
GTrace – A Graphical Traceroute Tool
Ram Periakaruppan, Evi Nemeth

University of Colorado at Boulder
Cooperative Association for Internet Data Analysis (CAIDA)

{ramanath, evi}@cs.colorado.edu

Abstract

Traceroute [Jacobson88], originally
written by Van Jacobson in 1988, has become a
classic tool for determining the routes that
packets take from a source host to a destination
host. It does not provide any information
regarding the physical location of each node
along the route, which makes it difficult to
effectively identify geographically circuitous
unicast routing. Indeed, there are examples of
paths between hosts just a few miles apart that
cross the entire United States and back,
phenomena not immediately evident from the
textual output of traceroute. While such path
information may not be of much interest to many
end users, it can provide valuable insight to
system administrators, network engineers,
operators and analysts. We present a tool that
depicts geographically the IP path information
that traceroute provides, drawing the nodes on a
world map according to their latitude/longitude
coordinates.

1. Introduction

Today's Internet has evolved into a
large and complex aggregation of network
hardware scattered across the globe, with
resources accessed transparently with respect to
their location, be it in the next room or on
another continent. As the Internet becomes
increasingly commercialized among many
different corporate administrative entities, it is
more difficult to ascertain the geographical
routes that packets actually travel across the
network. Knowledge of these geographical paths
can provide useful insight to system
administrators, network engineers, operators and
analysts.

It is challenging to obtain the location
for a given node of a path since there is no
existing database that accurately maps hostnames

or IP addresses to physical locations. Although
RFC 1876 [RFC1876] defined a DNS resource
record to carry such location information (the
LOC record) for hosts, networks and subnets,
very few sites maintain LOC records. Hence
there is no straightforward way to determine the
physical location of hosts.

GTrace is a graphical front end to
traceroute that uses a number of heuristics to
determine the location of a node. Often the name
of a node in the path contains geographical
information such as a city name/abbreviation or
airport code. GTrace operates on the assumption
that these codes and names indicate the physical
location of the node. The locations obtained are
connected together on a world map to show the
geographical path that packets take from the
source to destination host. GTrace also tries to
verify the validity of each location obtained,
eliminating ones that are incorrect.

The following sections review the
traceroute tool and describe the design and
implementation of GTrace. We also show
example output from GTrace.

2. Traceroute

Traceroute is a tool that discovers the
route an IP datagram takes through the Internet
from a source host to a destination host. It works
by exploiting the TTL (Time To Live) field of
the IP Header. Each router that handles an IP
datagram decrements the TTL field. When the
TTL reaches zero, a router must discard the
packet and send an error message to the
originator of the datagram.

Traceroute uses this feature, initially
sending a datagram with the TTL set to one.
The first router along the path, upon receiving
the datagram decrements the TTL, discards the
datagram and sends back an ICMP error

message. Traceroute records this first IP address
(source address of the error message packet) and
then sends the next datagram with the TTL set to
two. This process continues until the datagram
finally reaches the target host, or until the
maximum TTL threshold is reached.

3. Design and Implementation of GTrace

Recognizing that it is not possible to
obtain precise physical location information for
all existing IP addresses, our main design criteria
for GTrace was that it be sufficiently flexible to
support the addition of new databases and
heuristics. We chose to implement GTrace in
Java, for both its portability and its new Swing
[Swing] user interface toolkit. GTrace operates
in two phases. In the first phase GTrace executes
traceroute to the destination host and tries to
determine locations for each node along the path.

During the second phase, GTrace verifies
whether the locations obtained in the previous
phase are reasonably correct.

GTrace is composed of the following
seven key components: Graphical User Interface,
Dispatcher Thread, Hop Threads, Lookup Client,
NetGeo Server, Lookup Server and Location
Verifier. Fig. 1 illustrates the overall architecture
of the tool. The function of each component is
described below.

