
Project Summary
The lack of predictive power over complex systems, either designed by humans or evolved

by nature, is a foundational problem in contemporary science. The Internet offers a paradigmatic
example: nothing in its architecture and design explains its complex large-scale structure, un-
expectedly discovered decades after its inception. We face an unsettling truth: the Internet has
acquired emergent properties that are beyond our full understanding, much less control.

As scientists, we are compelled to explore how the peculiar structure relates to the function(s)
of complex networks. Many complex networks in nature share the peculiar structural character
of the Internet, but they also manifest phenomenal behavior: they efficiently route information
without any observable routing communication protocol. This achievement is currently beyond
the reach of man-made networks. The Internet still uses a 30-year old routing architecture with
fundamentally unscalable overhead requirements. Yet in those 30 years, the Internet’s inter-domain
topology has evolved toward a structure for which nature has superior routing technology, if only
we can figure out how to use it!

The prospect of zero-overhead routing is sufficiently attractive that in our previous NeTS-FIND
project we developed a new theoretical framework to study it. We now propose to apply that
framework in a broader network scientific context. In our framework, nodes in real networks exist
in a separate but related hidden metric space, which guides routing without overhead or topology
knowledge. We found strong evidence that not only do hidden metric spaces underlie real complex
network topologies including the Internet, but that a greedy routing mechanism applied to such
topologies and underlying spaces yields a maximum percentage of paths that successfully reach
their destinations. Remarkably, these successful paths almost always are shortest, regardless of
the hidden space structure. This explanation for why (if not how) complex networks are naturally
navigable had sufficiently high interdisciplinary impact for recent publication in Nature [1].

However, even though almost all successful greedy paths are shortest, not all paths are success-
ful. The percentage of successful paths does depend on the hidden space structure. The intellec-
tual merit of our proposed work will lie in the identification of hidden spaces that make all greedy
paths both shortest and successful. The most basic geometric property of a space is its curvature
K. Spaces fall into three categories depending on their curvature K: Euclidean (K = 0), spherical
(K > 0), or hyperbolic (K < 0). We propose three tasks to explore the hypothesis that spaces
hidden under real networks, including the Internet, are hyperbolic. First we will show analytically
that the negative curvature of hidden geometries not only provides an explanation for the basic
common structural properties of complex networks, but also optimizes an already efficient new
approach to routing over such networks. Second, we will verify that hidden spaces underlying real
networks are in fact negatively curved, and measure their basic geometric properties. Finally, our
most challenging task will be to construct embeddings of the Internet and other complex networks
into the identified hyperbolic spaces.

One broader impact of discovering a hidden space for the Internet and other communication
networks that require transmission of topology updates is the removal of a fundamental scaling lim-
itation these networks face. But elucidating this mysterious connection between network structure
and function implies impact far broader than the Internet, including for recommender systems,
search engines, terrorist network modeling, cancer and brain research, protein folding, and drug
design. The proposed work will not only improve our knowledge of the basic principles of organi-
zation, function, and evolution of large-scale complex networks, but also transform research on
how to model, predict, and control complex networked systems.
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1 Introduction

The lack of predictive power over complex systems, either designed by humans or evolved by
nature, is a foundational problem in contemporary science [2]. The Internet offers a paradigmatic
example: nothing inherent in the design of the Internet architecture [3] can explain the Internet’s
peculiar complex1 large-scale structure [5], unexpectedly discovered decades after its inception.
We are faced with an unsettling truth: the Internet topology has acquired emergent large-scale
properties that are beyond our full understanding, much less control. The story is strikingly similar
with the Web [6].

If the goal is to increase not only our understanding of complex networks, but also our ability
to predict and engineer them, we believe the most promising direction is to study how this peculiar
macroscopic structure relates to the function(s) of the network [4]. Our proposition is further
strengthened by an astonishing fact: the peculiar structural characteristics of the Internet turn out
to be eerily consistent with other complex networks found in nature, in particular with networks
that exhibit naturally efficient, if not optimal, routing behavior without any global knowledge of
network structure, e.g., neural and social networks [7–9].

This discovery poses a formidable intellectual challenge for network science and engineering.
Conventional wisdom holds that finding communication paths to specific destinations through a
network requires continually exchanging information about the status of connectivity between all
nodes. The fundamentally unscalable overhead [10, 11] associated with this information exchange
is built into our primary communication technologies today, including the Internet [12].

So we find it irresistibly interesting that so many other real networks in nature somehow “route
traffic” efficiently without any global view of the system, i.e., nodes do not propagate any infor-
mation about their connectivity status, but they efficiently find intended communication targets
anyway. Our brains are a humbling example—to function they must successfully transmit spe-
cific signals to appropriate places in the body, but no neuron has a full view of global inter-neuron
connectivity [7]. Milgram’s experiments [8, 9] showed another classic demonstration of efficient
routing without exchange of connectivity status information: humans can find paths to destina-
tions through their social acquaintance network, even though no human has global knowledge
of its structure. If man-made complex networks such as the Internet have a structure similar to so
many networks in nature that can effectively route without global topology awareness, can network
routing research take advantage of this efficiency?

In our previous project [13], primarily motivated by Internet routing scalability problems, we
focused on this question, and introduced a new theoretical framework to support its study. Our
framework generalizes Kleinberg’s seminal explanation [14–17] of Milgram’s experiments. In
that explanation, a network consists of two types of links: local and long-range. The long-range
links exist with some probability, which depends on the shortest path distance between nodes in
the subgraph composed of local links. This subgraph is called the local graph. In our approach,
we generalize the local graph to be a hidden metric space. We call our spaces hidden because they
play the role of an underlying coordinate system not readily observable by examining the network
topology. Instead they use internal attributes of individual nodes to impose some navigable shape
onto the network. By metric we mean that for each pair of nodes there is a non-negative distance
between them defined, satisfying the triangle inequality. Specifically, the distance between two

1We use the term complex network topology to denote topologies with two basic structural properties: strong clustering, i.e.,
large numbers of 3-cycles, and heavy-tailed distributions of node degrees, i.e., distributions with diverging second moments, which
sometimes approximately follow power laws [4]. Notably, wireless networks do not have these properties, see Section 4.
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nodes in the hidden space reflects similarity in their intrinsic attributes, functional or structural [18–
23]. Nodes closer in the hidden space, i.e., more similar, are connected in the network topology
with higher probability. This generalization of Kleinberg’s approach allows for more flexible and
realistic models of similarity spaces underlying real networks.

