
1 Innovative Claims

The main long-term goals that motivate this project are the detection of anomalies in the
dynamics of large graphs representing real networks (complex networks in short), as well as
the prediction and control of their behavior.

The most widely used approaches to these problems are based on data mining, machine
learning, and statistics, yet their limitations are well known. These approaches are often
highly tailored to a specific network or specific task, leading to overfitting, overtraining a
method on a specific dataset, and thus diminishing the predictive power of the method and
its overall efficiency. Worse yet, extreme manual care and special expertise are routinely
required to tune these approaches for a task at hand, rendering them nearly impossible to
use in everyday practice with constantly changing requirements and conditions.

We strive to develop a radically different approach. Our goal is to discover the universal
laws governing the dynamics of complex networks. The main impact and practical signifi-
cance of the proposed work is the knowledge of such laws that will allow us to predict network
dynamics, while abnormal dynamics deviating from such laws will then signify anomalous
activity in the network.

Our recent work yields strong indications that such laws exist. We developed a pow-
erful and unique geometric theory explaining the ubiquitous common structure of complex
networks, and linking this structure to the optimality of their common functions. The core
building block of this theory is hyperbolic geometry. We have shown that random geomet-
ric graphs built on top of Riemannian manifolds with negative curvature exhibit structural
properties common to many real networks.

The main limitation of the theory developed so far is that from the mathematical per-
spective, it rigorously applies only to static graphs. To detect anomalies, to predict network
behavior, we need a mathematically rigorous theory for dynamic graphs that grow and evolve.

In this project, we propose to make the first step towards developing such a theory
by mapping our hyperbolic model of complex networks to pseudo-Riemannian geometry.
Pseudo-Riemannian geometry is the geometry of manifolds, in which one coordinate can be
associated with time, making this geometry a perfect candidate to model dynamic graphs
evolving in time, and to search for the universal laws of their dynamics.

Succinctly, we have shown that random geometric graphs on hyperbolic Riemannian
manifolds model adequately the structural properties of large real networks. The main
premise that we set to prove during the first year of this project is that random geometric
graphs on certain pseudo-Riemannian manifolds also model the dynamical properties of these
networks.

If our first-year tasks are successfully completed, then in subsequent years we will propose
to: (i) identify the equations describing the dynamics of random geometric graphs in the
resulting model; (ii) develop a set of tools and methods, based on these equations, to predict
network dynamics and detect anomalies; and (iii) apply the developed methods to real
networks.
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2 Technical Rationale and Approach

Many different real networks exhibit certain structural similarities [1], suggesting that there
is a possible universal explanation for their common structure. In our recent work [2, 3, 4,
5, 6, 7, 8] we have found a mathematically satisfactory explanation for this phenomenon.
Specifically, we have defined and studied random geometric graphs in hyperbolic spaces.
The intuitive motivation to employ hyperbolic geometry is that large networks frequently
exhibit hierarchical tree-like organization, and hyperbolic geometry is the geometry of tree-
like spaces. This intuition finds mathematically rigorous formalization in a series of seminal
works by Gromov [9]. In the simplest case, we define random hyperbolic graphs (RHGs) by
the following construction: 1) distribute uniformly at random a set of nodes over a compact
patch (e.g., the compactification of an open ball) in a hyperbolic space, and 2) connect each
pair of points iff the distance between them is less than the ball radius. In other words, the
connectivity in RHGs is defined by intersections of balls, which form a base of the manifold
topology. We have proved that RHGs possess the most common structural properties of
many real networks: (a) strong clustering, i.e., high probability of connections between
two neighbors of the same node; and (b) heterogeneous distributions P (k) of node degrees k,
which often follow power laws P (k) ∼ k−γ. Leaving the detailed discussion of the strengths of
this approach to Section 4, here we note its two main limitations: 1) RHGs form an ensemble
of intrinsically static graphs, while real networks are dynamic, and 2) the power-law exponent
in RHGs is γ = 3, while in real networks, γ is never 3 but often close to 2 [1]. The model
admit adjustments yielding graphs with γ = 2 if one chooses to distribute nodes in the space
non-uniformly. In this case however, RHGs are no longer random geometric graphs and,
therefore, they can no longer be formally considered as discretizations of smooth hyperbolic
manifolds. Therefore the hope to derive, in a mathematically rigorous way, the universal
laws describing the structure and dynamics of real networks using hyperbolic Riemannian
manifolds should be abandoned. Yet the observations above suggest that real networks can
be described by somewhat similar geometric spaces or manifolds. Here we set to find such
spaces in the category of pseudo-Riemannian manifolds.