3.1 Graphical User Interface

The Main Thread handles all features of
the Graphical User Interface and is responsible
for spawning the dispatcher thread when a
destination host is specified. Fig. 2 shows a
snapshot of GTrace on startup. The GUI has two
sections, with a map on the top and traditional

Hop Thread

Main Thread

D
i
s
p
a
t
c
h
e
r

T
h
r
e
a
d

Lookup Client

Local Text
Files

Internet

Location Verifier

Lookup Client

Lookup Client

Lookup Client

Local
Databases

Domain Parsing
Files

Internet

Fig. 1 GTrace Architecture

Lookup Server

NetGeo Server

traceroute output below. The tool supports
zooming in or out of particular regions of the
maps. Twenty-three maps are available courtesy
of VisualRoute [VisualRoute] and users can also
add their own. We later provide an example that
highlights some of the features of the GUI.

Fig. 2 GTrace’s startup screen

3.2 Dispatcher Thread

The function of the dispatcher thread is
to execute traceroute to the destination host. It
then reads the output of traceroute, creating a
new thread for each line of output. These threads
are referred to as hop threads. The dispatcher
thread can also read traceroute output from a
file, which allows users to visualize traceroutes
performed using third-party traceroute servers.

3.3 Hop Threads

Each hop thread parses its line of
traceroute output and immediately notifies the
main thread so that it can update the display with
relevant traceroute fields for the corresponding
hop. It then creates an instance of the Lookup
Client, which tries to determine the location of
the node and return the resulting information to
the main thread before exiting.

3.4 Lookup Client

The Lookup Client tries to determine
the location of a node by using a set of search
heuristics. Many of the nodes in a typical
traceroute path are in the “.net” domain. Often

the names of these nodes have some
geographical hint in them. The Lookup Client
uses customized domain parsing files that
specify rules for extracting these geographic
hints. We have such files for several “.net”
domains that use internally consistent naming
conventions within their domain.

However this technique does not solve
the problem of locating nodes that do not have
embedded geographical hints. GTrace also
utilizes databases from CAIDA [DBCAIDA] and
NDG Software [DBNDG] that map hostnames
and IP addresses to latitude/longitude
coordinates. For nodes with no information in
these databases, the Lookup Client uses the
domain's registered address (unfortunately often
only the headquarters for a geographically
distributed infrastructure) obtained through a
whois lookup to determine the location. Nodes
for which the Lookup Client is unable to
determine a location are listed in the text portion,
but skipped in the geographical display.

The search algorithm is described
below. We try each heuristic in turn, stopping as
soon as one yields a location. The Lookup Client
also makes a note of the search step that
produced the location, providing this information
to the user as well as the Location Verifier.

Search Algorithm:

1. Check the cache to see if the location for the
IP address has already been determined from
a previous trace.

2. Check if the host has a DNS LOC record. If
not, reduce the hostname to the next higher
level domain (i.e., remove the first
component of the name) and check again for
a LOC record. Continue until we have
reached the last meaningful component of
the name (for example foo.com in
xxx.foo.com or bar.com.au in
xxx.yyy.bar.com.au). Note that if a site has a
LOC record for the whole domain, but
machines are located outside the scope of
that LOC record, GTrace would end up
using incorrect data. If the Location Verifier
detects such a situation, GTrace will notify
the user and optionally can be configured to
notify GTrace’s author, who will contact the
DNS administrator at the corresponding site
to correct their LOC records.

3. Search for a complete match of the
hostname/IP address in the databases and
files specified in the GTrace configuration
file.

4. If the hostname has a corresponding domain
parsing file, use the rules defined in the file
to extract geographical hints and proceed as
indicated in the file.

5. Reduce the hostname to the next higher
level domain as in step 2 and search for a
match as in step 3. The process is repeated
until we have reached the last meaningful
component of the name.

6. Query the NetGeo [NetGeo] server with the
IP address. NetGeo determines the location
based on whois registrant information.

7. If still no match occurs and the last two
letters of the hostname end in a two-letter
country code, map it to the geographic
center of that country.