The described relationship between node similarity spaces and network topology also allows
for a fundamentally different concept of routing. Without the overhead of maintaining topology
knowledge, each node can forward information to its neighbor closest to the destination in the
hidden space—a strategy known as greedy routing [14–17], see Figure 1. Since this approach
involves no traditional routing protocols or associated control plane, to be precise we will use the
term greedy forwarding.

The prospect of forwarding without routing is

Figure 1: How hidden metric spaces influence the struc-
ture and function of complex networks. The smaller the
distance between two nodes in the hidden metric space, the
more similar they are, the more likely they are connected in
the observable network topology. If node A is close to node
B, and B is close to C, then A and C are necessarily close
because of the triangle inequality in the metric space. There-
fore, triangle ABC exists in the network topology with high
probability, which explains the strong clustering observed in
real complex networks. The hidden space also guides the
greedy forwarding process: if node A wants to reach node F ,
it checks the hidden distances between F and its two neigh-
bors B and C. Distance CF (shown by the curve lying on
the surface) is smaller than BF , therefore A forwards in-
formation to C. Node C then performs similar calculations
and selects its neighbor D as the next hop on the path to
F . Node D is directly connected to F . The result is path
A → C → D → F shown by the arrowed edges in the
observable topology. This path is the shortest path between
A and F in the network.

sufficiently attractive to motivate the following ques-
tions: do hidden metric spaces underlie the Inter-
net, and if so, what are their key properties, how
do we find them, and how efficient will greedy for-
warding be when using them? Section 2 describes
our recent discoveries: not only do metric spaces
underlie real complex network topologies includ-
ing the Internet [24], but a greedy routing mecha-
nism applied to such topologies yields a maximum
percentage of successful [1]— and almost always
shortest [25]—paths, regardless of the structure of
the hidden space. This explanation for why (if
not how) complex networks are naturally naviga-
ble had sufficiently high interdisciplinary impact
for recent publication in Nature [1].

However, even though all successful greedy paths
are shortest, and their percentage is maximized for
real network topologies, not all paths are success-
ful. Some paths never reach destinations, getting
stuck at local minima—nodes that do not have any
neighbors closer to the destination than themselves.
The percentage of successful paths depends not
only on the network structure, but also on the struc-
ture of the hidden space, and on the relationship
between the two structures. We know that hidden
spaces are metric, but we have not yet studied their
most basic geometric property—curvature. Spaces
fall into three categories depending on their curvature K: Euclidean (K = 0), spherical (K > 0),
or hyperbolic (K < 0). We hypothesize that the geometry of complex networks is negative, i.e.,
that their hidden metric spaces are hyperbolic.

We propose exploring this hypothesis with three related tasks. First we will show analytically
that the negative curvature of hidden hyperbolic geometries not only provides an explanation for
the basic common structural properties of complex networks, but also optimizes an already efficient
new approach to routing over such networks. Second, we will verify that hidden spaces underlying
real networks are in fact negatively curved, and measure their basic geometric properties. Finally,
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our most challenging task will be to construct embeddings of the Internet and other complex net-
works into the identified hyperbolic spaces, such that greedy paths are shortest and successful even
under dynamic network conditions. We outline our approach to these tasks in Section 3.

If successful, this project will fundamentally impact network science and engineering. Dis-
tributed topology knowledge and, consequently, routing updates would be unnecessary. Routing
table sizes could be reduced to their theoretical minimum since instead of keeping a routing table
entry for each destination in the network, nodes would be able to transmit information using only
hidden space coordinates of their neighbors. We will have solved the two most fundamental routing
scaling limitation of networks such as the Internet [12], and in the process created an essentially
infinitely scalable routing architecture.

But our target of study is one of the most fundamental mysteries of all complex networks. The
range of potential interdisciplinary applications (see Section 4) includes not only the Internet, but
also recommender systems, search engines, terrorist network modeling, cancer and brain research,
protein folding, and drug design.

Increasing predictive power over complex systems is our long-term objective. But we do not
yet fully comprehend what laws govern the evolutionary dynamics of complex networks; we have
only begun to identify their peculiar structure. If their structure is a result of natural evolution,
we are interested in how this structure relates to their primary functions—are networks in na-
ture optimizing toward information signaling (routing) efficiency? Discovery of the hidden metric
spaces responsible for the primary function of many complex networks, i.e., communication with-
out global knowledge, is the logical next step in our research agenda.

2 Previous work

Our proposed work builds on the success of our recently

Figure 2: Previous and proposed work, with
logical dependencies.

developed hidden metric space (HMS) framework [13]. Fig-
ure 2 depicts how our work is grounded by three results of
that project:

Hidden metric spaces do exist. We found empirical evi-
dence that hidden spaces do underlie real complex networks,
and that these spaces are metric. We also showed that re-
gardless of its specific structure, the HMS metric properties
provide the only explanation thus far of clustering character-
istics observed in real complex networks including the In-
ternet [24]. The explanation is rather intuitive: the pecu-
liar organization of triangles (transitivity of being connected)
that comprise clustering in real networks is a reflection of the
triangle inequality (transitivity of being close/similar) in the
HMS.