Pseudo-Riemannian manifolds are manifolds with non-degenerate metric tensors (vs.
positive-definite tensors in Riemannian manifolds), meaning that distances between two
different points on the manifold can be positive, negative, or zero. If the metric tensor has
signature (−,+,+, . . . ,+), then the manifold is called Lorentzian. Lorentzian manifolds
form an important and well-studied class of pseudo-Riemannian manifolds [10]. In these
manifolds, the coordinate corresponding to the minus sign in the signature represents time.
For each point p on the manifold, one can split the set of all points at negative (timelike)
distances from p into two parts: I−(p)—all points in the past of p whose time coordinate
is smaller than p’s, and I+(p)—all points to the future of p. If point q ∈ I+(p), then inter-
section I−(q) ∩ I+(p) is called an Alexandrov set. These sets form a base of the manifold
topology for a wide class of manifolds [11], including all the manifolds that we will consider
in this project. That is, Alexandrov sets are analogs of open balls in the Riemannian case.
This observation instructs us to define random Lorentzian graphs (RLGs) as follows: 1) dis-
tribute uniformly at random a set of nodes over a compact patch in a Lorentzian manifold,
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and 2) connect each pair of points iff the distance between them is negative.
The rationale to focus on Lorentzian manifolds is two-fold: 1) these manifolds are similar

to hyperbolic manifolds in two key aspects: a) exponential expansion of space, and b) sym-
metry properties; but they are also different in two other key aspects: a) explicit inclusion
of time, and b) metric differences yielding γ = 2 in RLGs instead of γ = 3 in RHGs. To
elaborate, the exponential dependency of the volume of balls on their radii in hyperbolic ge-
ometry is the key metric property responsible for the emergence of heterogeneous power-law
degree distributions in RHGs, common to many real networks. The same property charac-
terizes certain Lorentzian manifolds—in particular, the manifolds with constant positive or
negative curvature, known as de Sitter and anti-de Sitter spaces. The symmetry groups of
these spaces, i.e., the groups of their isometries, are SO(1, d) and SO(2, d − 1), where d is
the space dimension. The former group is the same as the isometry group of the hyperbolic
space. A wider class of spherically symmetric spaces are invariant with respect to SO(d), a
subgroup of SO(1, d). Yet Lorentzian manifolds are different from hyperbolic spaces in that
they explicitly model time, so that in contrast to RHGs, RLGs are intrinsically dynamic
graphs. Finally, the space expands exponentially in Lorentzian manifolds with an exponent
different from that in the hyperbolic space, yielding γ = 2 in RLGs, vs. γ = 3 in RHGs
(Section 4).

In summary, Lorentzian manifolds possess the key desirable properties of hyperbolic
manifolds, but favorably differ from them exactly where the latter fail short to describe rig-
orously the reality of large networks. Collectively, these considerations dictate the following
first step on our agenda: identify a spherically symmetric Lorentzian manifold M dual to
the hyperbolic space H in the sense that there exists an invertable map Φ from M to H that
sends Alexandrov sets in M to intersections of balls in H.

