
Scamper: a Scalable and Extensible Packet Prober for
Active Measurement of the Internet

Matthew Luckie
Department of Computer Science

University of Waikato
Hamilton, New Zealand
mjl@wand.net.nz

ABSTRACT
Large scale active measurement of the Internet requires ap-
propriate software support. The better tools that we have
for executing consistent and systematic measurements, the
more confidence we can have in the results. This paper
presents scamper, a powerful open-source packet-prober for
active measurement of the Internet designed to stand alone
from coordination mechanisms. We built scamper and pop-
ulated it with specific measurement techniques, making de-
sign decisions aimed at allowing Internet researchers to focus
on scientific experiments rather than building accurate in-
strumentation.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques

General Terms
Measurement

Keywords
Active measurement, Software, Tools

1. INTRODUCTION
Packet probing experiments capture relatively simple mea-

surements – typically delay, loss, reordering, and topology
– that yield surprising insights into the structure and be-
haviour of the Internet. An early measurement experiment
investigating the effect of packet size on delay suggested that
TCP implementers should refine the algorithm used to com-
pute the TCP RTO value [1]. The massive scale and contin-
uing growth of the Internet has increased the complexity of
measuring it, both technically and methodologically. In the
past decade, researchers have built and operated many large-
scale active Internet measurement platforms [2, 3, 4, 5, 6, 7,
8, 9] where each typically reproduces a tremendous amount

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’10, November 1–3, 2010, Melbourne, Australia.
Copyright 2010 ACM 978-1-4503-0057-5/10/11 ...$10.00.

of supporting software development. Faced with continu-
ing funding constraints, members of the Internet measure-
ment community organised a workshop in 2005 to strategise
a way to collaborate on creating and operating a community-
oriented network measurement infrastructure; the workshop
report [10] presents many goals and desires, including the
need for better ways to organise large-scale measurements.

This paper focuses on a small part of this problem; build-
ing a packet-prober that makes it easy to conduct large-scale
measurements and archive collected data in a well-defined
format. A packet-prober should abstract away problems
of coordinating individual measurements on a host, pro-
vide APIs that deal with operating system differences, pro-
vide APIs for obtaining accurate timing information, and
produce output that is more detailed and easier to process
than that produced by existing system tools. By building
a packet-prober with these goals in mind we can help the
experimental researcher avoid the system programming and
administration problems of coordinating individual measure-
ments on a single host. Rather than suffering the overhead
associated with parallelisation of a single instance of a given
measurement process, a researcher can rapidly implement a
new measurement technique and focus on the analysis and
validation of results.

Such community software infrastructure will also improve
the capability of researchers to leverage measurements from
volunteers across the global Internet. At present researchers
need to be careful when soliciting volunteers to do a mea-
surement that uses the system’s included traceroute as the
implementation included in each operating system differs
remarkably in operation and utility, even though most are
based on Van Jacobson’s implementation [11]. For instance,
none support Paris traceroute [12], FreeBSD’s implementa-
tion supports TCP probing but does not process TCP re-
sponses, and Ubuntu’s implementation can trigger rate lim-
iting because it sends bursts of probes.

This paper presents scamper, a powerful packet-prober
designed to support large-scale Internet measurement. In-
cluded in the contribution to the measurement community
are feature-rich implementations of traceroute, ping, MDA
traceroute, four alias resolution techniques, Sting, and parts
of TBIT. We begin in section 2 by first establishing a set of
design objectives. Sections 3, 4, 5, and 6 present a technical
overview of scamper, detailing its implementation, features,
performance, and use. Section 7 shows how scamper has
been useful in conducting research, including both our ex-
periences and those of others. Finally, section 8 outlines
related work and section 9 concludes.

2. DESIGN OBJECTIVES
Precise: promote good science by ensuring details found

in a response packet are easily available to measurement
techniques, easily stored, and then easily read by analy-
sis routines. A researcher should be able to annotate both
individual measurements and a collection of measurements
describing the purpose and specifics of the data collection.
Packet timestamps should be recorded from the best avail-
able source – whether it be from user-space or the network
interface. Decoding a chain of packet headers can be tedious
and error prone; therefore, the packet-prober should present
decoded packet headers to a measurement technique so that
the implementer can easily use them. Finally, the details
found in a packet header should be preserved in a data file
even if the need to do so has not yet been established.

