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Overview
Cyber attacks, such as ransomware, malware, and denial-of-service (DOS), are persistent threats to
the security, reliability, and robustness of scientific cyberinfrastructure (CI). We propose a trans-
lational research effort to extend the capabilities of existing NSF-funded Internet measurement
infrastructure—UCSD Network Telescope (UCSD-NT)—to immediately improve the robustness,
integrity, and resilience of wide range of CI hosted in the San Diego Supercomputer Center (SDSC).
Specifically, we propose to develop a novel platform—Sustainable Technology to Accelerate Research
Network Operations Vulnerability Alerts (STARNOVA)—which will substantially expand the ca-
pability to identify targeted attacks against scientific CI at the SDSC.

Our project leverages unsolicited traffic, including Internet-wide scanning campaigns that often
provide an an early-warning indicator of new attacks. Such scanning blends in with normal user
traffic, but becomes more prominent in darknets. CAIDA operates the largest and longest-running
darknet telescope on the Internet, positioning us to effectively translate results of this technology
to our hosting CI site, the San Diego Supercomputing Center (SDSC).

We structure the design and implementation of STARNOVA as three tasks. Our first task is to
expand the visibility of UCSD-NT by capturing traffic toward SDSC’s production networks. We
will leverage network/broadcast IP addresses in each SDSC’s subnets and the addresses assigned
to router interface and point-to-point links to form greynets, a collection of dark IP addresses that
interspersed with active addresses in the same subnets, to capture unsolicited traffic. We will deploy
equipment to mirror the traffic to the modernized UCSD-NT.

Second, we will leverage NSF-funded compute resources (i.e., the Expanse supercomputer at
SDSC) to deploy our recent research on machine learning(ML)-based time series analytic methods
to detect anomalies in IBR traffic. Our method will efficiently analyze over 200K time series and
identify those containing either transient or persistent suspicious pattern changes.

Third, we will automate network flow analysis to examine the time series flagged by our anomaly
detection method. We will enhance our current flow data representation, correlate anomalies in dif-
ferent time series, identify potentially affected services, and infer attack origins. We will implement
near real-time alerts for operators to make informed defensive actions against potential threats.
Keywords: network telescope, anomaly detection, darknet, traffic, security, cyberinfrastructure.
Intellectual Merit
This project joins the efforts of network engineering and recent advances in cybersecurity research
to provide protection to scientific CI. Our novel approach combines advanced traffic capture capa-
bilities, network operations expertise, and ML-based time series analytics to scalably detect traffic
anomalies in near real-time. The outcome of this project will provide accurate and custom alerts
on emerging cyberattacks for network operators.
Broader Impact
This project is directly responsive to the NSF Cybersecurity Innovation for Cyberinfrastructure
Area 3. By translating network telescope measurement instrumentation to research network envi-
ronments, we will address urgent security management gaps by providing new visibility into threats
against SDSC, home of a wide range of NSF-funded scientific cyberinfrastructure. The published
design, software, and data will facilitate traffic data collection and information exchange across the
network security and scientific CI community, contributing to affordable community-based solu-
tions, especially critical at under-resourced institutions.



1 Introduction

Cyber attacks, such as ransomware, malware, and denial-of-service (DOS), are persistent threats
to the security, reliability, and robustness of scientific cyberinfrastructure (CI). Adversaries ex-
ploit vulnerabilities to gain unauthorized system access, disrupt services, and retrieve sensitive
data through the Internet, severely jeopardizing the integrity of research workflows. Existing de-
fenses, such as regularly updating software and intrusion detection systems can mitigate attacks
from known vulnerabilities. However, systems are exposed to attacks during the lag time between
applying patches and signature updates. We propose a transitional research effort to extend the
capabilities of existing NSF-funded security research instrumentation to immediately improve the
robustness, integrity, and resilience of SDSC’s wide range of scientific cyberinfrastructure.

Our efforts start with the recognition that attackers have the advantage: they have to discover
only one vulnerable host or service, while defenders have to protect all of them. Defenders thus
must learn how to leverage all available sources of threat intelligence. Ironically, a powerful source
of threat intelligence is an empty but connected network that hosts no devices or services – called
a darknet. All traffic received by such a network has no active destination endpoint, which implies
three properties: it is suspicious, unsolicited, and not privacy-sensitive. In homage to astronomers,
researchers call such traffic Internet background radiation (IBR). One significant component of IBR
traffic is Internet-wide scanning campaigns, often conducted to identify vulnerable hosts. Some
scans thus represent an early-warning indicator of new attack waves. Such scanning blends in with
normal user traffic, but becomes more prominent in darknets.