The search algorithm is ordered in
decreasing level of location reliability. Locations
obtained from steps 2 and 3 are taken as
authoritative, while those from step 4 onward are
considered a guess. Cache entries will indicate
whether the location was authoritatively
determined or was a guess; this status determines
the color of the lines connecting the nodes on the
map.

The Lookup Client does not determine
locations for IP addresses that fall in the ranges
10.0.0.0 - 10.255.255.255, 172.16.0.0 -
172.31.255.255 or 192.168.0.0 -
192.168.255.255, as these blocks are reserved for
private internet use [RFC 1918]. Unfortunately
some addresses in these blocks do occur in traces
since some ISPs use this address space for
internal router interfaces. These nodes are shown
in the text portion of the display with the
location marked as private internet use.

The Lookup Client queries the Lookup
Server if one is defined in the GTrace
configuration file and if location information has
not been obtained through step 1, 2 or 3 of the
search algorithm. GTrace compares the reply
from the Lookup Server with any obtained
previously from local lookups, with preference
given to the location obtained through a lower
numbered search step. Based on the GTrace

configuration file, the Lookup Client also uses
databases, text files and domain parsing files as
follows.

Databases

The Lookup Client may need to
perform lookups in many databases before
determining a location. GTrace's database
support is provided by the BerkeleyDB
[BerkeleyDB] embedded database system, which
supports a Java API that the Lookup Client uses
to query the databases. The database interface
allows multiple thread reads on the same
database at the same time. Locking is not an
issue, since Lookup Clients only read, do not
write.

The following five databases are
packaged with the GTrace distribution.

Machine.db
[DBCAIDA]

Maps machine names to
their latitude/longitude
values.

Organization.db
[DBCAIDA]

Maps organizations to
their latitude/longitude
values.

Hosts.db
[DBNDG]

Maps IP addresses to their
latitude/longitude values.

Cities.db
[DBCAIDA]

Maps cities around the
world to their latitude
/longitude values.

Airport.db
[AirportCodes]

Maps airport codes to
their latitude/longitude
values.

One can add a new database in
BerkeleyDB format to GTrace with
GTraceCreateDB and by adding an entry to the
GTrace configuration file. The contents of the
database ie., whether it maps hostnames, IP
addresses, or both to latitude/longitude values,
also have to be indicated in the configuration
file. The user can also add records to existing
databases using GTraceAddRec.
GTraceCreateDB and GTraceAddRec are Java
classes packaged with the GTrace distribution.

Text Files

Users may also specify new locations
for nodes in text files, though it is more efficient
to create a database for large data sets. New files
have to be listed in the GTrace configuration file

in order for the search algorithm to have access
to them.

Domain Parsing files

Files describing properties of each
domain are used to ferret out geographical hints
embedded in hostnames. These files define
parsing rules using Perl5 compatible regular
expressions. GTrace uses the regular expression
library from ORO Inc. [OROMatcher] for
parsing. New files can be added and existing
ones modified without requiring any changes to
GTrace.

For example, ALTER.NET (a domain
name used by UUNET, a part of
MCI/WorldCom) names some of their router
interfaces with three letter airport codes as
shown below:

193.ATM8-0-0.GW2.EWR1.ALTER.NET
(EWR -> Newark, NJ)

190.ATM8-0-0.GW3.BOS1.ALTER.NET
(BOS -> Boston, MA)

198.ATM6-0.XR2.SCL1.ALTER.NET
(Exception)

199.ATM6-0.XR1.ATL1.ALTER.NET
(ATL -> Atlanta, GA)