To motivate this last point, consider macroscopic Internet
topology mapping using traceroute; traditionally, the data
recorded per-hop is an IP address, the RTT measured, and
the TTL used in the probe packet. However, Augustin et al.
recently brought to the community’s attention the problem
of routers that forward traceroute probes with a TTL of zero,
which results in a subsequent router appearing twice in a
path and therefore a false link inference [12]. Unfortunately,
few topology mapping projects record the TTL found in the
ICMP quotation, preventing the correction of link inferences
made using topology data archived years earlier.

Parallelised: efficiently manage the several hundred con-
current measurements that are a reality of macroscopic In-
ternet measurement. For Internet-scale experiments to com-
plete in a reasonable length of time requires concurrent mea-
surements. Active measurements can spend a lot of time
waiting, for example, for a reply to a TTL-limited probe
in traceroute, or for a reply to a TCP SYN probe. The
period of time where productive work is done is when send-
ing a probe and receiving a reply, so measurement is most
productive when we are able to probe at a constant rate.
However, an architecture that allocates a thread per mea-
surement does not scale as well as an event-based system.
A packet-prober should provide APIs that allow resources
such as sockets to be shared amongst measurements. Do-
ing so improves performance by reducing the number of file
descriptors that the operating system has to service when
multiplexing synchronous I/O.

Portable: support a wide range of operating systems
and computer architectures. The requirements of some ac-
tive measurement techniques are not well catered for by the
Berkeley sockets API, which is designed for general-purpose
Internet software. The methods available to bypass the sock-
ets API differ amongst operating systems, so a significant
volume of code has to be implemented for any one technique
to be portable across systems. The experimental researcher
would benefit from an API that is operating system agnostic
and reduces the code required to create and send a packet
and then receive and decode a response.

Flexible: each experiment has different motivations and
requirements; a packet-prober should be flexible enough to
support them. While some experiments can be specified
as a one-shot measurement where the order in which a mea-
surement is conducted is not important, some measurements
are conducted in reaction to a previous measurement [13],
or require some amount of coordination and control. These
requirements call for the packet-prober to be flexible in the
ways it allows a researcher to specify measurements.

Volunteer friendly: some measurements are made by
volunteers that run experiments on behalf of researchers. A
packet-prober should therefore be easily compiled on sys-
tems for which a pre-compiled binary is unavailable; easily
operated by a volunteer; lightweight enough to run in a re-
source constrained environment such as an embedded sys-
tem; and self-contained so that a potential volunteer will not
need to install a suite of dependencies.

Modular: support multiple measurement techniques, and
be easily extended to include techniques that have not yet
been devised.

3. SCAMPER
Guided by the design objectives listed in section 2 we im-

plemented scamper, a parallelised packet-prober capable of
large-scale Internet measurement using many different mea-
surement techniques. Figure 1 illustrates the overall archi-
tecture of scamper. Briefly, scamper obtains a sequence of
measurement tasks from the input sources and probes each
in parallel as needed to meet a packets-per-second rate speci-
fied on the command line. Tasks currently being probed are
held centrally by scamper in a set of queues – the probe
queue if the task is ready to probe, the wait queue if it is
waiting for time to elapse, and the done queue if the task
has completed and is ready to be written out to disk. Each
measurement technique is implemented in a separate mod-
ule that includes the logic for conducting the measurement
as well as the input/output routines for reading and writing
measurement results, allowing measurement techniques to
be implemented independently of each other. When a new
measurement task is instantiated, the task attaches a set of
callback routines to itself that scamper then uses to direct
the measurement as events occur, such as when it is time
to probe, when a response is received, or when a time-out
elapses. Sockets required as part of a measurement are held
centrally by scamper in order to share them amongst tasks
where possible so that resource requirements are reduced.
Finally, scamper centrally maintains a collection of output
files where completed measurements are written.

Output: scamper provides two output file formats; an
ASCII text option, and a binary file format known as warts.
The text option produces low-fidelity output similar to the
ping and traceroute utilities and is suitable for interactive
use. The binary option is an extensible format designed for
use by researchers because of its ability to record detail and
provide archival features. Scamper includes a library that
allows its binary output files to be easily read, and CAIDA
have created a Ruby library [14] which allows researchers
to develop analysis programs in Ruby. Scamper supplies an
API to assist a researcher implementing a new measurement
technique to create a record which can then be stored in the
binary file format. To promote precision and discourage
researchers from recording results in the text option, the
library provides no ability to read results from a text file.