Over the last two decades, CAIDA (at UCSD) has operated the world’s largest network telescope
(UCSD-NT) to capture IBR from a darknet. CAIDA’s STARDUST platform enables researchers
to access the captured IBR traffic data for security studies, e.g., characterizing distributed denial
of service attacks (DDoS) [1–4], network censorship [5, 6], and the spread of botnets and malware
[7–12]. Given the scarcity of IPv4 address space needed to create such instrumentation, the only
realistic way to sustain such data collection is to extract unsolicited traffic from active Internet
address space. Any given IP network has at least two IP addresses that should never engage in
two-way communication: the network/broadcast IP addresses of each subnet and the addresses
assigned to router interfaces or point-to-point links. We use this fact to operationalize security use
of greynets [13]: networks that capture traffic to their unutilized addresses.

We propose to develop a novel platform—Scalable Technology to Accelerate Research Network
Operations Vulnerability Alerts (STARNOVA)—which will transform our capability to identify
targeted attacks against scientific CI at the San Diego Supercomputer Center (SDSC). Our approach
combines advanced traffic capture capabilities, network operations expertise, and innovations in
machine learning (ML)-based time series analytics to scalably detect anomalies in near real-time.
We structure the design and implementation of STARNOVA as three tasks.
1. Expand the visibility of UCSD-NT. We will improve the capability of the UCSD-NT to

capture traffic toward SDSC’s greynets. The team includes SDSC operational security staff
who will deploy and operate equipment to mirror this traffic to our infrastructure.

2. Anomaly detection for IBR traffic. We will leverage NSF-funded compute resources (i.e.,
the Expanse supercomputer at SDSC) to deploy our recent research innovations in machine
learning(ML)-based time series analytic methods [14] to detect anomalies in IBR traffic.

3. Automatic event analysis and alert generation. We will automate analysis and correla-
tion of anomalies, identify targeted services, and infer attack origins. We will implement inte-
grations with instant-messaging tools (e.g., Mattermost and Slack) to offer real-time alerts to
inform operator decisions on applying appropriate defensive actions against potential threats.

This project is directly responsive to the NSF Cybersecurity Innovation for Cyberinfrastructure



Area 3’s program goals of improving the robustness of scientific CI through operational or at-scale
deployment, test and evaluation of novel cybersecurity research and techniques. More specifically,
STARNOVA will greatly enhance the capability of UCSD-NT, a well-established infrastructure, to
improve the network security of SDSC, which is the home of national NSF-funded scientific CI,
such as Expanse [15], Voyager [16], Science Portals & Science Gateways [17], and National Research
Platform [18]. SDSC’s CI supports important stages in research workflows, particularly compute
and analytics, data movement, storage, and sharing, for health IT services, workflow automation,
and internet data analysis. Enhancing the robustness and resilience of scientific CI at SDSC could
broadly benefit research across science domains.

2 Background

We first provide background on CAIDA’s UCSD-NT and STARDUST infrastructures that collect,
process, and share IBR traffic data (§2.1). We then provide an overview of security-related analyses
of this traffic (§2.2). We also highlight academic and industry efforts to provide threat intelligence
(§2.3), and why they are insufficient for the needs of modern scientific cyberinfrastructure.

2.1 UCSD-NT and STARDUST infrastructure

The UCSD-NT captures network traffic sent toward three-quarter of a /8 IPv4 network owned by
a non-profit organization, consisting of around 12M IP addresses. Even though most of these IP
addresses are dark (i.e., not assigned to devices and do not respond to any traffic), UCSD announces
legitimate BGP routes to receive the traffic. After filtering traffic from the few legitimate users in
the network, the UCSD-NT captures and stores the packets (in pcap format) for off-line analysis.
Given current storage constraints, UCSD-NT provides the most recent 60-days of pcap files onsite
and sends historical pcap files to NERSC HPSS data archive [19] for long-term storage.

The large data size of this IBR traffic (>100GB per hour) imposes challenges for researchers
to perform data analysis. In 2019, CAIDA announced the STARDUST platform, supported by an
NSF-funded project that concluded in 2021 (CNS-1730661) “Sustainable Tools for Analysis and
Research on Darknet Unsolicited Traffic (STARDUST)”, offering three ways to access the data.
1. STARDUST virtual machines. STARDUST provides virtual machines (VMs) to re-

searchers to access live darknet traffic. UCSD-NT uses multicast to broadcast IBR traffic
to the VMs. Researchers bring their code to the VMs to analyze real-time IBR traffic.

2. FlowTuple files. The Corsaro software package [20], developed for STARDUST, processes IBR
traffic and generates FlowTuple files [21], which are Apache Avro formatted files for compact
representation of network flow records, every 5 minutes. Each FlowTuple record represents a
sequence of packets sharing features, including source IPs, protocol and destination ports. The
Corsaro software package computes traffic statistics of the flows (e.g., distribution/frequency
of packet sizes, time-to-live value) and annotates each flow with metadata that facilitates
analysis (e.g., prefix-to-AS [22], and IP geolocation).

3. Traffic time series data. For near real-time traffic monitoring, STARDUST computes a set
of traffic properties (Table 1), yielding over 200K time series. We apply heuristics [23] to
identify traffic with spoofed source IP addresses and implement filters to prevent them from
compromising our statistical analysis. We use InfluxDB [24], a time series database, to index
the data, and Grafana dashboards [25] to publish interactive visualization [26].