Fig. 3 shows an example of a GTrace
domain parsing file that would work for
ALTER.NET hosts. The file first defines the
regular expressions, followed by any domain
specific exceptions. The exceptions are strings
that match the result of the regular expressions.
The user may identify the exception’s location
either by city or by latitude/longitude value using
the format shown below:

exception=city,state,country
 city,country
 L: latitude, longitude

In the former case, the user should also
use GTraceQueryDB to ensure that the cities
database has a latitude/longitude entry for the
city specified. The first line in Fig. 3 defines a
substitution operation, which when matched
against 193.ATM8-0-0.GW2.EWR1.ALTER.
NET, would return “EWR”. The contents
following the last “ / ” of the first line indicate
what to do with a successful match, namely in

this case to instruct the program to first check for
a match in the data specified in the current file
and then for a match in the airport database.

s/.*?\.([^\.]+)\d\.ALTER\.NET/$1/this,airport.db
scl=santaclara, ca, us
tco=tysonscorner, va, us
nol=neworleans, la, us

Fig. 3 Example of a domain parsing file for
 ALTER.NET.

The reason for checking the domain
parsing file first is that sometimes the naming
scheme for a given domain is not consistent. For
example, a search for SCL obtained from
198.ATM6-0.XR2.SCL1.ALTER.NET in the
airport database would return a location for
Santiago de Chile. In the case of ALTER.NET,
they also use three letter codes that are not
airport codes but abbreviations for US cities
(Fig. 3 illustrates three such abbreviations.)
Note that if this exception list were not present
and SCL did get mapped to Chile, the Location
Verifier would likely have eliminated it using the
Round Trip Time (RTT) heuristic described
later, which would have recognized the RTT as
much too small to get a packet to Chile and back.

Sometimes ISPs name their hosts with
more than one geographical hint in them. For
example VERIO.NET names some of their hosts
in the following format: den0.sjc0.verio.net,
which typically suggests source and destination
of the interface. If there is no rule on whether the
convention is to use the source or destination
label first in the hostname, the rule could be
defined to extract both and GTrace could use the
Location Verifier’s heuristics to guess.

The advantage of this technique is that
one can describe an entire domain as a set of
rules without needing database entries for every
host in the domain. The limitation of the
technique is that it will fail for domains that do
not use internally consistent naming schemes.

3.5 NetGeo Server

The original design of the Lookup
Client performed and parsed results of whois
lookups directly, which required storage of a
prohibitively large number of mappings of world

locations to latitude/longitude values.
Distributing such a large database with GTrace
was not ideal. CAIDA’s NetGeo [NetGeo] tool,
with its ability to determine geographical
locations based on the data available in whois
records, provided a vital resource.

NetGeo is a database and collection of
Perl scripts used to map IP addresses to
geographical locations. Given an IP address,
NetGeo will first search its own local database.
If a record for the target address is found in the
database, NetGeo will return the requested
location information, e.g., latitude and longitude.
If NetGeo finds no matching record in its
database, it will perform one or more whois
lookups until it finds a whois record for the
appropriate network. The NetGeo Perl scripts
will then parse the whois record and extract
location information, which NetGeo both returns
to the client and stores in its local database for
future use.

The NetGeo database contains tables for
mapping world location names (city, state/
province/district, country) or US zip codes to
latitude/longitude values. Most whois records
provide enough address information for NetGeo
to be able to associate some latitude/longitude
value with the IP address. Occasionally the
whois record only suggests a country or state, in
which case NetGeo returns a generic
latitude/longitude for that country or state. In
preliminary testing, NetGeo has been able to
parse addresses and find (albeit sometimes
imprecise) latitude/longitude information for
89% of 17,000 RIPE whois records, 76% of 700
APNIC whois records and for more than 95% of
30,000 ARIN whois records.

3.6 Lookup Server

The Lookup Server handles requests
from Lookup Clients and tries to determine the
location of a host or IP address by executing
steps 3, 4 and 5 of the search algorithm. This
information is sent back to the client, which then
decides whether to use the location information
or not depending on the locations it might have
received from other Lookup Servers or lookups
it performed locally. The Lookup Client selects
the location that was obtained from the lowest
numbered search step.

