASNs tagged with the string. Our intuition is that these strings
are very likely to be network names because phase 2 established
where in a hostname each operator embeds network names, and
two network operators used that string for that ASN. We show that
our approach to refining the name dictionary is effective in §4.

3.4 Phase 4: Build Refined Regexes
The final phase of our method automatically builds refined regexes
that extract network names from hostnames. This phase begins
along the same lines as phase two (§3.2), building regexes to extract

^[^-]+-([^\.]+)\..+\.zayo\.com$ RE3

zayo netflix level3 tata

sprint telefonica

[a-z\d]+zayo

^zayo-([a-z\d]+)\..+\.zayo\.com$ RE4

Figure 6: Refining punctuation-based regex segments based
on the strings each segment matches to build a more-specific
refined regex. In this example, the first segment always
matches “zayo”, and the second segment always matches
alphanumeric characters.

Hostname

akamai.bix.bg
cloudflare.bix.bg

evolink.bix.bg
evolink-b.bix.bg
mitkocom.bix.bg

mitkocom-b.bix.bg

ASN

20940
13335
8262
8262
35761
35761

(A)
(B)
(C)
(D)
(E)
(F)

^([^\.]+)\.bix\.bg$

RE1

RE2

akamai:20940
cloudflare:13335

evolink:8262
mitkocom:35761

Name

Dictionary

^([a-z]+)\.bix\.bg$

RE3

^([^-]+)-[^\.]+\.bix\.bg$ ^([a-z]+)-b\.bix\.bg$

TP: A, B, C, E TP: A, B, C, E

RE4

TP: D, F TP: D, F

^([a-z]+)\.bix\.bg$

^([a-z]+)-b\.bix\.bg$

RE3 RE4

^([a-z]+)(?:-b)?\.bix\.bg$

RE5

TP: A, B, C, D, E, F

Figure 7: Refining and merging regexes to capture naming
variation in suffixes. Our method merges RE3 and RE4 to
produce RE5, which covers the complexity in the bix.bg nam-
ing convention.

strings in the refined dictionary built in phase three (§3.3), only
using simple punctuation-based regex segments, such as those in
figure 5. Our method uses Hoiho’s regex builder to refine these
regexes, examining the strings covered by each punctuation-based
regex segment. Figure 6 illustrates refining RE3, focusing on the two
punctuation-based segments in the regex. The first always matches
the word “zayo”, while the second always matches sequences of
alphanumeric characters (“netflix”, “level3”, and so on). Therefore,
Hoiho creates a refined regex using the simple regex as a base,
replacing the first segment with “zayo”, and the second segment
with a segment that matches a sequence of alphanumeric characters,
emitting RE4 in figure 6.

Some operator conventions are more complex. Figure 7 shows
example hostnames for BIX, where the operator sometimes embeds
the string “-b” in the hostname, suggesting the neighbor network
is connected to BIX with multiple routers. The punctuation-based
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Figure 8: The size of the automatically learned network name
dictionary grew over time as the Internet grew.

regexes (RE1, RE2) each capture a subset of the network names.
After Hoiho refines these regexes to build RE3 and RE4, it is clear
that the only difference between the two regexes is the string “-b”.
Therefore, Hoiho merges these regexes together to produce RE5,
which includes a regex segment that optionally matches the “-b” so
that a single regex covers variation in the hostnames.

Some suffixes have more complex differences, where there is no
straight-forward way to merge the regexes that cover the differ-
ences. Hoiho emits a set of regexes to capture the complexity in
the hostname conventions for these suffixes.

4 RESULTS
We applied our method to 19 ITDKs constructed by CAIDA (§3) be-
tween July 2010 andMarch 2021 that contain IPv4 routers annotated
with an ASN inferred by RTAA or bdrmapIT (§2). Our implemen-
tation processed each IPv4 ITDK, which contained ≈850K–1.7M
hostnames (≈53–62% of router interfaces were named) in ≈3–4
minutes using an 4-core Intel Core i7. Four ITDKs also contain IPv6
routers with an ASN inferred by bdrmapIT. Because IPv6 is not as
widely deployed as IPv4, the IPv6 ITDKs are smaller – ≈68K-87K
hostnames (15–16% of router interfaces were named). We examine
our results for both IPv4 and IPv6, though we focus on the IPv4
results because the IPv4 ITDKs are larger.