Portability layer: scamper provides a portability layer
that shields a researcher implementing a measurement tech-
nique from the differences in the APIs of each operating sys-
tem. An author of a measurement technique uses scamper’s
portability layer to define the details of a probe packet and
to transmit it, and has the corresponding responses decoded
and passed to the task by its specified callback routines. The
portability layer hides, for example, the details of which byte
order the system expects packet headers to be supplied in,

New

Input sources

Prio
3

Prio
1

control
socket

input
file

File descriptors

Internet sockets
Datalink sockets
Private sockets

Probe

Waiting

Done

Queues
tbit

timeout
write
reply

probe

Current tasks

timeout
write
reply

probe

traceroute ping

timeout
write
reply

probe

Output files

2
File

1
File

3
File

text
file

w
arts

file

control
socket

Probe command

Completed

Queue

Replies

Figure 1: The architecture of scamper. Measurement tasks are supplied from one or more input sources,

including from an input file, from the command line, or from a control socket. A scamper task is abstract;

the exact behaviour is determined by a set of implementer-provided callback functions. Current tasks can

be in one of three states; waiting to probe, waiting for a response or to timeout, or waiting to be written to

disk. Completed tasks can be written to a text file or a binary file, or over a control socket for interpretation.

and the byte order that values in packet headers in response
packets are returned in. If the system would interfere in
transmitting a packet – e.g. by silently fragmenting a probe
or re-writing packet header fields, scamper allows a tech-
nique to use the datalink sockets instead. Because datalink
sockets expect a complete frame including layer-2 headers,
scamper provides an API to obtain the layer-2 addresses dy-
namically using neighbour discovery protocols. Similarly, a
technique can use a datalink socket if the system does not
provide the ability to read particular types of packets from
an Internet socket, such as raw TCP frames. Finally, some
techniques that use TCP as their probe method, such as
Sting [15] and TBIT [16], require the ability to prevent the
operating system’s TCP stack from interfering in a measure-
ment by responding to unexpected packets; scamper pro-
vides the ability to install a temporary firewall rule for some
firewall types. Scamper runs on BSD, Linux, MacOS X, So-
laris, and Windows systems; however, not all portions of the
portability layer work on all systems.

Operation: scamper can run either as a one-shot mea-
surement or as a daemon that is externally controlled. Scam-
per receives instructions in two ways. One, it accepts a list
of IP addresses to probe, either in a file or on the com-
mand line itself, along with a measurement technique to use
with each address specified on the command line. When all
addresses have been probed, scamper has completed all re-
quired work and exits. The second way is to start scamper
as a daemon and then connect to scamper’s control socket
and issue measurement instructions dynamically. This can
be done either by specifying a measurement technique and a
file with IP addresses to use, or by specifying individual mea-
surement instructions interactively. The latter approach is
powerful because it allows a macroscopic Internet measure-
ment infrastructure to rapidly begin collecting data without
implementing its own parallelised measurement tools and
data collection system.

Event driven: there are no threads in scamper, so au-
thors of new measurement techniques do not have to be con-

cerned about reentrancy of their functions. To achieve par-
allelism, scamper uses non-blocking file descriptors in con-
junction with the select system call. The main limitation
with select is there is no guarantee that it will return ex-
actly when the timeout expires. However, the finer reso-
lution of the modern operating system scheduling clock has
reduced the scale of this problem. Also, some techniques are
self-clocking; for example, traceroute usually sends the next
probe immediately after the last has been received, rather
than waiting for a timeout.

Parallelism: scamper has two parameters that control
its parallelism. The first is the minimum inter-packet trans-
mit delay permitted, defined in packets per second (PPS).
The default value of 20 means that scamper will send pack-
ets spaced 50ms apart. The second, a window parameter,
defines the maximum number of active tasks permitted at
any one time. The default value of zero means the window is
unrestricted and the parallelism is defined solely by the PPS
value. Scamper has been observed to probe at 1000 PPS on
modest hardware, suggesting the event driven model scales
well. Scamper aims to reach the desired rate by adding
new tasks as required. As scamper can have multiple input
sources supplying tasks concurrently, the user can specify
the priority of each source. A priority value defines the ratio
of new tasks it contributes overall in weighted round robin.
If a source is not ready to supply a command and scamper
has room in its probing budget, it obtains a new task from
the next ready input source to maximise work done.

Stand-alone: as one design objective is to make scam-
per easy for volunteers to install and operate, scamper has
no dependencies on external libraries or a configuration file,
and has a small number of parameters configurable on the
command line. These features make scamper easy to com-
pile, install, and run. We considered using external libraries
such as libpcap and libdnet, but not all operating systems
contain a recent version of these libraries, and these libraries
presently do not contain all required features.