The Lookup Server can also be
requested by the Lookup Client to execute step 2

of the search algorithm. This is because not all
versions of nslookup support queries for LOC
records. GTrace tests the version of nslookup on
the machine it is running on to determine if such
a request is necessary.

3.7 Location Verifier

The Main Thread invokes the Location
Verifier once all the hop threads have died and
the trace is complete. The task of the Location
Verifier is to check whether the locations
obtained for nodes along the path are reasonable.
The verifier does not determine new locations for
nodes, it only indicates to the user why an
existing location might be wrong and where the
node could possibly be located.

The verifier algorithm is based on the
fact that IP packets can not travel faster than the
speed of light. Light travels across different
mediums at different speeds: 3.0 x 108 m/s in
vacuum, 2.3 x 108 m/s in copper and 2.0 x 108

m/s in fiber [Peterson]. GTrace uses the speed of
light in copper for all of its calculations.

For each successive pair of hops that
have locations, the verifier algorithm uses the
deltas of the round-trip times (RTT) returned by
traceroute to rule out locations that are
physically not possible. Traceroute measures
RTT rather than one way latency, as this would
require control over both end nodes and delays
are often not symmetric. Also, one must be
cautious with the RTT values since they
incorporate several components of delay. The
RTT between two nodes has four components:
the speed-of-light propagation delay, the amount
of time it takes to transmit the unit of data,
queuing delays inside the network and the
processing time at the destination node to
generate the ICMP time exceeded message.
Traceroute typically sends 40-byte UDP
datagrams, so it is safe to assume negligible
transmit time. Ideally, for the verifier algorithm
one would like the RTT to represent only the
propagation delay, but this is not the case due to
variable queuing and processing delays, hence it
is not possible to set the upper bound on the RTT
to a hop. Accordingly the verifier algorithm uses
the minimum RTT returned by traceroute, as this
would represent the best approximation of the
propagation delay. Things are further
complicated by the fact that the RTT delta
between hops k and k+1 can be biased because

the return path the ICMP packet takes from hop k
can be totally different from the return path it
takes from hop k+1. The Location Verifier tries
to re-determine RTT values for hops it thinks are
biased using ping.

By default, traceroute sends three
datagrams each time it increments the TTL to
search for the next hop. Changing the value of
the q parameter in the GTrace configuration file
will modify this behavior. The larger the value of
q, the more accurate the estimate of the
propagation delay, but large values of q also
slow down GTrace as traceroute has to send q
packets for each hop.

Knowing the geographical distance
between two nodes, GTrace can calculate the
time-of-flight RTT (the propagation delay at the
speed-of-light in copper), compare it against
traceroute’s value and flag a problem if the RTT
is smaller than physically possible. In such a
case either the location of the source or of the
destination or both is incorrect. The details of the
verification algorithm are as follows:

Verifier Algorithm:

1. Ideally, the RTT to hop k in a path should
always be less than the RTT to hop k+1 or
k+2… But this is not always true due to
queuing delays, asymmetric paths and other
delays. We allow a 1ms fudge factor to
cover such discrepancies. Thus the RTTs
between hops k and k+1 should be such that
RTT(k) ≤ RTT(k+1) + 1ms. If this condition

 does not hold true then the RTT to each of
the out-of-order hops preceding hop k is
estimated again with ping, i.e. till the first
hop j preceding k such that RTT(j) ≤
RTT(k+1) + 1ms. If the RTT estimates
obtained using ping still do not satisfy the
condition RTT(k) ≤ RTT(k+1) + 1ms, then
hop k is not used in the later stages of the
verifier algorithm.

2. Cluster the traceroute path into regions
having similar RTT values. This is based on
the assumption that nodes with similar RTTs
will tend to be in the same geographic
region.

3. For each region identified in the previous
step, calculate the time-of-flight RTT for
pairs of hops that have locations. If the RTT

delta reported by traceroute for that pair of
hops is smaller than the time-of-flight RTT,
flag the pair of hops so that it is corrected in
step 5.