We propose three transformative changes to UCSD-NT infrastructure to achieve our cybersecu-
rity innovations: introducing a new traffic source from a stratified sample of SDSC CI’s IP address
space (§3.1); translating new ML-based methods to support real-time anomaly detection and anal-



Table 1: Traffic metrics, properties, and filters, that when combined, yields over 200K time series.
We will use these time series as the input of the anomaly detection method (§3.2).

Properties Metrics (per minute) Filters

Origin ASN # of packets (PPM) Unfiltered
Geolocation # of bytes (BPM) Non-Spoofed

Protocol number # of unique source IPs Spoofed (Derived)
TCP/UDP Destination port # of unique source ASN

ICMP type & code # of unique destination IPs
Spoofing inference

ysis to this new combined data set (§3.2); and enriching the FlowTuple representations to scale
performance of the analysis sufficiently to allow automated notifications and informed operational
response by SDSC (§3.3).

2.2 Research to infer security and stability properties of IBR traffic

A vast body of literature has used IBR traffic for studying cybersecurity problems, including dis-
tributed Denial-of-Service attacks (DDoS) [1–4], network censorship [5, 6], spread of botnets and
malwares [7–12]. Detecting anomalies and classifying the nature of traffic is one of the fundamental
goals in darknet research. Researchers leverage fields in packet headers (e.g., TCP/UDP destination
ports, TCP flags, TCP sequence numbers, and TTLs) to identify activities. For example, differ-
ent scanners probe different sets of TCP/UDP ports for vulnerable services [7, 8, 27]. Backscatter
induced by DDoS attacks are response packets, such as TCP SYN/ACKs, TCP RSTs, and DNS
responses, from victims [2,28]. Mirai’s probe packets use the destination IP addresses as the TCP
sequence numbers [9], and ZMap’s probe packets have a constant IPID of 54321 [29].

Researchers have recently made progress applying machine learning approaches to study darknet
traffic. Balkanli et al. [3, 4] used Naive Bayes, Chi-Square and Symmetrical Uncertainty, and the
Decision Tree classifier to train supervised learning models to detect DDoS attacks. Time series
analyses were applied to infer regional Internet outages from darknet traffic [30, 31]. Gupta [30]
analyzed noises in IBR time series data, including traffic bursts and IBR generated by BitTorrent.
Chocolatine [31] trained a seasonal Autoregressive Integrated Moving Average (SARIMA) model to
predict the number of source IPs appearing in IBR traffic, facilitating detection of Internet outages.
Darkvec [10], Kallitsis et al. [12], and DANTE [32] leveraged clustering algorithms to identify
coordinated scanning campaigns and scanners with similar behavior. However, these models require
expensive training with labeled data and are not suitable for real-time analysis. This research will
develop novel ML-based methods to achieve near real-time anomaly detection.

2.3 Industry and community efforts to provide threat intelligence

A closely related approach to network telescope is network honeypots, which pretend to be vul-
nerable hosts to attract attacks from malware and adversaries. That is, a honeypot deployment
will respond to unsolicited traffic trying to penetrate a specific IP address, in order to discover the
nature of the attempted attack. There are academic and industry deployments of honeypots, such
as STINGAR [33], Internet Storm Report [34], GreedyBear [35], and Greynoise [36]. Honeypots
require more resources to operate as they must emulate a real operating system.

Some researchers have used the UCSD-NT to create reactive telescope platforms [11, 37], only



Figure 1: Architecture of UCSD-NT & STARDUST (dashed blue box) and STARNOVA (dashed
green box). New components (green) are labeled with corresponding tasks in proposal (red squares).

briefly interacting with the attackers to infer their intent. Although both types of deployment
provide intelligence about malicious IP addresses, they require constant updates in order to identify
new attacks and maintain instrumentation on unused IP address space. More importantly, someone
else’s honeypot cannot provide visibility into attacks targeting one’s own (in this case SDSC’s) CI.

3 Enhancing the cybersecurity of SDSC’s CI with STARNOVA

We structure our project into three inter-related tasks (T1 -T3 in Fig. 1). First, we will partner
with SDSC network engineers (See LoC) to deploy a traffic aggregator that will identify traffic
to greynet addresses and forward it to UCSD-NT. Obtaining this traffic data will require tackling
unique challenges in monitoring ultra high capacity (400Gbps) networks which SDSC will deploy in
2023. We will also upgrade and modernize UCSD-NT’s and STARDUST’s software and hardware
platforms to handle additional traffic load (§3.1). Second, we will operationalize our recent ML-
based change point detection method [14] to identify anomalies in darknet and greynet traffic
(§3.2). Third, we will develop methods to automate network flow analysis to extract finer-grain
information on anomalies, and correlate traffic data from the two networks to identify threats to
SDSC’s CI (§3.3). Task 2 and 3 will leverage Expanse, an NSF-funded HPC platform at SDSC, to
perform near real-time analysis.