Greedy paths are asymptotically shortest in complex
network topologies. In [25] we proved analytically that re-
gardless of the HMS structure, complex network topologies
share a unique property: successful greedy paths are short-
est in the limit of large network sizes. In other words, greedy forwarding is stretch-wise optimal
(stretch is 1) on these topologies.
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Topologies of real networks maximize the percentage of successful greedy paths. In [1]
we used the simplest HMS model, a circle, to build an exhaustive set of synthetic networks. We
found that more navigable networks, with higher ratios of successful greedy paths, have stronger
clustering, and that their degree distributions have heavier tails. Many real complex networks
including the Internet share these structural properties.

These results are encouraging, but leave some open questions. First, we must explore HMS
models more sophisticated than a circle, chosen only for illustrative purposes rather than modeling
capability. Circles, or more generally, spherical spaces, are unlikely to be the most appropriate
models for HMSs under real networks. Appropriate models should explain both clustering and
degree distribution shapes commonly observed in complex networks. Although in our previous
work the clustering characteristics naturally emerged as a consequence of the fact that the circle
is a metric space, we had to manually induce heavy-tailed degree distributions. More importantly,
even though topologies of real networks, compared to other network topologies, corresponded to
the maximum percentage of successful greedy paths over the circle HMS, this percentage was not
100%, but closer to 70%. Appropriate (and practically useful) HMS models should yield a per-
centage close to 100% on real networks. Finally, assuming we have an appropriate HMS model,
we still must identify and measure the properties of real HMSs underlying real networks, how
nodes in real networks compute and compare their HMS coordinates, and how network dynamics
including link and node failures affect the efficiency of greedy forwarding. We will answer these
and other questions in the work proposed below.

3 Proposed work

Our three tasks, shown in Figure 2, involve analytic proofs, measurement and data analysis, and
model construction and validation. Task 1 is to gain mathematical knowledge of how specific
geometric properties of hyperbolic spaces are manifested in observed networks. Completion of
Task 1 will allow us to explore node similarity spaces underlying real networks, verify that they
are hyperbolic, and measure their geometric properties, such as curvature (Task 2). Knowledge of
what spaces to look for (obtained from Task 2) will lead to our ultimate goal—embedding of real
networks into the identified hyperbolic spaces, such that greedy paths are shortest and successful
even under dynamic network conditions. Before we describe these tasks in detail, we motivate our
central hypothesis that hidden spaces are hyperbolic.

Motivation for hyperbolic HMSs. The intuitive explanation for the power of hyperbolic ge-
ometry to abstract node similarity spaces lies in the observation that complex networks are systems
of connections between heterogeneous nodes. Heterogeneity implies that in reality nodes can be
classified into groups, subgroups, subsubgroups, and so on. This taxonomy of nodes naturally
results in a tree-like structure akin to a library catalog, in which the distance between two nodes
estimates how similar they are [18, 23]. Such tree-like structures are known to be hyperbolic, i.e.,
negatively curved [26]. The node classification hierarchy need not be strictly a tree. Approximate
“tree-ness” is sufficient for hyperbolic representation [26].

Mathematically, the last statement is rooted in the main property of hyperbolic geometry—
exponential expansion of space [27]. Figure 3 illustrates the Poincaré disc model [28] of the
hyperbolic plane, which is the two-dimensional space of constant curvature K = −1. The area of
a disc of hyperbolic radius R grows as eR in the hyperbolic plane [28]. But trees possess essentially
the same metric structure as the hyperbolic plane. In a b-ary tree, i.e., a tree with branching factor
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b, the volume of a ball of radius R, measured as the number of nodes lying within R hops from the
root, grows as bR. From the purely metric perspective, the hyperbolic plane is thus equivalent to
a tree with the average branching factor equal to e. Informally, hyperbolic spaces can be thought
of as “continuous versions” of trees. This metric equivalence between hyperbolic spaces and tree-
like structures, which naturally abstract taxonomy-based similarities among heterogeneous nodes,
explains why hyperbolic geometry is a promising model for HMSs underlying complex networks.

3.1 Task 1: Prove analytically that hyperbolic geometries are the most congruent with com-
plex network topologies

We say that a network topology is more con-

Figure 3: Artistic visualization of the hyperbolic plane
by Silvio Levy, based on M. C. Escher’s Circle Limit III,
with the permission from the Geometry Center, University
of Minnesota. The exponential expansion of fish illustrates
the exponential expansion of hyperbolic space. All fish are of
the same hyperbolic size, but their Euclidean size exponen-
tially decreases, while their number exponentially increases
with the distance from the origin.

gruent with its HMS, the higher the efficiency of
greedy forwarding, and the richer the set of HMS-
explained topological properties. The goal of this
task is to provide mathematical proofs that hyper-
bolic HMSs naturally explain all basic common
properties of complex network topologies, and that
the efficiency of greedy forwarding in these topolo-
gies with underlying hyperbolic HMSs achieves its
theoretical maximum. For the analytic part, we
will use tools from hyperbolic geometry, statistics,
statistical mechanics, and graph theory. To con-
firm our analytic results with simulations, we will
use computer clusters at UC, San Diego, and the
University of Barcelona.

Our methodology consists of the following steps:
(1) graph construction: distribute nodes in a given
hyperbolic space according to some node density
function; connect distributed nodes according to
some connection probability function, which spec-
ifies the probability that two nodes located at a
given hidden distance are connected; (2) calculate
the topological properties of the resulting graphs,
and compare them with real network topologies;
and (3) calculate the efficiency metrics of various greedy forwarding algorithms in the resulting
graphs. Below we describe the components of this methodology.

Hyperbolic space models. We will study models of hyperbolic spaces of different dimensions
and curvatures. There are several important isometric models of hyperbolic space of constant cur-
vature K = −1: the Poincaré ball and half-space model, the Klein model, the Lorentz hyperboloid
model, etc. [29]. The curvature can also be some other negative constant, or vary throughout the
space [30].