3 Statement of Work

Many different real networks exhibit certain structural similarities [1], suggesting that there
is a possible universal explanation for their common structure. In our recent work [2, 3, 4,
5, 6, 7, 8] we have found a mathematically satisfactory explanation for this phenomenon.
Specifically, we have defined and studied random geometric graphs in hyperbolic spaces.
The intuitive motivation to employ hyperbolic geometry is that large networks frequently
exhibit hierarchical tree-like organization, and hyperbolic geometry is the geometry of tree-
like spaces. This intuition finds mathematically rigorous formalization in a series of seminal
works by Gromov [9]. In the simplest case, we define random hyperbolic graphs (RHGs) by
the following construction:

1. distribute uniformly at random a set of nodes over a compact patch (e.g., the com-
pactification of an open ball) in a hyperbolic space, and

2. connect each pair of points iff the distance between them is less than the ball radius.

In other words, the connectivity in RHGs is defined by intersections of balls, which form
a base of the manifold topology. We have proved that RHGs possess the most common
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structural properties of many real networks—strong clustering, i.e., high probability of con-
nections between two neighbors of the same node, and heterogeneous distributions P (k) of
node degrees k, which often follow power laws P (k) ∼ k−γ. Leaving the detailed discussion
of the strengths of this approach to Section 4, here we note its two main limitations:

1. RHGs form an ensemble of intrinsically static graphs, while real networks are dynamic,

2. the power-law exponent in RHGs is γ = 3, while in real networks, γ is never 3 but
often close to 2 [1].

The model admit adjustments yielding graphs with γ = 2 if one chooses to distribute nodes
in the space non-uniformly. In this case however, RHGs are no longer random geomet-
ric graphs and, therefore, they can no longer be formally considered as discretizations of
smooth hyperbolic manifolds. Therefore the hope to derive, in a mathematically rigorous
way, the universal laws describing the structure and dynamics of real networks using hyper-
bolic Riemannian manifolds should be abandoned. Yet the observations above suggest that
real networks can be described by somewhat similar geometric spaces or manifolds. Here we
set to find such spaces in the category of pseudo-Riemannian manifolds.

Pseudo-Riemannian manifolds are manifolds with non-degenerate metric tensors (vs.
positive-definite tensors in Riemannian manifolds), meaning that distances between two
different points on the manifold can be positive, negative, or zero. If the metric tensor has
signature (−,+,+, . . . ,+), then the manifold is called Lorentzian. Lorentzian manifolds
form an important and well-studied class of pseudo-Riemannian manifolds [10]. In these
manifolds, the coordinate corresponding to the minus sign in the signature represents time.
For each point p on the manifold, one can split the set of all points at negative (timelike)
distances from p into two parts: I−(p)—all points in the past of p whose time coordinate
is smaller than p’s, and I+(p)—all points to the future of p. If point q ∈ I+(p), then inter-
section I−(q) ∩ I+(p) is called an Alexandrov set. These sets form a base of the manifold
topology for a wide class of manifolds [11], including all the manifolds that we will consider
in this project. That is, Alexandrov sets are analogs of open balls in the Riemannian case.
This observation instructs us to define random Lorentzian graphs (RLGs) as follows:

1. distribute uniformly at random a set of nodes over a compact patch in a Lorentzian
manifold, and

2. connect each pair of points iff the distance between them is negative.

The rationale to focus on Lorentzian manifolds is two-fold:

1. these manifolds are similar to hyperbolic manifolds in two key aspects:

(a) exponential expansion of space, and

(b) symmetry properties;

2. but they are also different in two other key aspects
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(a) explicit inclusion of time, and

(b) metric differences yielding γ = 2 in RLGs instead of γ = 3 in RHGs.