3.1 Task 1. Expanding visibility and capability of UCSD-NT

The UCSD-NT effectively reveals uniformly random Internet-wide scanning campaigns, because it
observes over 1/340 of probes in such campaigns. To verify whether the scans impact the CI at
SDSC, a straightforward approach would be to deploy an unutilized address block as a production
darknet. However, unused IPv4 address blocks are scarce, making darknet deployments unlikely in
most networks. To overcome this obstacle, we will leverage assigned IPv4 addresses that have no or
low traffic in SDSC’s network to expand the coverage of UCSD-NT. Such networks are colloquially
called greynets, as they have some dark addresses embedded with active (“lit”) IP addresses in the
same address space [13]. Previous work has opportunistically identified unused addresses [13], but
we propose to use three types of addresses to form greynets:



I. Network address refers to the first IP address in the entire subnet [38], which could represent a
subnet (except /31 and /32 networks which use their 1-2 addresses for point-to-point connec-
tions [39]), or an IP broadcast address. By default, routers discard traffic to these network
addresses [38]. Therefore, the characteristics of network addresses are similar to darknet, i.e.,
we do not expect any traffic to originate from or to these addresses.

II. Broadcast address is the last IP address in a subnet [38] intended for IP broadcasts. Currently,
only two protocols (DHCP and BOOTP) use IP broadcast addresses within internal networks.
Therefore, packets from the Internet toward broadcast addresses are likely unsolicited.

III. Equipment address is assigned to physical or virtual network devices, such as router interfaces,
and an endpoint of a point-to-point connection. These addresses might host management
services (e.g., SSH, Telnet, SNMP), send/receive routing messages (e.g., OSPF and STP),
and respond to ICMP traffic for network diagnosis, but should not carry any application
traffic. Furthermore, these management services are often restricted to be accessible only
within internal networks. Therefore, ingress traffic from the Internet is also likely unsolicited.

Using greynets as network telescopes not only saves unused address space, but is less likely to
be circumvented (avoided) by attackers for two reasons. First, the unused addresses are deeply
embedded in the production network that hosts services or end-users [40]. Second, Classless Inter-
Domain Routing (CIDR) [41] defines subnets with arbitrary prefix length; greynet addresses could
be at any location in the subnet. The last octets of the addresses are not limited to 0 or 255 in the
traditional class A/B/C addressing scheme. SDSC uses CIDR subnets, which obfuscates attempts
to identify greynet addresses. Analyzing a week of traffic to each IP in one /24 in the UCSD-NT
(Fig. 2), we found no evidence that scanners avoid probing any address in the subnet.

Figure 2: Number of packets send to last octet of IP ad-
dresses in a /24 darknet. The first (0) and the last (255) IP
addresses in a /24 received a similar number of IBR packets
as most other IP addresses in the same subnet, indicating
they will provide sound IBR data in greynets.

Subnet assignments could
change over time. We plan to
develop scripts to periodically
download and parse network con-
figurations from routers to identify
greynet IPv4 addresses. The up-
dated list of greynet addresses will
automatically transmit to SDSC’s
traffic aggregator which is config-
ured to extract and forward traffic
from the unutilized addresses. We
have identified dozens of greynet
IPv4 addresses in SDSC’s produc-
tion network. The corresponding
subnets connect multiple CIs and
UCSD’s campus network.

SDSC will deploy 400Gbps fiber
optics links in mid-2023 (Fig. 3).
We plan to update SDSC’s network taps and traffic aggregator to provide traffic visibility after
the upgrade. We will purchase an Arista 7280 series Layer 3 switch and software to support traffic
capture and filtering from multiple 400Gbps network taps. The switch will filter traffic to greynet
IP addresses identified from the router configurations and forward it to UCSD-NT’s packet capture
server.

To handle traffic growth, we will upgrade three main components of the UCSD-NT:
1. Packet capture server. We will upgrade the packet capture server and develop new software

for processing packets. As the Endace DAG card that UCSD-NT currently uses is no longer



available, the new packet capture server will use programmable SmartNICs (e.g., NVIDA BlueField
series [42]) to offload packet processing and filtering from the server’s CPU for better performance
and reliability. We will use Capsule [43], a Rust-based network function framework that provides
an efficient and memory safe programming environment for packet processing, to implement new
packet processing functions to run on the SmartNICs.

Figure 3: Overview of SDSC core network. SDSC plans to
upgrade the network links connected to the CI to 400Gbps
(green links). We will use 400Gpbs-compatible network
taps and traffic aggregator to passively monitor ingress
traffic from the core router to SDSC’s networks and for-
ward it to UCSD-NT.

2. Compute cluster. The
computational power of existing VMs
that we provide to researchers for
data analysis will soon become insuf-
ficient. Each research VM currently
has 8 CPU cores, 32GBytes RAM
and 100GBytes storage. But the pro-
cessing time of FlowTuple files in the
VMs is longer than the time duration
that the files cover, inhibiting real-
time analysis. (It takes more than an
hour to process an hour of data.) Fur-
thermore, our compute cluster is fully
utilized at 30 researchers. We plan to
purchase new compute servers to of-
fer higher performance VMs to more
researchers.