4. MEASUREMENT TECHNIQUES
Traceroute: scamper began with a desire to conduct

IPv6 traceroute in parallel to a large number of target ad-
dresses in support of CAIDA’s macroscopic Internet topol-
ogy discovery project [5]. The traceroute included in scam-
per is feature-rich: it supports IPv4 and IPv6; probe meth-
ods based on UDP, ICMP, and TCP, including Paris tracer-
oute [12]; path MTU discovery (PMTUD) to infer the pres-
ence of tunnels [17]; a method to infer the hops in a path
that do not send an ICMP packet too big message which is
required for PMTUD to work [18]; and doubletree [19] to
reduce redundant probing. It is optimised for macroscopic
Internet topology discovery by halting if a sequence of un-
responsive hops is encountered.

Ping: ping is useful to measure end-to-end delay and
loss, search for responsive IP addresses, and classify the be-
haviour of hosts by examining how they respond to probes.
In addition to the traditional ICMP echo method, scamper
supports UDP, TCP, and TTL-limited probing, which can
be used if directed ICMP echo probes do not obtain a re-
sponse. Scamper includes the ability to spoof the source
address of probes, as well as include IP options for record
route and timestamps; these features are useful for imple-
menting reverse traceroute [20].

MDA traceroute: scamper implements the multipath
detection algorithm described in [21] to infer all interfaces
visited between a source and destination in a per-flow load-
balanced Internet path. It does this by deliberately varying
the flow-identifier that a router may compute when load
balancing. Probes with different flow-identifiers may take
different paths and thus reveal different parts of the forward
IP path. In addition to the ICMP and UDP methods origi-
nally implemented by Augustin et. al which vary the ICMP
checksum and UDP destination port values, scamper imple-
ments a UDP method which varies the source port instead
of the destination port so that the probes do not appear to
be a port scan. This method also provides the ability to
probe past a firewall that blocks UDP probes to ports above
the usual range used by traceroute [22]. Scamper also imple-
ments TCP methods that vary the flow-id by changing the
source or destination port, depending on the user’s choice.

Alias resolution: scamper implements four techniques
for inferring which IP addresses observed in the Internet
topology are aliases. First, it implements Mercator prob-
ing [23] which infers aliases when a common source IP ad-
dress is observed in ICMP port unreachable responses to
probes sent to different destination IP addresses. Second,
it implements Ally probing [24] which infers aliases by ob-
serving a sequence of increasing IP-ID values in response to
probes interleaved to two different targets. Third, it im-
plements RadarGun probing [25] where all candidates are
tested simultaneously and aliases are then inferred by ob-
serving different IP addresses with the same IP-ID velocity.
Finally, it implements a prefix scan method which infers a
router’s outgoing interface by finding an alias in the same
subnet as the next interface in the forward path. As with
the traceroute and ping implementations, scamper supports
UDP, ICMP, and TCP probe methods. It also supports
sending TTL-limited probes with a specific 5-tuple of values
to solicit ICMP time exceeded messages from routers in a
path; the 5-tuple can be obtained from the data recorded
by scamper with traceroute data. This is useful for map-
ping router-level topologies when operators firewall probes

directed at their routers, or do not announce prefixes used
to number router interfaces.

Sting: scamper implements Savage’s [15] TCP-based al-
gorithm to infer one-way loss by making use of algorithms
used by TCP receivers when they receive out-of-sequence
packets. The technique is challenging to implement because
a firewall rule must be inserted to prevent the host’s operat-
ing system from interfering in the measurement by sending a
TCP reset in response to a packet it does not expect. There
is no standardised method across operating systems for an
application to request particular packets be ignored. The
original implementation of Sting no longer runs on a mod-
ern operating system due to the firewall interfaces changing
substantially in the past ten years.

TBIT: scamper implements two of the techniques de-
scribed in [16]: measurement of behaviour in response to
an ICMP packet too big message, and measurement of be-
haviour in response to ECN negotiation and notification. As
with Sting, a firewall rule is required with each measurement
to prevent the host operating system from interfering. These
techniques are well suited to being implemented in scamper
because the probes are not time critical and fit with scam-
per’s method of probing at a constant rate defined in PPS.
However, sometimes bursts of packets are required, such as
when ramping up a TCP connection through slow start so
that the server response to a dropped packet can be mea-
sured. We are investigating methods to support parallelised
measurement of this class of measurement.