Node density. The simplest node density is uniform within a hyperbolic ball. Since the hy-
perbolic space expands exponentially, the hyperbolically uniform density is exponential from the
Euclidean perspective. Natural candidates for other, non-uniform densities are also exponential,
but with different values of the exponent. The hyperbolic ball can have a fixed radius, or the radius
can increase with the number of nodes.
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Connection probability. There are several candidates for the connection probability function,
which can be a step function or decrease exponentially with the hidden distance between nodes.
These two candidates are most natural among many possibilities.

Graph metrics. To analyze the topology of a modeled graph and to compare it with observed
topologies, we will use the basic dK-properties from our previous work [31]: degree distribution,
correlation, clustering, etc.

Greedy forwarding algorithms. We will measure the efficiency of various greedy forwarding
algorithms on static networks and under dynamic scenarios with node and link failures. In the
simplest possible greedy forwarding algorithm a packet is forwarded from the origin node to the
destination node via a series of intermediate nodes (see Figure 1). The current hop node selects
as the next hop node the neighbor closest to the destination in the hyperbolic space, and drops the
packet if the current hop node is a local minimum, meaning that it has no neighbor closer to the
destination than itself. An example modification to this algorithm is geodesic forwarding, where
the current hop selects, among all its downstream neighbors, the one closest to the hyperbolic
geodesic connecting itself (or the source) and the destination. As in the Euclidean space, the
hyperbolic geodesic is the shortest hyperbolic line connecting two points [28].

Efficiency metrics of greedy forwarding. The first metric is the success ratio: the percentage
of greedy paths that successfully reach their destinations before getting stuck at any local minima.
Another class of metrics is related to stretch, which measures how much longer than the shortest
paths the greedy paths are. We will study two types of stretch: one related to the shortest paths in
the graph, the other—to the hyperbolic geodesics.

Preliminary experiments. We have performed preliminary
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Figure 4: Degree distribution P (k) ∼
k−γ and degree-dependent clustering
c̄(k) in synthetic graphs, juxtaposed
against the same metrics for the AS
topologies from RouteViews [32] and
DIMES [33].

numeric experiments, using the Poincaré disc of constant curva-
ture K = −1, the simplest node distribution (uniform within a
ball of hyperbolic radius proportional to the logarithm of a given
number of nodes), and the simplest connection probability func-
tion (step function). Figure 4 shows that this construction yields
synthetic graphs (labeled Model in the legend) with strong clus-
tering and a heavy-tailed degree distribution, virtually identical in
these properties to two data sets of the Internet AS topology. In
contrast to our earlier work [1], here heavy tails emerge naturally;
we do nothing to enforce them. That is, the fact that the hidden
space is metric explains strong clustering, and the fact that it is
hyperbolic appears to give rise to a heavy-tailed degree distribu-
tion. We have also found numerically that 99% of greedy paths in
these synthetic graphs are successful, and all successful paths are
shortest.

To summarize, for Task 1 we will pursue three results: (1) es-
tablish and prove explicit mathematical relationships between the
properties of hyperbolic HMSs, e.g., curvature, dimension, node
density, connection probability, etc., and the properties of the re-
sulting graphs, e.g., their degree distribution, clustering, etc.; (2) calculate analytically the effi-
ciency metrics of different greedy forwarding algorithms in these synthetic graphs; and (3) study
how these efficiency metrics deteriorate under network dynamics, i.e., when links or nodes die and
reappear.
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3.2 Task 2: Measure geometric properties of hyperbolic spaces hidden under real networks

In Task 1 we start with a continuous hyperbolic space, and then distribute nodes in it to build a syn-
thetic network. The hidden distances between these nodes form a finite metric space. In Task 2, we
explore the reverse problem: starting with the finite metric space formed by the similarity distances
between nodes in a real network, we infer the properties of a corresponding underlying continu-
ous space, verify that it is hyperbolic, and then relate its geometric properties to the network’s
topological properties, using the mathematical apparatus developed in Task 1.

Similarity metrics. There is no shortage of similarity metrics in the

Figure 5: The δ-
neighborhood of the union
of triangle sides AB and
AC contains side BC in
hyperbolic geometry, but not
in Euclidean one. In trees, the
union of AB and AC fully
contains BC.

literature, e.g., cosine similarity, Jaccard coefficient, Jensen–Shannon di-
vergence, etc. [34]. They all reduce the comparison of nodes to compari-
son of some attributes of the nodes. These attributes can be a collection of
sets or communities. For example, each node i, i = 1, . . . , n, can belong
or not belong to communities j, j = 1, . . . ,m. To compute the cosine
similarity between nodes, we map each node i to vector vi ∈ Rm whose
jth component is 1 if i belongs to community j, or 0 otherwise. The co-
sine similarity distance between i and i′ is then dii′ = 1− cos θii′ , where
θii′ is the angle between vi and vi′ , cos θii′ =

vi · vi′
||vi||·||vi′ ||

. To see if our
results are consistent, we will test as many applicable similarity metrics
as possible, for each network.

Networks to consider. We can consider any network with some node
attribute data, i.e., networks in which nodes are classified by annotations
of network-specific attributes. In particular, we will consider the follow-
ing networks. (i) AS Internet. In our previous work [35] we classified
ASes based on their business roles, content of their WHOIS records, es-
timated number and type of customers, providers, peers, and advertised
IP prefixes, geographic location and coverage, etc. (ii) Social networks.
Many social networks have explicit node community data available, which
makes them easier to study than the Internet topology, where business re-
lationships are confidential, and their inference is prone to errors [36–38].
In the Wikipedia social network [22], for example, nodes are editors, and
communities are articles. Editor i belongs to community j if he edited
article j. The jth component of vector vi is equal not to either 0 or 1,
but to the number of times i edited j. Computing the cosine similarity
between editors thus allows us to capture editing activity as well as simi-
larity of editors. (iii) Web. Nodes are web pages, communities are words.
If page i has x occurrences of word j, then the jth component of vi is
x [20]. (iv) Biological networks. Many biological networks have rich annotations amenable to
similarity computations. For example, in cell regulatory networks there are established techniques
to compute similarities between genes or proteins [39]. (v) Other networks. In networks where it is
not immediately clear how to compute node similarities, we will use generic community structure
detection algorithms [19, 23, 40, 41]. A good example of such a network is the network of PGP
trust relationships [42]. The available data does not reveal any explicit communities; it contains
only connectivity information representing mutual trust.