To elaborate, the exponential dependency of the volume of balls on their radii in hyper-
bolic geometry is the key metric property responsible for the emergence of heterogeneous
power-law degree distributions in RHGs, common to many real networks. The same prop-
erty characterizes certain Lorentzian manifolds—in particular, the manifolds with constant
positive or negative curvature, known as de Sitter and anti-de Sitter spaces. The symmetry
groups of these spaces, i.e., the groups of their isometries, are SO(1, d) and SO(2, d − 1),
where d is the space dimension. The former group is the same as the isometry group of the
hyperbolic space. A wider class of spherically symmetric spaces are invariant with respect
to SO(d), a subgroup of SO(1, d). Yet Lorentzian manifolds are different from hyperbolic
spaces in that they explicitly model time, so that in contrast to RHGs, RLGs are intrinsically
dynamic graphs. Finally, the space expands exponentially in Lorentzian manifolds with an
exponent different from that in the hyperbolic space, yielding γ = 2 in RLGs, vs. γ = 3 in
RHGs (Section 4).

Lorentzian manifolds thus possess the key desirable properties of hyperbolic manifolds,
but favorably differ from them exactly where the latter fail short to describe rigorously
the reality of large networks. Collectively, these considerations dictate the following first
step on our agenda: identify a spherically symmetric Lorentzian manifold M dual to the
hyperbolic space H in the sense that there exists an invertable map Φ from M to H that
sends Alexandrov sets in M to intersections of balls in H. Specifically, our tasks are:

1. Find a Lorentzian manifold M such that there exist bijection Φ between M and hy-
perbolic space H that preserves the volume form, and maps Alexandrov sets in M to
intersections of balls in H.
This is the most involved task, consisting of many subtasks:

(a) Prepare a candidate list of manifolds M. The simplest Lorentzian manifolds will
be considered first, such as the manifolds with constant negative, zero, or positive
curvature, but more complicated manifolds may also have to be considered, e.g.,
homogeneous and isotropic manifolds, or manifolds with only spherical symmetry.
Then, for each M in the list:

(b) Introduce a coordinate system on M. The choice of the coordinate system will be
dictated by the group of isometries of M. Since the candidate spaces are expected
to be at least spherically symmetric, the most natural choice for the coordinate
system is the spherical foliation of M, (t,Ω), where t is the time coordinate and Ω
is the vector of angular coordinates on the sphere. The corresponding coordinate
system on H is the standard spherical coordinate system (r,Ω), where r is the
radial coordinate. Therefore due to these symmetry considerations, we expect
that Φ(t,Ω) = (f(t),Ω), so that the next step is:

(c) Find function r = f(t) yielding Φ with the required properties. Mathematically,
these properties (volume-form preservation and mapping Alexandrov sets to ball
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intersections) translate to a system of equations that function f(t) must satisfy.
This system might not have a solution, meaning that Φ does not exist for a
given M. If a solution exists, then we have a proof for the existence of the
required bijection Φ for M, in which case we will also have to:

(d) Prove that Φ is invariant under the group of isometries of M and H. This proof is
important, because if Φ is not invariant, then it may be an artifact of a particular
choice of the coordinate system above.

2. Derive the structural properties of random geometric graphs in M.
In contrast to random geometric graphs in H, we do not have much freedom in defining
random geometric graphs in M. The only possible definition is to select a compact
patch in M, e.g., lying between t = 0 and t = T , where T > 0 is a parameter, and
distribute nodes uniformly at random, e.g., via the Poisson point process, over this
patch. To respect the Alexandrov topology on M, we then have no choice other than
connecting all node pairs located at negative distances. We will then use the standard
tools in differential geometry to compute the volumes of the patch and Alexandrov
sets in it, to derive analytically the basic structural properties of these graphs, such as
their size, average degree, degree distribution, clustering, etc.

3. Derive the dynamical properties of graphs in Task 2.
The random graphs from Task 2 are intrinsically dynamic as soon as T is not a constant
but a variable that models graph growth with time. We will use the same methods as
in Task 2 to describe analytically the dynamic process of the evolution of the graph
structure with time T .

4. Validate the analytic results in Tasks 2-3 in numeric experiments:

(a) Implement the graph model from Tasks 2-3 in software, and

(b) Simulate these random graphs, computing their structural and dynamical proper-
ties, and comparing these properties with the theoretical results in Tasks 2-3.