5. EVALUATION OF SCALABILITY
This section demonstrates the performance of scamper

measured by memory and CPU usage when run with differ-
ent PPS rates on modest hardware. In particular, we explore
the impact of increased parallelism on performance. We
test performance using scamper’s implementation of Paris
traceroute with UDP probes [12]. Our experiment uses
traceroute in the style of macroscopic Internet topology dis-
covery [5]; traceroutes are launched to a randomly gener-
ated set of destination Internet addresses. This experiment
tests multiple dimensions of scamper. Most traceroute mea-
surements to randomly selected addresses are long-lived be-
cause most destinations are unresponsive to probes, requir-
ing scamper to use memory to store information about tasks
in progress. Even though most destinations are unrespon-
sive, most probes are responded to by intermediate routers
that send time exceeded messages. This requires scamper
to efficiently use the CPU to receive and decode responses,
determine the appropriate task that requires the response,
store the response, and then take an appropriate action.

Our probing host is a Pentium 3 800Mhz with 128MB of
RAM and a 100Mbps Ethernet interface, running FreeBSD
8.0. We compiled scamper with gcc’s default settings on
FreeBSD to build with compiler optimisations at level two.
We instrumented scamper using the getrusage system call,
recording the total amount of user and system CPU time
consumed, as well as the maximum resident set size (RSS)
which defines the maximum amount of RAM used by a pro-
cess. We also recorded the percentage of CPU consumed by
scamper at five second intervals because scamper is likely
to be idle for a fixed amount of time towards the end of its
workload while tasks timeout due to three consecutive unre-
sponsive hops. We tested scamper at rates between 100 and
1000 PPS, in random order. For each probe rate, we used

RSS 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 200 400 600 800 1000
 0

 1

 2

 3

 4

 5

 6
M

ax
 C

P
U

 u
sa

ge
 (

%
)

M
ax

 R
S

S
 u

sa
ge

 (
M

B
)

Packets per second

CPU

 0

Figure 2: Maximum CPU and RSS usage observed

for different packets per second rates. With tracer-

oute, scamper’s CPU and memory requirements

grow linearly with probing speed, but neither re-

quires significant computing resources.

C
um

ul
at

iv
e

fr
ac

tio
n

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80
Time to complete traceroute

400
600
1000
200
800

 0

Figure 3: Time required to complete tasks at differ-

ent PPS rates. The time elapsed for each traceroute

is almost identical. The separation at 32 seconds is

caused by some tasks waiting an additional timeout.

the same list of 10,000 randomly selected IP addresses from
prefixes observed at Route Views [26]. We did not probe
beyond 1000 PPS because of measurement etiquette consid-
erations, as most probes in this experiment solicit a response
from an intermediate router. The machine is otherwise idle.

CPU consumption: All of our tests consumed nearly
the same total amount of CPU time regardless of PPS rate,
between 25.3 seconds and 26.9 seconds. This can be ex-
plained by the use of efficient data structures that scale in
O(logn) and sharing sockets amongst tasks so that only a
few sockets need to be monitored. The total CPU time con-
sumed is greatest for the tests with the lowest PPS rates, be-
cause the scamper process accounts for more wall and there-
fore system CPU time. Figure 2 plots the maximum CPU
usage observed for scamper when configured with different
PPS rates. CPU requirements grow linearly with probing
speed. This experiment is well within system capabilities of
our Pentium 3 800Mhz, requiring 8.1% of the CPU at peak
when probing at 1000pps.

Memory consumption: In order to meet a specified
PPS rate, scamper adds new tasks as necessary, each re-
quiring additional memory for maintaining state. Figure 2

also plots the maximum RSS reported by the operating sys-
tem for each test. At 100pps, scamper requires 1.9MB at
peak, and memory requirements grow linearly to 6.2MB at
1000pps. The memory and CPU requirements to run scam-
per are modest.

Effect on data collected: Overall, summary statistics
for the data collected are almost identical for each PPS rate;
5.2% of destination were reachable, 10.0% received an ICMP
destination unreachable code, 5.9% halted because of an ap-
parent forwarding loop, and 78.9% halted after three consec-
utive unresponsive hops. In addition, the number of packets
sent for all data sets is between 232k and 234k, and the num-
ber of IP-level links is between 29.2k and 29.3k. Figure 3
plots the time required to complete each traceroute for se-
lected PPS values; the lines for other PPS rates fall between
the PPS values that are plotted. For this workload, the dis-
tribution of time required to complete task is also almost
identical for all PPS rates; however, 10% of tasks take up
to five seconds more to complete in some experiments – the
time that traceroute waits before timing out and sending
another probe. There is no correlation between the probing
rate and these variations; our experience with experiments
at other times leads us to believe that the differences are
due to network conditions at the time of this sample.