3. Storage. We plan to in-
crease the capacity of our object stor-
age cluster to accommodate the new
traffic from UCSD/SDSC and growth
of UCSD-NT IBR traffic. We cur-
rently provide the most recent 60 days
of raw packet traces and all histori-
cal FlowTuple files for offline analysis
(§3.2). As of February 2023, 60 days of packet traces consume over 200TBytes (and growing).
UCSD-NT also produces ≈22TBytes of FlowTuple files per year. As the number of SDSC greynet
addresses is much smaller than the darknet, we expect packet and flow data for the new greynet to
consume < 1TBytes per year.

3.2 Task 2: Scalable anomaly detection for IBR traffic data

The volume and velocity of historical and live IBR traffic data remains challenging for near real-
time classification and analysis of network events. Pre-trained models can reduce the detection
speed. However, these models may not be able to quickly adapt to emerging attacks.

We plan to apply our recently developed ML-based framework [14] to detect events in IBR traffic
by characterizing traffic dynamics across many time series generated from raw traffic processed by
the Corsaro software package every minute (Table 1). Our method has four steps (i-iv in Fig. 4).

3.2.1 Time series data preparation

The first step (i in Fig. 4) is to query time series from UCSD-NT’s InfluxDB, which indexes the
data with traffic properties (§2.1 and Table 1). Each combination of values in traffic properties



Figure 4: Our anomaly detection method leverages both ML and statistical analyses of time series.

(e.g., country and protocol) and spoofed filters generates 5 time series (e.g., packet per minute). For
example, the packet count (PPM) of 500 popular TCP ports of non-spoofed/spoofed traffic from
23 North American countries will result in 11,500(=500×23) matrices. We will query 2-week time
series data for all combination of values in traffic properties and traffic metrics from the InfluxDB
and transfer to Expanse for analysis.

3.2.2 Self-dissimilarity matrix computation

Our method extracts signals of attacks in time-series statistics that can reveal promising time pe-
riods to further investigate (§3.3.2). The main challenge is to detect events from the heterogeneous
patterns in the time series. Instead of training models to classify different patterns, we use Dynamic
Time Warping (DTW) [44] to quantify similarity between two time-series (ii in Fig. 4).

(-) S0 S1 S2 S3

(-) 0 ∞ ∞ ∞ ∞

Q0 ∞ 0 16 17 17

Q1 ∞ 0 16 17 17

Q2 ∞ 16 0 9 25

Q3 ∞ 17 9 0 1

Q0 Q1 Q2 Q3

1 1 5 2

S0 S1 S2 S3

1 5 2 1

Figure 5: Left: A fully-computed DTW cost-matrix
(shortest-cost path in red) between two time series. Right:
Sample values for Q and S. DTW captures the high sim-
ilarity of time series despite that Q and S are not tempo-
rally aligned.

The DTW method compares time
series of different lengths or that
have been distorted by time-shifting
or warping. In such scenarios, us-
ing a simple Euclidean distance be-
tween time series elements will suf-
fer corruption from noise, e.g., phase-
shifts, in the data. DTW overcomes
this problem by computing the opti-
mal alignment between two time se-
ries that minimizes differences in their
shape and timing. In sum, given two
time-series Q and S, DTW calculates
a dissimilarity score, i.e., squared Eu-
clidean Distance, between each value
in Q and all other values in S, to form



a cost matrix (Fig. 5) of dissimilarity scores. DTW then computes the overall dissimilarity score as
the optimal alignment cost between Q and S, i.e., the least cost path, through the computed cost
matrix.

We use DTW to compute a self-dissimilarity matrix, M, of each time-series. We partition
each time-series, T , into fixed length segments (i.e., T = T0, T1, ..., Tn). We then compute DTW
dissimilarity score between any two normalized time-series segments to create the matrix (Fig. 6).

M =


DTW (T0, T0) DTW (T0, T1) . . . DTW (T0, TN−1)
DTW (T1, T0) DTW (T1, T1) . . . DTW (T1, TN−1)

...
... . . . ...

DTW (TN−1, T0) DTW (TN−1, T1) . . . DTW ((TN−1, TN−1)



Figure 6: Formation of self-dissimilarity matrix, M, of time-series T , partitioned into N segments.
The matrix is symmetric with zero diagonal (blue). Therefore, we consider the lower triangular
part of the matrix (red).

3.2.3 Machine-learning and statistical-based analysis

The self-dissimilarity matrices may be noisy. The third step (iiia-iiic in Fig. 4) is to apply both
machine-learning and statistical approaches to analyze the self-dissimilarity matrices and identify
anomalous subintervals. We will apply hierarchical agglomerative clustering (HAC) to group time-
series segments with similar patterns (iiia in Fig. 4). Large-size clusters likely contain periodic or
recurring activities. However, HAC’s results may be over-sensitive, particularly when all values in
the matrix are low. To overcome this limitation, we will use the distance between HAC clusters
to infer evidence of anomalies. For example, transient pattern changes significantly increase the
distance between adjacent clusters. Furthermore, we will examine probability distribution func-
tions (PDFs) of the values in self-dissimilarity matrices (iiib in Fig. 4). Bimodal or multimodal
distributions in the matrices indicate a change in behavior.