5. Apply the results in Tasks 2-4 to real-world network data:

(a) Collect real network data. We will obtain detailed historical data on networks that
evolve in time, vs. their one-time snapshots. We have good experience working
with the Internet data, as well as with Pretty-Good-Privacy data on the social
network of trust relations between people. Other evolving network data may be
also considered.

(b) Process the data. We will post-process the raw collected data, and extract from
it the structural and dynamical graph properties studied in Tasks 2-4.

(c) Apply the theoretical results to the real data. Finally, we will investigate how
accurately the theoretical and numerical results in Tasks 2-4 describe the extracted
structural and dynamical properties of the real graphs.
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4 Detailed Technical Approach

4.1 The structure and function of large networks

In this project we will rely on the geometric network theory developed in our recent work [2,
3, 4, 5, 6, 7, 8] which we review first. The main motivation for this theory was to establish a
precise connection between common structural properties of large networks and their func-
tional efficiency. The intuition driving that research program was that these networks must
have their observed common structure not without a reason, and the main reason is likely
that this structure optimizes network efficiency with respect to some functions, common to
many networks.

Among many functions that different networks perform, information transmission or
transport stands out as the most common. It is the main function of the Internet, social
networks, the brain, cell regulatory networks—to name just a few examples. In these exam-
ples, information transmission is not akin to diffusion. Instead, information is often destined
or targeted to specific (groups of) nodes. The Internet is an obvious example, but so is the
brain, which would not function well if it were not an efficient information router [12]. Rout-
ing is a well-understood computational task if the network topology is globally known to
all nodes; much less so otherwise. Nevertheless, many real networks, e.g., neural and social
networks, efficiently route information even though their nodes have no knowledge of the
global network structure. One plausible explanation assumes the existence of latent geome-
try underlying the network. If this latent space exists, then even if all that each node knows
is only local information about the latent coordinates of its neighbors, it can still route by
forwarding information to its neighbor closest to the information target in the latent space.
One can introduce several metrics of network navigability, that is, of how efficient this ge-
ometric routing process is—how many routing paths reach their targets, how optimal they
are, how robust this efficiency is with respect to noise and missing or corrupted information
about network structure, etc.

Remarkably, using our geometric approach, we have shown that all these navigability
metrics are theoretically the best possible if the network has a structure with properties
common to many real large graphs, and if the latent geometry is hyperbolic. The first
“if” suggests that the structure and function of large networks are indeed tightly knit. The
second “if” underlies our proposed work, to describe which we first outline in more detail
the state of the theory we have developed so far.

4.2 Random hyperbolic graphs (RHGs)

Our theory assumes that a latent hyperbolic space underlies a network. Hyperbolic spaces
can be informally thought of as “smooth versions” of trees [9], reflecting the hierarchical
tree-like organization of complex networks [6]. This latent hyperbolic geometry then shapes
the network structure, in the simplest case, according to the following constructive definition
of RHGs:

1. consider a closed disc of radius R in the hyperbolic plane;
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Figure 1: Synthetic network generated by the geometric network model described in the
text. The number of nodes is N = 740, and the radius of the hyperbolic disc is R = 15.5,
fixing the average degree in the network to k̄ = 5. The shaded areas show two hyperbolic
discs of the radius R centered at the circled nodes located at distances r = 10.6 (upper node)
and r = 5.0 (lower node) from the origin shown by the cross. The shapes of these discs are
defined by the expression for the hyperbolic distance in the text, and according to the model,
the circled nodes are connected to all the nodes lying within their discs, as indicated by the
thick links. In particular, the two circled nodes lie within each other’s discs.
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2. distribute N ∼ eR nodes on it with the uniform node density, e.g., by the Poisson point
process; and

3. connect each pair of nodes if the hyperbolic distance between them is less than R, see
Fig. 1.