6. USING SCAMPER
As described in Section 3, scamper provides the ability to

be run as a daemon and then controlled using a Unix domain
socket or a TCP socket bound to the loop-back interface. As
a simple example, consider a researcher who wishes to dy-
namically collect data about router-level connectivity avail-
able towards a set of destinations. To do so, the researcher
requires the ability to collect the interface graph using MDA
traceroute, determine the utility of probing each interface
with TCP, ICMP, and UDP probes with ping to determine
which probe types are able to solicit responses with incre-
menting IP-ID values, and then the ability to collapse the
graph using an alias resolution technique such as RadarGun.
The driver program the researcher would write to support
this collection follows from the data requirements.

Briefly, the driver is responsible for remembering the list of
targets to probe with MDA traceroute, the list of interfaces
to probe with ping, and the utility of each ping method for
soliciting an incrementing IP-ID so that repeated ping mea-
surements are unnecessary. While there are targets to probe,
the driver communicates to scamper the measurement tasks
for it to traceroute and ping. As each measurement com-
pletes, scamper sends the results back to the driver across
the control socket. The data arrives in a binary form, so
to decode it the driver could use a socketpair, writing the
binary data in one end and then reading the decoded mea-
surements from the other using the provided API for doing
so. At the same time, the driver can record the binary data
to disk to archive the raw data for later use. When the list of
targets to probe has become empty and all results are back
from scamper, the final step is to provide scamper with a
RadarGun probing specification containing the interfaces to
probe paired with the appropriate probe method it should
use, be it ICMP, UDP, or TCP. When the data collection
is complete, the final step required is process the data col-
lected to infer which interfaces are aliases, and then produce
the router-level graph from it.

7. EXPERIENCES
Identifying IPv6 network problems in the dual-

stack world: the first use of scamper was a 2004 study that
compared the forward paths of IPv4 and IPv6 addresses be-
lieved to belong to the same host [17]. The goal was to use
the data to find IPv6 paths that performed poorly compared
to their IPv4 counterpart, and to provide operators with
suggestions on where IPv6 routing could be improved. The
work used scamper’s one-shot measurement functionality; a
list of IPv4 and IPv6 addresses were provided to scamper
which then probed addresses in parallel until the list was
completed. The main findings of this work were (1) only a
small proportion of targets have a much larger delay with
IPv6 than with IPv4, and (2) the impact of IPv6 tunnels,
inferred by changes in Path-MTU, depends heavily on the
upstream connectivity of the vantage point. With the IANA
pool of remaining IPv4 addresses rapidly running out, it is
important that the worst of the indirect IPv6 routes be iden-
tified and mechanisms created to make operators aware of
them. Future work will look into automating data collection
and procedures to communicate problems to operators.

CAIDA’s macroscopic Internet topology project:
scamper is used in CAIDA’s macroscopic Internet topol-
ogy discovery project to collect forward-IP path data on a
continuous basis, beginning in September 2007. As of Au-
gust 2010, there are 48 vantage points distributed across the
globe, divided into three teams. Members of each team col-
lectively probe a randomly generated address in all /24 pre-
fixes routed on the Internet. Work is coordinated amongst
vantage points using the Marinda tuple-space system [9]. An
external measurement process monitors scamper’s progress;
when a unit of work is complete, a new set of random IP
addresses is written to a file and passed to scamper using its
control socket. Scamper is configured to probe at 100pps; a
team of 12 vantage points requires approximately two and
a half days to probe all routed /24 prefixes. The data col-
lected is made available to researchers as the IPv4 Routed
/24 Topology dataset [27]. There is substantial work to be
done to translate the data into a router-level graph of the
Internet using alias resolution, and the development of tech-
niques to correctly filter AS-level links from it.

IPv6 AS-core poster: one of CAIDA’s widely recog-
nised visualisations is the IPv4 AS core poster showing the
geographic connectivity and importance of ASes. In 2008,
CAIDA had few vantage points with IPv6 connectivity with
which to collect the raw IP topology data required, so volun-
teers were solicited on the NANOG mailing list. Each volun-
teer downloaded the scamper source code, compiled it, and
then ran scamper using a supplied address list. Contribu-
tors from 53 different cities running varied operating systems
supplied data, demonstrating scamper’s portability and ease
of volunteer use. The data was used to support a geographic
comparison of the IPv4 and IPv6 AS-level graphs [28].