New attacks often only target certain services (ports) and thus only change the traffic patterns
of a few time series. We will use the Wasserstein distance [45] metric to compare self-dissimilarity
matrices between time series to detect anomalies (iiic in Fig. 4). Low Wasserstein distance between
two matrices indicates correlated changes in multiple protocols, ports, countries and networks that
we should analyze as a whole (§3.2.6).

3.2.4 Anomaly detection

We will combine the signals from Step iiia-c to identify time series that might have anomalies, and
feed them to our automatic analyzer (§3.3). In addition, we will build a fingerprint database to
store samples of time series segments that we have analyzed and labeled. Consulting this database
will reduce the number of alerts to known changes in the traffic data.

To achieve near real-time detection, we will update the self-dissimilarity matrices when UCSD-
NT creates a new time series segment (a configuration knob currently set for 6 hours per segment).
The update process will be quick as it only involves comparing new segments with old ones.



3.2.5 A scalable implementation

Our top-down approach (starting with statistical time series, then flows, then raw packets if needed)
requires substantially fewer computational resources than analyzing raw traffic traces. However,
comparing many thousands of time series is still computationally intense. We will leverage Expanse,
a high-performance computing (HPC) system at SDSC, to compute dissimilarity matrices and
perform machine-learning tasks. We have received an Accelerate ACCESS allocation [46] to evaluate
and deploy our methods. To fully utilize this allocation, we will query the time series data from
UCSD-NT’s InfluxDB with CAIDA’s compute servers and prepare the time series data for analysis.
We will use Dask [47] to distribute compute tasks on SDSC Expanse. The bottleneck of our
analysis is computing DTW scores. We will seek to use a GPU implementation of DTW (e.g.,
cuDTW++ [48]) to reduce computation time.

3.2.6 Preliminary results

We ran pilot tests using 20 days (November 1-20, 2022) of packet per minute (PPM) and bytes per
minute (BPM) time series data for traffic from 255 countries and 256 IPv4 protocols under both raw
and filtered data (removing likely spoofed traffic), totaling 2044(=2×2×(255+256)) unique time
series. We partitioned the time series into 6-hour segments. We computed the self-dissimilarity
matrices on a compute box with 32 CPU cores in less than 30 minutes.

Figure 7: Wasserstein distances between self-dissimilarity
matrix of protocol 66 and other IP protocols. Seven pro-
tocols had high similarity in traffic volume patterns with
protocol 66 (orange rectangle), suggesting a correlated scan.

Our cross-matrix analysis
(Fig. 7) showed there were similar
traffic patterns in eight IP proto-
cols, four of which were associated
with the Cisco IPv4 Blocked In-
terface Exploit, present in older
versions of Cisco IOS. Carefully
crafted packets with these protocol
values cause vulnerable routers to
incorrectly interpret the destina-
tion interface’s packet queue as full,
resulting in refusal of subsequent
packets to the interface [49,50].

Fig. 8 shows heatmaps of
two self-dissimilarity matrices. The
darker colors indicate high dissimilarity with other time series segments. We found persistent
(Fig. 8a) and temporary (Fig. 8b) changes in time series patterns, both of which could indicate
new scanning activities.

3.3 Task 3: Automatic anomaly analysis and threat intelligence generation

Our third task is to leverage the detection results we obtained in Task 2 to accelerate and automate
network traffic and flow analyses. We will develop an automatic analyzer to refine the alerts and
provide additional information on the potential threats. We will generate threat intelligence in
MISP-compatible format [51] to facilitate information sharing with network operators.



(a) Bytes per minute of IP protocol 66 traf-
fic. The dissimilarity score abruptly in-
creased after November 11, 2022, indicating
a shift in traffic pattern.

(b) Packets per minute whose source ge-
olocated from San Marino. Four anomalies
(segments 53, 57, 61, 62) show high dissim-
ilarity (score > 25) to other segments.

Figure 8: Two Heatmaps of self-dissimilarity matrices characterize two different IBR traffic metrics.
Each segment index is a 6-hour time period. The depth of the color represents the dissimilarity
score. Both matrices showed sudden changes in characteristics in the time-series.

3.3.1 Enriching FlowTuple data format to accelerate network flow analysis

UCSD-NT generates FlowTuples every 5 minutes, providing a summary of network flows observed
in that time interval (Table 2). This information enables characterization of various types of
malicious traffic, including scanning campaigns, without the overhead of analyzing raw packets.
We will improve the FlowTuple format by providing more information and annotation.
1. Hostnames contain rich information about IP geolocation [52] and ASNs [53]. We will use reverse

DNS to resolve source IPs to hostnames at the time UCSD-NT creates the FlowTuples.
2. Acknowledged benign scanners scan the Internet for research studies or cybersecurity monitor-

ing. They are less likely to be malicious. We will use public collections of known-benign
scanning IPs (e.g., [54]) and information provided by the scanner’s websites (e.g., [55]) to
identify benign scanners by source IPs and hostnames.