Identifying the hidden space. Having computed the finite space of node similarities, we will
determine whether this space is metric, whether its underlying continuous space is hyperbolic,
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and if so, estimate its curvature. Testing whether the finite space is metric requires only checking
how often the triangle inequality is violated. The underlying space is hyperbolic if the distribu-
tion of distances grows exponentially. It is impossible to have an exponentially growing distance
distribution between a finite number of nodes located in a Euclidean or spherical space, even with
exponential node densities, but the uniform node density in any hyperbolic space produces such
exponential distance distributions [43]. Estimating curvature is the most complicated—there is
no direct way to infer curvature of an underlying continuous space from the metric space formed
by the distances among a finite number of nodes in it. To handle this challenge we propose the
following new methodology based on Gromov’s δ-hyperbolic spaces.

Gromov’s δ-hyperbolic spaces. Gromov [44] defines a metric space to be δ-hyperbolic if
for each four nodes w, x, y, z the distances between them satisfy d(w, z) + d(x, y) 6 d(w, y) +
d(x, z) + δ, assuming that they are ordered such that d(w, x) + d(y, z) 6 d(w, y) + d(x, z) 6
d(w, z)+d(x, y). This δ-hyperbolic condition reflects another fundamental property of hyperbolic
spaces: triangles are thin in them. Each side of any, even arbitrarily large, hyperbolic triangle is
contained within a δ-neighborhood of the union of other two sides [28], illustrated in Figure 5. The
exponential expansion of space follows from this δ-hyperbolic condition [26, 44].

Generally, the smaller the δ, the “more hyperbolic” the
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Figure 6: The exponential PDF of similar-
ity distances in the Wikipedia editor social net-
work [22, 45] suggests a hyperbolic space under-
lying the network.

space. Trees are 0-hyperbolic. Informally, their “curva-
ture” is −∞. The triangles in trees are subtrees, therefore
each side is fully contained within the union of two other
sides. Euclidean spaces, whose curvature is 0, are ∞-
hyperbolic—infinitely large triangles have points on their
different sides that are infinitely far apart. Knowing δ will
allow us to estimate the curvature of the underlying space
because the δ of a hyperbolic space of curvature K < 0
is given by δ = ln(1 +

√
2)/
√
−K [28, 30, 39]. The

δ-hyperbolic property also applies to finite metric spaces
[46–48]. In fact, any finite metric space is δ-hyperbolic
with δ equal to the diameter of the finite space. Its under-
lying continuous space is hyperbolic if δ is characteristi-
cally smaller than the finite space diameter [47, 48].

We will estimate δ of the underlying HMS using the following procedure. We will first calculate
the similarity distances between all pairs of nodes, e.g., dii′ = 1 − cos θii′ . We will then consider
random balls of increasing sizes n. For each n, we will randomly select a set of nodes, ball centers,
and for each center, find the n nodes closest to it, i.e., its n-sized ball. Considering all 4-node
combinations in each ball, we will measure its δ using Gromov’s δ-hyperbolic condition. We will
then find the average δ(n) across all n-sized balls. Then we will increase n, and repeat the same
procedure. If δ(n) saturates at some specific value before n reaches the network size, this δ-value
reflects the δ of the underlying space, and consequently its curvature, which we will relate to the
observable network structure using the results of Task 1.

Preliminary experiments. Thanks to David Crandall and Jon Kleinberg who shared their data
from [22] with us, Figure 6 shows the similarity distance distribution in the social network of
Wikipedia editors. The network nodes are editors, and two nodes are assumed to be connected
in [22] if one editor posted to the other’s discussion page. The node degree distribution follows a
bi-modal power law (not shown). The hidden social distance between two editors i and i′ is their
cosine similarity distance dii′ discussed above. Figure 6 shows an exponential distribution of these
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social distances between editors, even hyper-exponential for large distances, i.e., the similarity
space is hyperbolic.

3.3 Task 3: Construct embeddings of real networks into the identified hyperbolic spaces
requiring no global knowledge of network topologies

Completion of Task 2 will reveal the basic prop-

R2

H3

Figure 7: Mapping between discs in the Euclidean plane
R2 and points in the hyperbolic space H3. The x, y-
coordinates of discs in R2 are the x, y-coordinates of the cor-
responding points in H3. The z-coordinates of these points
in H3 are the radii of the corresponding discs. This map-
ping represents the tree-like hierarchy among the discs. Two
points in H3 are connected by a solid link if one of the corre-
sponding discs is the minimum-size disc that fully contains
the other disc. This hierarchy is not perfect, thus the tree
structure is approximate. The darkest disc in the middle par-
tially overlaps with three other discs at different levels of the
hierarchy. Two points in H3 are connected by a dashed link
if the corresponding discs partially overlap. These links add
cycles to the tree. The shown structure is thus not strictly a
tree, but it is hyperbolic [26].

erties of the hyperbolic HMS underlying real net-
works. In Task 3 we address the problem of how
nodes in a real network can compute their coor-
dinates in the identified HMS without any global
topology knowledge. If nodes know the topology
of their network, then the technique from [49] would
allow them to easily find their coordinates in the
hyperbolic plane such that greedy forwarding is
100%-successful, but this technique does not guar-
antee that resulting greedy paths are shortest; in
fact, their stretch is unbounded in [49]. More im-
portantly, this technique requires global topology
knowledge, leading to the communication over-
head we are trying to avoid.