Traceroute probe method comparison: in 2008, we
compared the utility of five different methods and found
that ICMP-Paris traceroute reaches the most destinations
and infers the most AS links when destinations are chosen
randomly [29]. To collect the data required, we wrote a
driver that connected to a running scamper process and is-
sued a series of traceroute commands for each destination;
the next method to use was chosen randomly by the driver,
and it waited at least five seconds between traceroutes to
any single destination. Using scamper’s support for exter-

nal drivers allowed us to focus on the data collection and
analysis aspects of the work, rather than implementing our
own complicated probing loops and algorithms.

Quantifying the pitfalls of traceroute: in 2009, re-
searchers at Harbin Institute of Technology and UCLA ex-
amined the limitations of using traceroute data and the cor-
responding longest BGP prefix matches to infer AS connec-
tivity [30]. To do so requires the ability to collect tracer-
outes from a vantage point where a BGP feed is also avail-
able. CAIDA’s Ark topology project has three such vantage
points; a fourth was created in UCLA by using scamper to
collect traceroute data from their campus network where
they were also able to procure a BGP feed.

8. RELATED WORK
Spring et al. built scriptroute with a goal of allowing im-

plementations of measurement techniques to be portable and
able to be used on a public general purpose measurement fa-
cility [6]. Both scriptroute and scamper include a portability
layer so researchers can focus on the logic of their technique,
and include implementations of common measurement tech-
niques. Scriptroute provides researchers with a distributed
set of machines from which to run experiments; with scam-
per, we focused on building a parallelised packet-prober that
can be used easily in both measurement infrastructure and
stand-alone contexts.

fping [31], hping [32], and nmap [33] have portable and
parallelised implementations of ping, traceroute, and net-
work security tests respectively, allowing networks to be
rapidly tested. Scamper is built with the Internet researcher
in mind; it provides an extensible file-format that records
the detail of a measurement to provide a researcher with
sound data, and provides flexibility in the control of the
measurement process making it suited for use in Internet
measurement infrastructure.

9. CONCLUSION
Internet researchers are faced with many challenges when

building and designing experiments; overcoming technical
limitations of operating systems, recording results and data
in a way that allows sound analysis to take place, paral-
lelising their implementation so it can scale to meet the
size of the Internet, and finding enough vantage points to
be confident their results are representative of the Internet.
Scamper provides a flexible and reusable packet-probing ar-
chitecture that allows researchers to focus on scientific ex-
periments rather than building accurate and scalable instru-
mentation. Scamper’s architecture has been shown to be
useful to a community-oriented network measurement in-
frastructure, as it is currently used in CAIDA’s Archipelago
system [9]. The source code to scamper is freely available at
http://www.wand.net.nz/scamper/.

Acknowledgements
We thank WIDE and CAIDA for funding and supporting
the initial development of scamper. This work is currently
supported by New Zealand Foundation for Research Science
and Technology (FRST) contract UOWX0705.

10. REFERENCES

[1] David Mills. Internet delay experiments. RFC 889,
December 1983.

[2] V. Paxson, J. Mahdavi, A. Adams, and M. Mathis. An
architecture for large-scale Internet measurement.
IEEE Communications Magazine, 36(8):48–54, 1998.

[3] Sunil Kalidindi and Matthew J. Zekauskas. Surveyor:
An infrastructure for Internet performance
measurements. In INET’99, San Jose, CA, June 1999.

[4] Tony McGregor and Hans-Werner Braun. Balancing
cost and utility in active monitoring: The AMP
example. In INET 2000, Yokohama, Japan, July 2000.

[5] Bradley Huffaker, Daniel Plummer, David Moore, and
k claffy. Topology discovery by active probing. In
SAINT 2002, pages 90–96, Nara City, Japan, January
2002.

[6] Neil Spring, David Wetherall, and Tom Anderson.
Scriptroute: A public Internet measurement facility. In
USITS ’03, pages 225–238, Seattle, WA, March 2003.

[7] Yavul Shavitt and Eran Shir. DIMES: let the Internet
measure itself. Computer Communication Review,
35(5):71–74, 2005.

[8] Harsha Madhyastha, Tomas Isdal, Michael Piatek,
Colin Dixon, Thomas Anderson, Arvind
Krishnamurthy, and Arun Venkataramani. iPlane: An
information plane for distributed services. In OSDI
’06, pages 367–380, Seattle, WA, November 2006.