3. Scanner implementation provides crucial information about the nature of the traffic. The exist-
ing FlowTuple format does not provide TCP/IP header values to enable use of heuristics [56]
to infer scanner implementation (e.g., Hajime, Zmap, Mirai). Including more header values
in FlowTuple will significantly increase the file sizes. Instead, we will compute the heuristics
at the time of generating the FlowTuple, and add the inference as a new tag in FlowTuple.

4. Packet payload samples could help identify the target and intention of the traffic, such as services
or vulnerabilities. Providing representative samples can accelerate analysis of anomalies.

3.3.2 Automating flow analysis on detected anomalies

We will use the enhanced version of FlowTuple files to analyze anomalies we detect in darknet and
greynet traffic summary time series. We will build an analyzer to extract and summarize common
network characteristics of the anomalies, such as the ports, origin ASNs, countries, and network ser-



Table 2: Summary of current information and proposed new features (bolded) for FlowTuple [21].
Categories Information

Time Timestamp of network flows
Network flow information Source IPs, destination prefix, destination ports, IP Protocol

Summary of traffic properties destination IPs, TTLs, (TCP/UDP) source ports, TCP flags,
packet sizes, TCP flags, sample payload

Source IP Annotation Source IP geolocation (Maxmind and NetAcuity), Prefix-to-AS,
hostname

Inference Spoofed packets, Sent using Masscan/Hajime/Zmap/Mirai,
Acknowledged scanners

vices. We will also filter false positives and activities irrelevant to SDSC’s CI. For example, changes
in scanning patterns from acknowledged scanners are unlikely to cause cybersecurity threats. We
will also filter spoofed packets since they have unreliable source IP information.

After screening out these known components of the anomalous traffic, we will classify whether
the remaining anomalies are targeted or Internet-wide activities. Our approach is to match the flow
characteristics of anomalies detected by the darknet and greynet telescopes. Internet-wide scanning
will likely trigger our detection in both traffic streams. But only the greynet telescope can observe
scanning targeted to SDSC’s CI.

3.3.3 Publishing threat intelligence

STARNOVA will report the detected anomalies with network flow information for further analysis
by SDSC network security experts. We will deliver alerts by email and Mattermost/Slack bots [57].
To facilitate sharing of information with network security communities, we will share the alerts
using the MISP core format [51] used to exchange threat intelligence. The format pre-defines a
standard list of attributes (e.g., source/destination IPs) and types of network activity. We will
publish MISP-formatted data feeds on CAIDA’s website, so other networks can use our results.

4 Software licensing approach and justification

The released software produced in the course of the project will have an open source license.
Corsaro [20], the software UCSD-NT currently runs, is released using UCSD’s Academic Non-
Commercial License [58]. We plan to retain this license for future enhancement of this software
and related products. For software that we jointly develop with Northwestern University, we will
release the software with a license acceptable to both institutions [59], with the goal of maximizing
the benefit to the cyberinfrastructure research community to reuse, extend, and continue to share
the products we develop.

5 Data Sharing approach

We apply the FAIR principles [60], a guideline for those wishing to enhance the reusability of their
data holdings, to conduct and evaluate our data sharing model.
Findable: CAIDA’s resource catalog [61] enables users to search and navigate CAIDA’s datasets,

tools, and related publications. We index individual datasets derived from UCSD-NT data in



the catalog. For traffic and flow data, we organize the data files in UCSD-NT’s object storage
system by time, such that users can easily locate and download the data.

Accessible: As the data could be sensitive (§6), we require users to apply for data access via
CAIDA’s website. We will create accounts for accepted users to access the data via their
VMs. For SDSC greynet data, we will anonymize SDSC’s IP addresses.

Interoperable: We store the traffic data using pcap format, a de facto standard for this type of
data. The FlowTuple files are based on open-source Apache Avro format. Many open-source
libraries in different programming languages can parse the files. We provide the schema of
FlowTuple data and sample code on our website [21]. We will publish our threat intelligence
using MIST format, which is also an open-source data format with rich documentation.

Reusable: We provide detailed documentation on how the data was captured at the UCSD-NT. We
also store historical data files (e.g., traffic filters, and IP geolocation databases) to trace the
validity of traffic and relabel the traffic data.

6 Ethical and operational concerns

We take multiple measures to ensure that UCSD-NT does not capture user traffic from the darknet
and SDSC greynet address spaces. We work closely with the network administrators of the address
space (the non-profit organization that owns the space, UCSD, and SDSC) to update UCSD-NT’s
traffic filters as IP address assignments in the network change. Keeping the filters up to date is
essential to accurately discard user traffic and thus safeguard privacy. For greynet traffic, we will
configure the traffic aggregator to only forward traffic from the Internet, but not internal (LAN)
and outgoing traffic, to UCSD-NT.