Similarities between community sets vs. hy-
perbolic distances between nodes. In Task 2 we
explore how hyperbolic distances serve as a nat-
ural measure of similarity between sets of com-
munities in real networks. Recall that in order to
compute the cosine similarity between nodes, we
first map each node to a vector representing the
set of communities to which the node belongs, i.e.,
the set of attributes that characterize the node, and
then compare the vectors by the cosine of the an-
gle between them. The more two sets overlap, i.e.,
the stronger the similarity, the smaller the angle between the corresponding vectors.

Why does hyperbolic geometry naturally emerge from similarity measures such as cosine sim-
ilarity? Figure 7 illustrates the connection. The Euclidean discs in R2 represent abstract sets of
communities. Each disc in R2 is mapped as shown to a node in the Poincaré half-space model of
the 3-dimensional hyperbolic space H3 [28]. Colloquially, we call two discs similar if their radii
are similar and centers are close to each other in R2. The shown mapping turns out to be such
that if two discs in R2 are similar, then the two nodes representing them in H3 are hyperbolically
close, and vice-versa. Formally, if the ratio of the discs’ radii r, r′ is bounded by a constant C,
1/C 6 r/r′ 6 C, and the Euclidean distance between their centers is bounded by Cr, then one
can show [26] that the hyperbolic distance between their corresponding nodes in H3 is bounded
by some constant C ′, which depends only on C, and not on the disc radii or center locations.
The converse is also true. Therefore, similarity distances between community sets and hyperbolic
distances between the corresponding nodes are congruent measures.
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Having the hyperbolic HMS identified for a concrete real network, we will map, or embed,
nodes into this HMS using the general prescription above, if needed with additional network an-
notation specifics. We will apply this prescription with minor modifications to the AS Internet.

AS embedding. One of the most important AS attributes is the geographic coverage of op-
erations of an AS [50, 51]. We will use this attribute for AS embedding by first computing the
minimum-size geographic disc covering the geographic scope of the AS’s presence of operations,
and then map this disc to the hyperbolic HMS in a way similar to that described in Figure 7. The
only difference is that the Earth’s surface is not Euclidean but spherical, and therefore we must
use the ball model of H3 [28]. We emphasize that this construction does not require any global
knowledge. All information necessary for an AS to compute its hyperbolic coordinates is available
to the AS; no information exchange with other ASes is needed. However, this information is not
readily available to us, so we will estimate the geographical scope by sufficiently sampling the
IP address space advertised by each AS, and mapping each sampled IP address to its geolocation
using commercially available IP geolocation technology [52]. The resulting approximation of the
geographic extent of each AS’s operations will determine the minimum-size geographic discs, or
other geometric sets [53], to use for the embedding in Figure 7.

The proposed embedding naturally takes care of the AS sizes and the AS hierarchy that they
induce. Larger ASes have wider geographic coverage, and hence map to larger discs, which in turn
map to higher nodes in Figure 7, i.e., nodes with larger z-coordinates, located closer to the top of
the shown hierarchy. We see that geography contributes to the HMS structure in a peculiar way,
inducing the hidden negative curvature. It is instructive to compare this construction to geographic
routing [54–58], where geography is a non-hidden Euclidean metric space.

Greedy forwarding compliant with routing policies. Once we embed the AS graph into its
hyperbolic HMS, we will measure the efficiency metrics of greedy forwarding in this embedding.
In addition, we will measure the percentage of greedy paths that comply with routing policies, i.e.,
with AS relationships inferred in our previous work [38]. We expect this percentage to be high
because many policy compliant paths [36–38] and greedy paths [1] are congruent. They follow the
same hierarchical path pattern, propagating from low-degree sources to high-degree hubs in the
core (customer-to-provider segments), and then to low-degree destinations (provider-to-customer
segments). We will handle non-compliant paths (if any) using the policy bit technique from [59],
i.e., in the beginning of the path, greedy forwarding is allowed to follow any link, but once a
peer-to-peer or provider-to-customer link is crossed, the policy bit in the packet header records this
event, and for the remainder of the path only provider-to-customer links are allowed.

AS topology dynamics and growth. Our ultimate goal is to eliminate or minimize routing
overhead, even under dynamic network conditions. If a link fails, greedy forwarding must find an
alternative path without any information exchange about the failure. The two factors that make
such forwarding without routing updates possible are high path diversity in the AS topology [60]
and congruency between the shortest and greedy paths mentioned above. Since there are many
disjoint shortest paths between the same source and destination, even if a link belonging to one
path fails, many other paths remain, and greedy forwarding can still find them since all of them
are close to the same hyperbolic geodesic. This phenomenon is difficult to visualize in Euclidean
space, but intuitively, hyperbolic spaces have exponentially “more space,” so exponentially more
paths can be near the same geodesic, compared to the Euclidean case.

To replicate realistic AS topology dynamics at short time scales (link/node failures) we will
use the finest-grain BGP data available, and then measure how the dynamics affect the efficiency
metrics of greedy forwarding. If the success ratio is not exactly 1, we will adjust the embedding
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using additional AS attributes, maximum likelihood methods akin to those in [23], and other greedy
forwarding modification techniques [61–69].

We will also study how AS topology evolution over long time scales (years), i.e., its historical
growth [70], affects the quality of our embedding and greedy forwarding. Specifically, we will em-
bed an AS topology from ten years ago and replay its growth using historical time series data [70].
We will add new ASes as our embedding prescribes, but keep existing AS HMS coordinates the
same. If the AS topology changes significantly, we expect greedy forwarding efficiency will dete-
riorate noticeably. We will measure how quickly greedy forwarding error accumulates over time,
so we can ascertain how frequently all existing ASes should recompute their HMSs coordinates in
order to maintain greedy forwarding efficiency.