[9] Young Hyun. Archipelago measurement infrastructure.
http://www.caida.org/projects/ark/.

[10] kc claffy, Mark Crovella, Timur Friedman, Colleen
Shannon, and Neil Spring. Community-oriented
network measurement infrastructure (CONMI)
workshop report. ACM/SIGCOMM Computer
Communication Review, 36(2):41–48, April 2006.

[11] Van Jacobson. traceroute.
ftp://ftp.ee.lbl.gov/traceroute.tar.gz.

[12] Brice Augustin, Xavier Cuvellier, Benjamin Orgogozo,
Fabien Viger, Timur Friedman, Matthieu Latapy,
Clémence Magnien, and Renata Teixeira. Avoiding
traceroute anomalies with Paris traceroute. In IMC
’06, pages 153–158, Rio de Janeiro, Brazil, October
2006.

[13] Mark Allman and Vern Paxson. A reactive
measurement framework. In PAM 2008, pages 92–101,
Cleveland, OH, April 2008.

[14] Young Hyun. rb-wartslib: ruby warts library.
http://rb-wartslib.rubyforge.org/.

[15] Stefan Savage. Sting: a TCP-based network
measurement tool. In USITS ’99, pages 71–79,
Boulder, CO, October 1999.

[16] A. Medina, M. Allman, and S. Floyd. Measuring the
evolution of transport protocols in the Internet.
Computer Communication Review, 35(2):37–52, April
2005.

[17] Kenjiro Cho, Matthew Luckie, and Bradley Huffaker.
Identifying IPv6 network problems in the dual-stack
world. In ACM SIGCOMM workshop on Network
Troubleshooting, pages 283–288, Portland, OR, August
2004.

[18] Matthew Luckie, Kenjiro Cho, and Bill Owens.
Inferring and debugging path MTU discovery failures.

In IMC ’05, pages 193–198, Berkeley, CA, October
2005.

[19] Benoit Donnet, Timur Friedman, and Mark Crovella.
Improved algorithms for network topology discovery.
In PAM 2005, pages 149–162, Boston, MA, March
2005.

[20] Ethan Katz-Bassett, Harsha V. Madhyastha,
Vijay Kumar Adhikari, Colin Scott, Justine Sherry,
Peter van Wesep, Thomas Anderson, and Arvind
Krishnamurthy. Reverse traceroute. In NSDI ’10,
pages 219–234, San Jose, CA, April 2010.

[21] Brice Augustin, Timur Friedman, and Renata
Teixeira. Measuring load-balanced paths in the
Internet. In IMC ’07, pages 149–160, San Diego, CA,
October 2007.

[22] R-fx Networks. Advanced policy firewall (APF). http:
//www.r-fx.ca/downloads/apf-0.9.6-3.tar.gz.

[23] Ramesh Govindan and Hongsuda Tangmunarunkit.
Heuristics for Internet map discovery. In INFOCOM,
pages 1371–1380, Tel-Aviv, Israel, March 2000.

[24] N. Spring, R. Mahajan, and D. Wetherall. Measuring
ISP topologies with Rocketfuel. In SIGCOMM ’02,
pages 133–145, Pittsburgh, PA, August 2002.

[25] Adam Bender, Rob Sherwood, and Neil Spring. Fixing
Ally’s growing pains with velocity modeling. In IMC
’08, pages 337–342, Vouliagmeni, Greece, October
2008.

[26] University of Oregon. Route Views.
http://www.routeviews.org/.

[27] Young Hyun, Bradley Huffaker, Dan Andersen, Emile
Aben, Matthew Luckie, and kc claffy. The CAIDA
IPv4 routed /24 topology dataset.
http://www.caida.org/data/active/ipv4_routed_

24_topology_dataset.xml.

[28] CAIDA. Visualizing IPv6 AS-level internet topology
2008. http://www.caida.org/research/topology/
as_core_network/ipv6.xml.

[29] Matthew Luckie, Young Hyun, and Brad Huffaker.
Traceroute probe method and forward IP path
inference. In IMC ’08, pages 311–323, Vouliagmeni,
Greece, October 2008.

[30] Yu Zhang, Ricardo Oliveira, Hongli Zhang, and Lixia
Zhang. Quantifying the pitfalls of traceroute in AS
connectivity inference. In PAM ’10, Zurich,
Switzerland, April 2010.

[31] fping - a program to ping hosts in parallel.
http://fping.sourceforge.net/.

[32] hping - active network security tool.
http://www.hping.org/.

[33] Gordon Lyon. nmap. http://nmap.org/.