The telescope data may inadvertently reveal victims of ongoing DDoS attacks and vulnerable
machines inflected by malware and worms. As such, we restrict the data access from the public.
Researchers who wish to access to the compute VMs/traffic data must disclose their purposes, and
sign an Acceptable Use Agreement (AUA) [62] to gain access the data. Our project manager/data
administrator will review the access every 90 days.

7 Sustainability plan

Over the last two years, CAIDA has actively purused sustainability of the UCSD-NT infrastructure,
trying to arrange service agreements to support specific institutions seeking to use the data. In 2023
we signed annual service agreements with Information Sciences Institute (ISI) at the University of
Southern California, and Lincoln Laboratory at MIT. We have also received support from the
Amateur Radio Digital Communications (ARDC) to support daily operation and data collection of
UCSD-NT. We are also working with security companies (e.g., DomainTools) to explore commercial
licensing of the darknet data in order to support academic research use of the data.

The new capability of UCSD-NT proposed in this project will bring new opportunities for us
to develop new services to sustain STARNOVA beyond the NSF grant. First, the updated UCSD-
NT infrastructure will be capable of extending collection of greynet traffic from other networks,
including scientific research networks and commercial networks. Therefore, our anomaly detection
method can provide tailor-made threat intelligence to participating networks. We will have a work-
shop to explore how to enable other campus CI deployments to replicate our greynet infrastructure,
including ways to leverage the UCSD-NT-derived threat intelligence.



8 Quantitative evaluation metrics

We will evaluate the benefit of STARNOVA with four metrics.
1. Detection accuracy. Higher detection accuracy provides better protection to the CI. However,

in many cases, it is hard to obtain ground truth about the intent of malicious traffic. We will
verify some detection results with SDSC security analyst (senior personnel in this project) to
determine whether the malicious activities are also found in traffic toward the CI and impose
threats to the systems. Apart from this manual investigation, we will analyze the threats
flagged by intrusion detection systems, but not STARNOVA, to refine the detection methods.
We will count the number of detected threats that are correctly/incorrectly classified.

2. Detection delay. We will evaluate the time delay from the onset of the attacks to the generation
of alerts. The accuracy of detection often increases with more data for classification. However,
the benefits of alerts diminish when they are triggered after or toward the end of the attacks.
STARNOVA will trade off between detection accuracy and detection delay. We will evaluate
the detection delay of each alert as a metric for fine-tuning our methods.

3. Number of users of our threat intelligence. Apart from measuring the technical aspect of
STARNOVA, we will quantify the impact of our project by the number of external users
that subscribed to our threat intelligence data feed. The alerts we provided will help enhance
the security of users’ networks.

4. Feedback from and uptake of ideas by other campus CI operators. We will leverage CAIDA’s
MSRI GMI workshops [63], several of which are focused on traffic data and DDoS mea-
surement efforts, to present and solicit community feedback on our design, deployment, and
operational threat intelligence. These meetings are well-attended by network and security re-
searchers, R&E operators, and commercial network operators, and will provide honest feed-
back on the utility of our results. We will explicitly reach out to campus CI operators to
attend one of these meetings to present the status of this project in year 3.

9 Project timeline

Fig. 9 shows our timeline. As supply chain challenges persist, we will order equipment as soon as
possible. In parallel, we will develop the anomaly detection method (T2.1) and implement the new
FlowTuple version (T3.1). We will deploy all hardware in the first year and receive greynet traffic
from SDSC before Q4 2024 (T1.1-1.4). We will present a low-fidelity prototype (M1) upon the
deployment of network taps and initial method for anomaly detection. We will refine the method
(T2.2-2.4), improve the analysis (T3.2-3.3), and transition the UCSD-NT to the new infrastructure
(T1.5). A working high-fidelity prototype will be ready by the end of Y2 (M2). In Y3, we will
publish threat intelligence and continue to refine the system (T3.4). In Q2 2026, we will deploy a
running demo of STARNOVA (M3).



2023 2024 2025 2026
Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3

T1: Enhance UCSD-NT infrastructure
1.1: Deploy 400Gbps taps in SDSC network

1.2: Forward greynet traffic to UCSD-NT
1.3: Upgrade UCSD-NT hardware

1.4: Develop packet filtering software
1.5: Switch over to new infrastructure

T2: Develop anomaly detection method
2.1: Enhance and refine DTW-base method

2.2: Evaluate the accuracy with historical data
2.3: Integrate greynet traffic data

2.4: Implement near real-time detection
2.5: Deploy GPU-based implementation

T3: Generate threat intelligence
3.1: Implement new FlowTuple version

3.2: Develop automatic analyzer
3.3: Evaluate the accuracy of threat intelligence

3.4: Publish threat intelligence
M1: Low-fidelity prototype
M2: High-fidelity prototype
M3: Deployment & Demo

Figure 9: Timeline of project tasks and milestones.
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