Preliminary experiments. Inspired by our de-
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Figure 8: The scatter plot of the hyperbolic distance to
the destination vs. the logarithm of node degree for all hops
of the successful paths in the simplest AS embedding. The
shown paths are between sources and destinations lying at
large hyperbolic distances comparable with the hyperbolic
ball diameter.

sign of the AScore poster [71], we have experi-
mented with an AS embedding that is much easier
to implement than the one described above. We
map each AS to a point in H3, such that the angu-
lar components of each point are equal to the lati-
tude and longitude of the headquarters of the cor-
responding AS extracted from its WHOIS record,
and the radial component is equal to the radial com-
ponent of nodes of the corresponding degree in
our simplest possible model in Task 1. This em-
bedding is the simplest but also the crudest pos-
sible, ignoring all network details. Nevertheless,
our first experiments with greedy forwarding us-
ing this embedding yielded a non-trivial success
ratio of 26%. For comparison, embedding of ran-
dom graphs yields the success ratio of 0.3%. Even
more encouraging is Figure 8, which shows the pattern of the hyperbolically longest successful
greedy paths in this embedding. Most hops are at low-degree nodes close to the sources and (less
so) destinations, and at high-degree nodes in the middle of paths. The paths thus exhibit the naviga-
ble hierarchical path pattern mentioned above and discussed in detail in [1]. This pattern indicates
that the AS Internet is naturally navigable, and what remains is to find the right embedding so
greedy forwarding can take advantage of this navigability.

4 Interdisciplinary aspects and potential applications

Although our original motivation for embedding complex networks in geometric spaces was to
design scalable routing for the Internet, this project will expand the utility of our theoretical frame-
work to a broad range of interdisciplinary applications in network science and engineering beyond
the proposed scope of work.

Searching and navigation strategies. The most direct application of navigation is search.
Searching for specific nodes is a task that arises in many networks. One can search for specific
individuals, e.g., terrorists [72–74], in traditional or on-line social networks (cf. Milgram’s exper-
iments [8, 9]), for specific content on the Web or overlay/P2P networks, for specific knowledge
in Wikipedia or paper citation networks. Discovery of the HMSs underlying these systems can
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improve the quality of existing search engines, and lead to designing future ones.
Recommender systems. Recommender systems [75, 76] are closely related to search. To

recommend a product that a user might like, they estimate similarities among users, e.g., among
book buyers at Amazon or DVD renters at Netflix. These systems assume that similar users tend to
like similar products or content. Often these similarity spaces are embedded in Euclidean spaces
to enable navigation [77]. Finding more congruent hyperbolic embeddings for these similarity
spaces could significantly improve the quality of such recommender systems and the efficiency of
navigation (browsing).

Discovery of missing and false links. Topology measurements of many real networks, not
only of the Internet [78–81], miss some links, and contain some false ones [82–86]. Missing links
can be a critical problem, for example in networks of terrorist or protein interactions [84–86].
Knowledge of the HMS and connection probability for a network helps to predict missing and
false links [23].

Systems biology: cancer and brain research. A great deal of cancer research studies sig-
naling pathways in the gene regulatory networks [87–89]. The main process in the brain is also
signal propagation [7, 90, 91]. Propagation of cellular and neural information are two paradig-
matic examples of navigation without global knowledge. Understanding how HMSs effectively
guide these navigation processes, including which functional network components correspond to
specific neighborhoods in the HMS, can significantly advance studies of cancer and the brain.

Cognitive science: memory and consciousness. Natural language is a translation of semantic
concepts in the brain into external lexical representations. Cognitive science studies what sources
of statistical information are relevant in psycholinguistic processes. This research has introduced
semantic space models to formalize the cognitive processes we use to organize, store and retrieve
information [92–96]. The semantic similarity between two words is the cosine similarity of the
vectors representing these words in the semantic space. Finding accurate representations of these
underlying spaces can contribute to research on cognitive processes as emergent complex phenom-
ena.

Protein folding and drug design. At a workshop [97] organized for our previous project [13],
we learned an unexpected application of greedy forwarding over an HMS—protein folding [98,
99], a critical component in the design of new drugs [100]. In this case, the HMS is a protein
conformation free energy profile, nodes are protein conformations, and two conformations are
connected if they can be obtained from each other by one amino-acid rotation. Protein folding is
then equivalent to greedy forwarding toward the minimum-energy conformation [99]. The discov-
ery of a protein folding HMS is thus equivalent to the description of its energy profile.

Wireless and social networking. Our HMS framework applied as is to traditional wireless net-
working becomes well-known geographic routing [54–58]. But the underlying geographic space is
neither hidden nor hyperbolic, distances in it do not reflect any node similarities, and wireless net-
work topologies do not resemble complex network topologies [101]. Most importantly, there is no
congruency between node flat ID addressing and the underlying geography, unless nodes dynami-
cally learn and redistribute the information about their positions, which for large networks involves
exactly the enormous communication overhead that prevents scaling. Therefore the applicability
of HMSs, especially hyperbolic ones, to traditional wireless networking is not obvious.

Nevertheless, we believe our framework can be useful for emerging models of wireless net-
works, in which the “social overlay” guides forwarding [102–106]. In these models, the destina-
tion of information propagation is a specific individual or content. Forwarding decisions rely on
social distances to the destination, while network connectivity is provided by the highly dynamic
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“wireless underlay.” The HMSs in this case are social distance spaces, which we hypothesize (and
explore in Task 2) are hyperbolic.