4. Repeat step 3 for hops falling on the edges
of adjacent regions.

5. Try to “correct” unreasonable location
values that were identified in steps 3 and 4
using the reliability of the search step that
produced the location match. Adjacent
nodes between regions are corrected first
because they represent larger and probably
more inaccurate locations. Correcting the
nodes identified in step 3 follows this. By
correct, we mean trying different
alternatives for the incorrect location based
on the cluster in which it falls, flagging it to
the user and not plotting it in the display.

Example:

Consider the trace shown in Fig. 4,
where locations are expressed as city names for
ease of illustration. The Search Step column
indicates which step of the search algorithm
produced the location for that hop. Step 1 of the
verifier algorithm would mark hop 13 as
unusable since its RTT is greater than its
subsequent hops. In this case it is probably due
to the return path from hop 13 being longer than
that from hop 14. Next, step 2 of the algorithm
would cluster the traceroute path into the
following regions: 1-4, 5, 6-8, 9-10, 11-12 and
14-16. Step 3 would flag that there is a problem
between hops 7 and 8 since it is not possible for
a packet to travel from San Francisco to New
Jersey in less than a millisecond. Likewise, step
4 would flag a problem between hops 10 and 11.
Step 5 would first try to correct hops 10 and 11
since they fall in different regions. Seeing that
the location for hop 11 was obtained through
step 3 of the search algorithm and hop 10 was
from a higher step, the Location Verifier would
change hop 10’s location to that of hop 11’s, in
this example to Washington and rerun the
algorithm from step 3. This process is repeated
until all locations from one hop to the next are
physically realistic. In the end the Location
Verifier would have indicated to the user that
hop 8 is incorrect and is most probably located
somewhere near San Francisco. Hops 9 and 10
are also incorrect and may be in Washington
with their interfaces labeled San Francisco to

identify the other end of that link.

4. Configuration Files

The configuration options in GTrace are
quite flexible. How it functions and executes the
search algorithm depends on the contents of two
configuration files: GTrace.conf and
GTraceMaps.conf

4.1 GTrace.conf

GTrace.conf specifies the location of
the commands GTrace uses and lists databases,
text files, Lookup Servers if any, to use in the
search algorithm. Fig. 5 shows an example
configuration file. This file is automatically
generated by the configure scripts while
installing GTrace.

4.2 GTraceMaps.conf

The GTraceMaps.conf configuration
file specifies attributes of the maps that GTrace
uses in displays. Users can add their own maps
as part of or independent from the existing world
hierarchy. Independent maps allow users to

describe their own intranet topology and then use
GTrace as a graphical debugging tool within
their network.

#GTrace configuration file

#Paths
TRACEROUTE=/usr/sbin/traceroute –q 3
WHOIS=/usr/bin/whois
PING= /usr/sbin/ping
NSLOOKUP=/usr/sbin/nslookup
DOMAINFILES=/home/ram/gtrace/data
DATABASES=/home/ram/gtrace/db

#Names of databases and text files to be used
#for location lookups. Order is important, list
#them in the order they should be searched.
CITIES=cities.db
AIRPORTS=airport.db

HOSTSLOC=Machine.db,hostnames/ipaddr;
 Hosts.db,ipaddr;
 Organization.db,hostnames/ipaddr;

TEXTFILES=England.txt,hostnames/ipaddr;

#Location of Lookup Servers if any
LOOKUPSRVS=

Fig. 5 Sample GTrace.conf file

Hop Node Name IP Address Search
Step

Location RTT (ms)