We discuss the results in two parts. We first examine the dictio-
nary our method learned over time on the input data (§4.1, §4.2).
Then, we examine the regexes our method learned (§4.3).

4.1 Properties of Learned Dictionary
Figure 8 shows the size of the dictionary our method learned from
IPv4 routers for each of the 19 ITDKs. The number of network
names learned grew over time, as the Internet grew. We color the
data points by the heuristic method CAIDA used to annotate router
ASNs. Because the dictionary is inferred, the number of items in the
dictionary increased when CAIDA changed the heuristic method it
used to annotate router ASNs (RTAA) to a more accurate heuristic
method (bdrmapIT) in August 2017. We also constructed ITDKs
using RTAA beginning August 2017, and figure 8 shows the size
of the dictionary inferred from a bdrmapIT ITDK is 17–35% larger
than the dictionary inferred from an equivalent RTAA ITDK. There
is one anomalous dip in the size of the dictionary inferred for the
January 2019 ITDK caused by data collection issues for that edition
of the ITDK, which used a different method to obtain hostnames
(zdns) than the other ITDKs.

Customer cone size Named / Total Coverage
0 (stub) 357 / 60535 0.6% of 84.7%
1-9 308 / 8640 3.6% of 12.1%
10-99 221 / 1882 11.7% of 2.6%
100-999 87 / 322 27.0% of 0.5%
1000-9999 31 / 43 72.1% of 0.1%
≥ 10000 11 / 11 100% of 0.0%

1015 / 71433 1.4% of 100%
Table 1: Coverage of named ASes by customer cone size. Our
method is more likely to infer names for larger ASes.

Using the March 2021 IPv4 ITDK, our method learned a single
name each for the vast majority of the 1,015 ASNs represented in
our dictionary – 926 ASNs covering 91.2% of the ASNs. A further
63 (6.2%) and 15 (1.5%) had two or three names, and only 11 (1.1%)
had four or more names. The maximum number of suffixes for a
dictionary entry was 42, which was for Cloudflare, a large content
distribution network that is densely connected to other networks
in the Internet.

Table 1 shows the coverage of ASes our method inferred names
for, by customer cone size – the number of ASes that are customers
of a given AS, as well as those customers’ customers, and so on [18].
The coverage of our method increases as customer cone size in-
creases. The vast majority (84.7%) of ASes are stub ASes with no
customers; our method infers names for only 0.6% of these ASes,
because these ASes are typically not well connected to other net-
works and so our method is unlikely to infer names for these. At
the other extreme, our method infers a name for 77.8% of ASes with
a customer cone size of at least 1000.

4.2 Validation of Learned Dictionary
For the March 2021 IPv4 bdrmapIT ITDK, which contains 1.5M
router hostnames, our method inferred a dictionary containing
1,147 network names for 1,015 ASNs. We were able to confirm that
1,116 (97.3%) of these names were congruent with information in
WHOIS, PeeringDB, and via manual inspection. Table 2 summarizes
the outcome of our cross-validation against these databases.

To validate our dictionary, we compared the names our method
learned for each ASN with two public sources of technical data –
ASN records in the WHOIS and PeeringDB databases (§2.1, figure 3)
– using a script. Our script compares names our method learned
against strings in these sources – inferring a correct name if it
finds (1) an exact match, (2) a match by forming an acronym from
capital letters (e.g., “VDMS” from “Verizon Digital Media Services”
in figure 3a), (3) or a match by contracting (abbreviating) the string.
Table 2 shows that we validated 90.5% of the names using these
databases, and that each field provided diminishing returns to our
ability to validate.

We further performed a manual inspection when our script could
not find a matching string in the WHOIS and PeeringDB databases,
adding these entries to a manually-constructed database when
we found evidence that the name was valid for the ASN, perhaps
because the network re-branded, or acquired another network.
This effort was valuable because it validated more names than the
combined gain for all of the PeeringDB sources.
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Source Total Gain Cumulative
W OrgName 841 841 841 75.4%
W ASName 780 108 949 85.0%
W Total 949
PDB Name 750 27 976 87.5%
PDB Website 564 20 996 89.2%
PDB A/K/A 341 12 1,008 90.3%
PDB IRR 279 2 1,010 90.5%
PDB Total 843
Manual 106 106 1,116 100%
Total 1,116

Table 2: Contribution of each source to cross-validation. Over-
all, 1,116 of 1,147 (97.3%) learned names are a valid name for
the corresponding ASN.

