

On the Use of Anycast in DNS

Sandeep Sarat Johns Hopkins University Vasileios Pappas UCLA Andreas Terzis Johns Hopkins University http://hinrg.cs.jhu.edu/

Background

- What is Anycast?
 - Client transparent mechanism to route packet to one of multiple servers in anycast group
 - Implemented via announcements of the same address prefix from multiple origins (IGP+EGP)
 - Deployed in top-level DNS nameservers
 - Reduction in query latency
 - Scalability
 - Availability
 - Resistance to DDoS attacks

Goal

- Measure the impact of anycast on DNS
 - Response times
 - Availability in terms of number and duration of outages
 - Constancy of server selection
 - Effectiveness of localization

What we tested

.

- Base Case: Unicast server
 - Test-case: B-Root (local load balancing)
- Anycast Configurations
 - Hierarchical
 - Test-Cases: F-Root (26 servers), K-Root (7 servers)
 - Explore the effect of number and locations of servers
 - Flat
 - Test-Case: UltraDNS (8 servers *)

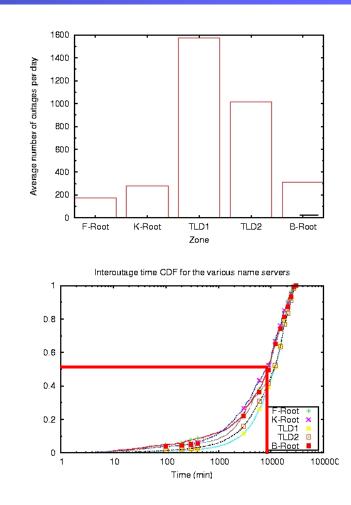
Measurement Methodology

 Measurements using PlanetLab

Continent	% of PL nodes		
South America	0.5		
Australia	1.8		
Asia	15.8		
Europe	16.7		
North America	65.2		

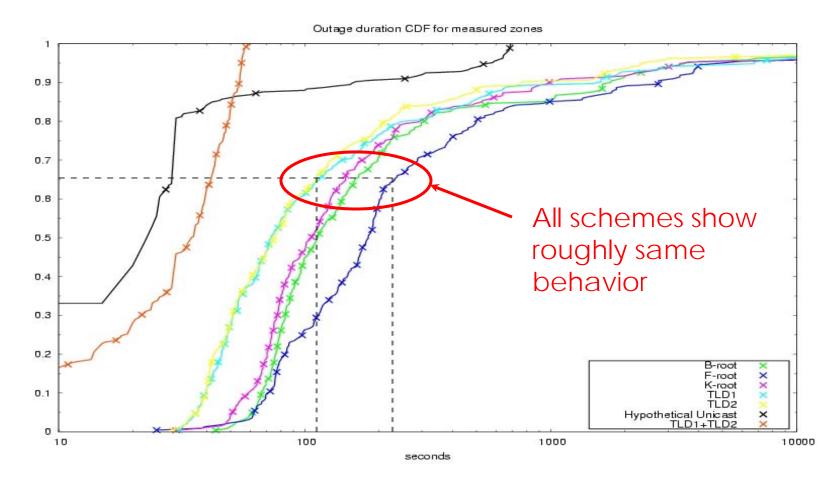
- Special DNS queries to the anycast address from each PL site every [25-35] seconds
- Period of study: 3 weeks from Sept 19, 2004 to Oct 8, 2004
- Definitions
 - Outage: Period of time when queries are unanswered (multiple of meas. period)
 - Flip: Client switches from one server to another

Response Times


- Anycast servers have lower response times
- UltraDNS TLD1 has the lowest query latency
- Among the rest, F-Root is the best
 - Reason: high geographic diversity
- Response times have high deviations
 - Due to instability as we will see later

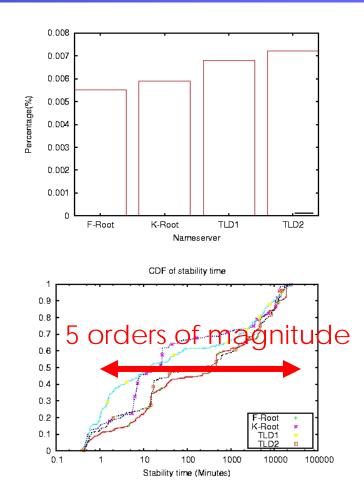
Server	Mean (ms)	Median (ms)	Std. dev (ms)	
Hypo. Unicast* min{TLD1.TLD2}*	Flat	vs. H	ierarcl	nical
TLD1	96	54	207	
F-Root	75	70	85	
TLD2	104	85	237	
B-Root	115	95	121	
K-Root	140	121	104	
			· · · · · · · · · · · · · · · · · · ·	

* Hypothetical cases Effect of server comparison location


Availability

- Percentage of unanswered queries < 0.9%
- TLD1,TLD2 have the largest number of outages
- F-Root has the least
 - Reasons (speculation)
 - UltraDNS is single-homed
 - Longer Internet paths
- Average inter-outage time for same client is in the order of days

Outage Duration



Constancy

10 A A

- Constancy measured by frequency of flips between servers
- TLD1, TLD2 have most flips
- F-Root, K-Root have higher percentage of flips after an outage
- Majority of flips for F-Root and K-Root are between the global nodes

Effectiveness of Localization

10 M I

- Question: Does anycast lead clients to the closest server?
- Direct comparison flawed due to different routing paths for unicast and anycast addresses
- Solution:
 - Compare path used by anycast to paths to all last hop routers

Comparison of Strategies

- Hierarchical schemes have higher stability and availability
- Flat schemes are more effective in directing queries to the "closest" anycast instance
- Possible idea:
 - Tune parameter to adaptively change properties anycast scheme – Radius of announcement at each anycast node

Summary

- Anycast improves availability
- Other properties depend on the scheme used
- Trade-off between availability, stability and effectiveness of localization
- Caveats:
 - Results apply to Planet Lab environment
 - Support arguments using BGP data
 - Skew due to load on the anycast server
- For more:
 - http://www.cs.jhu.edu/~sarat/Anycast-TR.pdf