1 pinot-fe2-0-0 (192.172.226.65) 6 San Diego 0.917ms
2 medusa.sdsc.edu (198.17.46.10) 3 San Diego 0.881ms
3 sdsc-gw.san-bb1.cerf.net (192.12.207.9) 4 San Diego 1.944 ms
4 pos0-0-155M.san-bb6.cerf.net (134.24.29.130) 4 San Diego 4.640 ms
5 atm6-0-1-622M.lax-bb4.cerf.net (134.24.29.142) 4 Los Angeles 9.598 ms
6 pos6-0-622M.sfo-bb3.cerf.net (134.24.29.233) 4 San Francisco 15.317 ms
7 pos10-0-0-155M.sfo-bb1.cerf.net (134.24.32.86) 4 San Francisco 16.813 ms
8 192.205.31.29 (192.205.31.29) 6 New Jersey 16.917 ms
9 att-gw.sf.cw.net (192.205.31.78) 4 San Francisco 81.281 ms

10 corerouter2.SanFrancisco.cw.net (204.70.9.132) 4 San Francisco 81.254 ms
11 core1.Washington.cw.net (204.70.4.129) 3 Washington 89.727 ms
12 mix1-fddi-0.Washington.cw.net (204.70.2.14) 4 Washington 89.708 ms
13 vsnlpoone.Washington.cw.net (204.189.152.134) 4 Poone 706.301 ms
14 202.54.6.17 (202.54.6.17) 6 Madras 697.946 ms
15 202.54.6.254 (202.54.6.254) 6 Madras 702.893 ms
16 giasmda.vsnl.net.in (202.54.6.161) 4 Madras 704.856 ms

Fig. 4 A sample traceroute output produced by the first phase of GTrace.

5. GTrace Features

Fig. 6 shows an example of a trace that
was executed from University of Colorado,
Boulder to CAIDA in San Diego. On the display,
the colors of the lines on the map indicate the

Fig. 6 Example of a trace produced by GTrace

reliability of the location obtained for the
endpoints. The colors are decided based on the
following criteria:

Green Both endpoints are authoritative
locations.

Yellow One endpoint is authoritative and
the other is a guess whose location
is not a country center, state center
or obtained from a whois record.

Blue Both endpoints are guesses and the
locations of both the endpoints are
not a country center, state center or
obtained from a whois record.

Red One endpoint is a location that is a
country center, state center or
obtained from a whois record.

The table in the lower section of the
display consists of six columns. The first column
provides the user with a checkbox that is enabled
for each location plotted on the map. The user
can disable a checkbox and the corresponding
location will be skipped. Locations that are
flagged as unreasonable by the Location Verifier
are not plotted by default.

The second, third and fourth columns
display the hop number, IP address and host
name respectively. Clicking on columns three

and four will bring up whois information for the
node.

Column five provides the latitudes and
longitudes obtained for each hop. Clicking on
this column will provide an explanation of how
the location was determined and whether the
Location Verifier detected any problems. A
small colored ball in front of the latitude and
longitude value indicates which search step
produced the location. The colors and the search
step they represent are given below:

Green Step 2 LOC record.
Yellow Step 3 Complete match

Blue Step 4 Domain parsing file
Cyan Step 5 Hostname reduction match
Red Step 6 whois record
Gray Step 7 Country code

The last column shows the smallest of
the round trip times returned by traceroute. The
color of the value indicates how many packets
timed out: black implies that no packets timed
out, blue implies that one packet timed out, and a
value in red indicates that two or more packets
timed out.

6. Using GTrace in the Local
Environment

System Administrators often use
traceroute as a debugging tool to identify
problems in their network. GTrace provides a
visual representation that can facilitate
understanding and debugging of their network. It
can be used to discover routing loops as well as
for deciding routes. For example in a large
campus if a path from host A to host B (located
in the same building) goes across campus and
back, the routing could be fixed to avoid such
inefficient paths. GTrace can also be useful from
an end user perspective. Students can use the tool
to work out the topology of their campus
network.

7. Conclusion

GTrace is a handy tool for identifying
network topology and routing problems as well
as gaining more macroscopic insight into the
Internet infrastructure. While GTrace uses
several heuristics to determine locations and its

approach does not guarantee accuracy, it is
robust and extensible. New databases, new
Lookup Servers and learned insights into ISP's
naming conventions can easily be added to
GTrace. We hope that users and system
administrators will find GTrace useful and
contribute their own domain parsing files, or
even run their own Lookup Servers for
community use.