# Suffixes Frequency Correct
1 88 (7.7%) 97.7%
2 565 (49.3%) 95.6%
3 253 (22.1%) 98.4%
4 108 (9.4%) 100%
5 49 (4.3%) 100%
6 29 (2.5%) 100%
7+ 55 (4.8%) 100%
Total 1,147 97.3%

Table 3: Number of suffixes in which we found a matching
dictionary entry, and their validation. Every dictionary entry
observed in at least four suffixes was correct.

Table 3 shows the number of suffixes in which we found a match-
ing dictionary entry; the majority (79.0%) were found in three or
fewer suffixes. Table 3 further shows that every dictionary entry
found in at least four suffixes was correct in our validation data.
The percentage of correct entries for dictionary entries found in
one suffix is higher than those in two suffixes; to be included in the
dictionary, an apparent network name found in one suffix had to
be similar to an entry already in the dictionary (§3.3).

We examined the benefit of our multi-phase approach to con-
structing the dictionary by evaluating the seed dictionary at the end
of Phase 1 (§3.1) with the same validation data. For the March 2021
IPv4 ITDK, the seed dictionary contained 787 entries, and 73 were
wrong – 90.7% were correct overall. At the end of Phase 3 (§3.3)
the dictionary validation is 97.3% for 1147 entries (31 are wrong)
as shown in Table 2. The implication is the refined dictionary gets
much larger and sheds most of the wrong entries.

4.3 Properties of Learned Regexes
Figure 9 summarizes the performance of the best regexes per suffix
that our method learned across the 19 ITDKs. As with the dictionary
(§4.1), the number of suffixes that embed network names for which
our method learned regexes grew over time as the Internet grew.

We classified a regex as good if it extracted at least three unique
ASes congruent with labeled ASes with a PPV ≥ 80% – the green
portion of each bar in figure 9. Our method built 41 – 105 good
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Figure 9: Classification of regexes. The number of network
operators embedding network names grew over time as the
Internet grew. Data collection issues for the January 2019
ITDK caused the dip in the number of regexes for that ITDK.

regexes per ITDK. In contrast, our prior work [21] extracted ASNs
directly embedded by operators in hostnames – such as “2906” from
“as2906.saopaulo.sp.ix.br” (hostname H in figure 1) – and built 12–
55 good regexes per ITDK. That is, twice as many operators are
embedding network names than are embedding ASNs directly.

We classified a regex as promising (the orange portion of each
bar) if it extracted at least two unique congruent ASNs with a PPV
≥ 50%, and these are the bulk of the remaining suffixes for which
our method inferred regexes. The good and promising regexes are
usable because they usually extract a correct network name. We
classified the remaining regexes with a PPV < 50% as poor. While
our method learned ≈120 usable regexes per ITDK for recent ITDKs,
our method learned usable naming conventions for 308 suffixes
across all 19 ITDKs, reflecting the evolving structure of the Internet.

Our method extracted network names from 7,393 hostnames in
the March IPv4 2021 ITDK (true positives), and found 205 additional
hostnames with network names that were not extracted (false neg-
atives). That is, our method built regexes that extracted network
names from 97.3% of the hostnames where names in our dictionary
were present. When we applied our method to extract ASNs [21]
to the same ITDK, it extracted ASNs from 5,758 hostnames (true
positives).

Finally, figure 9 also shows the results of our method on the four
ITDKs that contain IPv6 routers. Even though the March 2021 IPv6
graph contains 17.5x fewer hostnames than the March 2021 IPv4
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Hostname

akamai.plix.pl
cloudflare.plix.pl

m247.plix.pl
nask.plix.pl
nask2.plix.pl
oath2.plix.pl

p4.plix.pl

ASN

20940
13335
9009
204679
204679
10310
39603

(A)
(B)
(C)
(D)
(E)
(F)
(G)

akamai:20940
cloudflare:13335
m247:9009
nask:204679
oath:10310
p4:39603

Name

Dictionary

^([a-z\d]+)\.plix\.pl$

^([a-z]+)\d+\.plix\.pl$

TP FN

RE1

RE2

A,B,C,D,G

E,F

E,F

A,B,C,D,G

Figure 10: Not all operators use a convention that is suited to
being parsed with a regex. Hostnames E and F indicate sec-
ondary connections to PLIX, but a regex cannot distinguish
these from digits that appear at the end of “m247” and “p4”
network names.

graph, our method infers only 2.6x fewer usable naming conven-
tions. Our method extracted network names from 2,236 hostnames
in the March IPv6 2021 ITDK (true positives). Our method found
47 additional hostnames with network names in our dictionary
that were not extracted by regexes (false negatives). Similar to our
March 2021 IPv4 results, our method built regexes that extracted
network names from 97.9% of the hostnames where names in our
dictionary were present.