5 Broader impacts

Complex networks are ubiquitous in all domains of science and engineering, and permeate many
aspects of daily human life, from biological to social, economic, transportation, and communi-
cation [107]. Our growing dependence on networks has inspired a burst of activity in the new
field of network science [2], keeping researchers motivated to solve the difficult challenges that
networks offer. Among these, the relation between network structure and function is perhaps the
most important and fundamental [4].

Transport is one of the most common functions of networked systems. Examples span many
domains: transport of energy in metabolic networks, of mass in food webs, of wealth, funds,
and products in economic networks, of people in transportation systems, or of information in
cell signaling processes and, of course, across the Internet. Although our motivating focus is
information transport in the Internet, we are aiming directly at the most fundamental mysteries of
complex networks. Therefore our results may have broad and lasting impact on many sciences and
disciplines. Our work will also cross-fertilize networking, theoretical computer science, physics,
and mathematics, as our approach relies on tools and techniques from all these disciplines. Our
agenda is thus directly responsive to the need for interdisciplinary advances articulated by NSF in
this program solicitation.

In addition to publishing our results via conferences, journals, and on the web, we will present
to network engineering groups (IETF, IRTF), as well as in academic research venues and visits.
PI Krioukov presented results at several universities worldwide in 2008 [108], finding several
students interested in the proposed work. We will host an interdisciplinary workshop during this
project, building on the success of related previous workshops [97, 109], with new focus on the
boundaries and relationships among science, engineering, economics, and policy constraints.

PI Krioukov is an editorial board member of the ACM SIGCOMM Computer Communica-
tion Review. He has served as a PC member at SIGCOMMs, CoNext, NetSciCom, SIMPLEX,
and other venues, and regularly reviews for IEEE/ACM Transactions on Networking. PI Claffy is
on the program committee for PAM 2009, Internet2’s Research Advisory Council, and ICANN’s
Security and Stability Committee. UC Boguñá reviews for Physical Review Letters, Physical Re-
view E, Journal of Statistical Physics, among others. In 2008 he received the Outstanding Referee
Award [110] from the American Physical Society. UC Serrano is also a regular referee for many
of the top physics journals. In 2009 she won a prestigious Ramón y Cajal award from the Spanish
Ministry of Science, and is developing a research agenda in Systems Biology, which will strengthen
the interdisciplinary aspects and potential applications of this project.

The project improves the presence of under-represented groups in science. Two senior members
on this proposal (PI Claffy and UC Serrano) are females. PI Krioukov co-advised female PhD
students Priya Mahadevan and Almerima Jamakovic who successfully moved to HP Labs and TNO
after their graduation. PIs Claffy and Krioukov regularly work with an NSF-sponsored Research
Experiences for Undergraduates (REU) program to mentor under-represented undergraduates from
UCSD and other universities, giving students invaluable early experience in Internet research.
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6 Curriculum Development Activities

We will employ a team of a graduate student and postdoc to work on various research tasks of this
project. For the graduate student, we anticipate that her results will constitute the core of her PhD
thesis. She will work under the immediate supervision of PI Krioukov.

All researchers participating in this project are committed to education and curriculum devel-
opment and will seek to incorporate the results of this research project into their teaching plans.

PI Krioukov will develop a curriculum to teach a class on the structure and function of complex
networks. The class will: (i) review the most important recent results on the topological properties
of observed large-scale networks, with an emphasis on the Internet; (ii) present the most effective
methods of analysis of the global structure of complex networks; (iii) offer hands-on experience
using these methods to obtain practically useful results.

PI Claffy guest lectures for graduate and undergraduate classes and gives seminars on empirical
and theoretical underpinnings of the Internet. She will integrate this material into a seminar class
she will teach at UCSD as well as will put lectures and interviews with guest experts online.

UC Boguñá teaches undergraduate and graduate courses at his university; his courses are rou-
tinely ranked among the top courses in his department according to student evaluations.
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Birkhäuser, 2007.

[27] D. Burago, Y. Burago, and S. Ivanov, A Course in Metric Geometry. Providence: AMS,
2001.

[28] J. W. Anderson, Hyperbolic Geometry. London: Springer-Verlag, 2005.

[29] J. Cannon, W. Floyd, R. Kenyon, and W. Parry, Flavors of Geometry, ch. Hyperbolic Ge-
ometry. Berkeley: MSRI, 1997.

[30] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature. Berlin: Springer-
Verlag, 1999.

[31] P. Mahadevan, D. Krioukov, K. Fall, and A. Vahdat, “Systematic topology analysis and
generation using degree correlations,” in SIGCOMM, 2006.

[32] “University of Oregon RouteViews Project.” http://www.routeviews.org/.

[33] “The DIMES project.” http://www.netdimes.org/.

[34] C. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval. Cam-
bridge: Cambridge University Press, 2008.

[35] X. Dimitropoulos, D. Krioukov, G. Riley, and kc claffy, “Revealing the Autonomous System
taxonomy: The machine learning approach,” in PAM, 2006.

[36] L. Gao, “On inferring Autonomous System relationships in the Internet,” IEEE ACM T
Network, vol. 9, no. 6, 2001.

[37] L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz, “Characterizing the Internet hier-
archy from multiple vantage points,” in INFOCOM, 2002.

[38] X. Dimitropoulos, D. Krioukov, M. Fomenkov, B. Huffaker, Y. Hyun, kc claffy, and G. Riley,
“AS relationships: Inference and validation,” Comput Commun Rev, vol. 37, no. 1, 2007.

2



[39] D. Michel-Marie and E. Deza, Dictionary of Distances. Amsterdam: Elsevier, 2006.

[40] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community structure in very large
networks,” Phys Rev E, vol. 70, p. 066111, 2004.

[41] L. Danon, J. Duch, A. Arenas, and A. Dı́az-Guilera, Large Scale Structure and Dynam-
ics of Complex Networks: From Information Technology to Finance and Natural Science,
ch. Community Structure Identification. Singapore: World Scientific, 2007.
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