The practical success of GTrace lies in
the rules defined for the “.net” domains, since
these comprise the majority of hops in many
traceroutes. Looking up a “.net” name in the
whois database is only useful for small localized
ISPs. Relying on whois heuristics would result in
backbone providers' “.net” nodes to all uselessly
map to a single corporate headquarters for that
provider.

The accuracy of this tool would be
much improved if the Internet community
maintained LOC records in the DNS.
Unfortunately since LOC records are optional,
non-trivial in effort to support and without any
clear payoff to ISPs, pervasive use of them will
probably never occur and geographic
visualization of arbitrary Internet infrastructure
will continue to require heuristics to determine
physical location of nodes.

8. Acknowledgments

We would like to thank kc claffy at
CAIDA for suggesting the idea to develop this
tool. We would also like to mention a special
word of thanks to the following people and
institutions: VisualRoute for permission to use
their maps and labels, Sleepycat Software for the
BerkeleyDB Package, Jim Donohoe for
developing NetGeo and to the entire research
team at CAIDA who helped with many aspects
during the development of GTrace.

Several students (Colorado: Robert
Cooksey, Brent Halsey, Jamey Wood, Jeremy
Bargen and UCSD: Jim Anderson) wrote
graphical traceroute tools as class projects in Evi
Nemeth's Network System's class. Many good
ideas from these students' projects were
incorporated into GTrace.

9. Availability and Support

GTrace-1.0 is the current release and it
can be downloaded from the GTrace home page
at http://www.caida.org/Tools/GTrace. The
source code comes with the GTrace distribution.
Further information on using the tool or how you
can contribute domain parsing files can be found
on the GTrace home page.

10. Author Information

Ram Periakaruppan is pursuing his
Master's degree in Computer Science at the
University of Colorado, Boulder. He can be
reached at <ramanath@cs.colorado.edu>.

Evi Nemeth has been a computer
science faculty member at the University of
Colorado for years. Currently she is on leave
doing the IEC (Internet Engineering Curriculum)
project at CAIDA (Cooperative Association for
Internet Data Analysis) on the UCSD campus
and working furiously to make the publisher's
deadline for the third edition of the UNIX
System Administration Handbook. She can be
reached at <evi@cs.colorado.edu>.

References

[AirportCodes] Listing of Airport Codes,
http://www.mapping.com/airportcodes.html

[BerkeleyDB] BerkeleyDB Package
Distribution, http://www.sleepycat.com

[DBCAIDA] Database files compiled by
CAIDA, http://www.caida.org/NetGeo/NetGeo/

[DBNDG] Database file compiled by NDG
Software, http://www.dtek.chalmers.se/~d3augus
t/xt/dl/

[Jacobson88] Van Jacobson, Traceroute source
code and documentation. Available from:
ftp://ftp.ee.lbl.gov/traceroute.tar.Z.

 [NetGeo] The Internet Geographic Database,
http://www.caida.org/Tools/NetGeo

[OROMatcher] OROMatcher - Regular
Expression Package for Java,
http://www.savarese.org

[Peterson] Peterson, Larry L., & Davie, Bruce S.,
Computer Networks - A Systems Approach,
Morgan Kaufmann, (1996).

[RFC1876] RFC 1876, Davis, C., Vixie, P.,
Goodwin, T., and Dickinson I., A means for
Expressing Location Information in the Domain
Name System, January (1996).

[RFC1918] RFC 1918, Rekhter, Y., Moskowitz,
B., Karrenberg, D., Groot, G. J., Lear E.,
Address Allocation for Private Internets,
February (1996).

[Swing] Java Foundation Classes – Swing
http://java.sun.com/products/jfc/

[VisualRoute] Maps from VisualRoute,
http://www.visualroute.com