5 DISCUSSION
Because identifying the network that operates a router is criti-
cal to understand connectivity within and between organizations
(§1), and all methods for this task are based on heuristics (§2.1),
our annotated hostnames serve as a large, heterogeneous source
of validation data for future evidence-based router ownership in-
ference techniques. For example, combining the 7,393 network
names our method extracts from hostnames, with the 5,758 ASNs
extracted from hostnames using the method we described in our
prior work [21], results in a validation dataset of 12,987 hostnames
(164 hostnames encoded both a network name and an ASN).

The naming conventions ourmethod infers can assist in inferring
geolocation information encoded in hostnames [20]. For example,
a human might recognize that the router with hostname francet-
elecom.lon01.atlas.cogentco.com is operated by France Telecom, and
that its interconnecting router is in London, UK. However, a geolo-
cation algorithm might infer that the substring “fra” or “fran” could
refer to “Frankfurt am main, HE, DE”, or that the operator encoded
“France” as a country-level hint. Because our method can establish
the first portion of the hostname corresponds to a network name,
an algorithm could use this information to guide its inference of
geolocation conventions away from this portion of the hostname.

6 LIMITATIONS
Some operators build hostnames that are not designed to be inter-
preted entirely by machines. Figure 10 illustrates using an example
from PLIX, where two networks have trailing numbers in their
names (“m247” and “p4”) and two networks (“nask” and “oath”) are

Hostname

vodafone-level3-sanjose.level3.net

vodafone.sjc03.atlas.cogentco.com

vodafone.interxiondus1.nl-ix.net

vodafone1.ape.nzix.net

vodafone.ronix.ro

vodafone.mix-it.net

ASN

1273

1273

3209

9500

12302

30722

Country

UK

UK

NL

NZ

RO

IT

Figure 11: Independently operated networks with their own
ASN may use the same network name in different countries.

connected to PLIX twice. There is no regex solution that extracts
all of these names correctly. RE1 extracts “nask2” and “oath2” for
hostnames E and F, which are not the names of those networks and
are scored by our method as false negatives because the regex did
not extract “nask” and “oath”. RE2 does not match hostnames A, B,
D, and incorrectly extracts “m” and “p” from hostnames C and G;
our method also scores these as false negatives because the regex
did not extract the actual names in the dictionary.

Some networks might have a global presence, but be organized
into independently operated subsidiaries each with their own ASN.
Examples of these networks are Vodafone, NTT, Telefonica, and
AT&T. However, our method infers a single ASN for each net-
work name. Figure 11 illustrates the problem: our method learned
a mapping from Vodafone to AS 1273, as this instance is the largest
Vodafone instance. However, the Vodafone network name is shared
with other networks in the Netherlands, New Zealand, Romania,
and Italy, each with their own ASN.

7 CONCLUSION
The central goal of Internet cartography is to build a realistic and
richly annotated representation of network structure and proper-
ties, using independent measurements and interpretation of cap-
tured data and meta-data. Our primary contribution in this work
is the development and application of an efficient information ex-
traction technique to the semantic structure embedded in Internet
hostnames. This process required extraction of a lexicon through
parsing tokens from hostnames, and inference of a dictionary that
mapped these lexical tokens to real-world referents (operational net-
works). We successfully applied this method to the largest publicly
available Internet topology map, and in the interest of extensibility
and reproducibility, we publicly release our software and datasets.

Prior work has illustrated how to use ASNs embedded in host-
names to improve router ownership inference [21]. The method we
described in this work amplifies the ability of hostnames to serve
as a large, heterogeneous source of validation data for improving
router ownership inference techniques.

Beyond this immediate application, we believe that recent work
to automatically learn regexes to extract information from router
hostnames ([7, 14, 19–21], and this work) suggests the measure-
ment community will soon be able to automatically explain most
information encoded in router hostnames. Prior work, undns [30],
contained manually-built regexes which were last updated in 2014.
A fully-automated capability will enable more sophisticated analy-
ses of an increasingly complex router-level Internet topology.
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