The analytic derivation of RHGs’ structural properties uses the following two facts from
hyperbolic geometry:

1. exponential expansion of space, or formally, the fact that the element of length ds and
volume form dV written in polar coordinates (r, θ), where r and θ are the radial and
angular coordinates, are

ds2 = dr2 + sinh2 r dθ2, (1)

dV = sinh r dr dθ, (2)

from which it follows that the radial density of nodes distributed uniformly over a
hyperbolic disc of radius R is

ρ(r) =
sinh r

coshR− 1
≈ er−R, where r ∈ [0, R]; and (3)

2. the hyperbolic distance xij between two points i and j located at polar coordinates
(ri, θi) and (rj, θj) is given by

xij = arccosh (cosh ri cosh rj − sinh ri sinh rj cos θij) ≈ ri + rj + 2 ln sin
θij
2
, (4)

where θij = π − |π − |θi − θj|| is the angular distance between i and j.

Using these two facts, we proved that random hyperbolic graphs (RHGs) defined above have
a heterogeneous distribution P (k) of node degree k—specifically, a power law P (k) ∼ k−γ

with exponent γ = 3—while their clustering, i.e., the number of triangular subgraphs, is
the strongest possible for graphs with this degree distribution. The first property is easy to
see, and it follows from the exponential expansion of space. Indeed, since the node density
in the plane is uniform, the expected degree k(r) of nodes located at radial coordinate r in
Fig. 1 is proportional to the area A(r) of the intersection of two discs of the same radius R
whose centers are at distance r from each other. We showed that as a consequence of the
exponential expansion of space, this area decreases with r exponentially,

A(r) ∼ k(r) ∼ e
1
2
(R−r), (5)

with exponent 1/2. The combination of two exponentials, the density of nodes in Eq. (3)
and their expected degrees in Eq. (5), yields the power-law degree distribution in RHGs with
exponent γ = 1 + 2 = 3.

The RHG definition can be generalized to any space dimension and any curvature, yield-
ing essentially the same results. One can also introducing network temperature, a parameter
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controlling the strength of the tie between latent geometry and network topology. Clustering
is then a decreasing function of temperature: at zero temperature, clustering is the strongest
possible as described above, and it decreases to zero at a certain phase-transition value of
temperature. If one forces the node density in the space to be non-uniform, ρ(r) ∼ eα(r−R)

with parameter α ≥ 1/2, then this parameter affects γ via γ = 1 + 2α. Finally, the tunable
constant in the N ∼ eR scaling controls the average degree in the network. For further
details, see [5, 6].

We next discuss the strengths and weaknesses of the RHG model:

1. Strengths. The attractive features of the described network model include:

(a) The model has only three parameters—temperature, curvature, and the N vs. R
scaling constant—that can be tuned to generate graphs with any given clustering
strength, heterogeneous degree distribution, and average degree. Strong cluster-
ing and heterogeneity exhaust all commonalities of real large networks. These
networks are different from each other in other respects. Therefore the model is
an adequate baseline to start studying fundamental laws in the theory of large
networks.

(b) Clustering and heterogeneity are not “enforced,” but appear as natural conse-
quences of the metric property and negative curvature of the underlying hyper-
bolic geometry.

(c) By construction, the modeled networks have a latent space underneath, and we
show that strong heterogeneity and clustering, commonly observed in real net-
works, ensure maximum navigability, thus relating the structure of complex net-
works to the optimality of their transport functions.

(d) In certain limiting parameter regimes, e.g., infinite temperature and/or curva-
ture, the model reduces to well-studied ensembles of random graphs. Specifically,
classical (Erdős-Rényi) random graphs, random graphs with a given degree distri-
butions, and random geometric graphs, are all degenerate cases within the model.

2. Weaknesses. The two significant limitations of the model are:

(a) The model is a model of static graphs, while all real network evolve in time.
Specifically, the described model belongs to a class of models known as exponential
random graphs [13]. These models describe maximum-entropy ensembles of static
graphs satisfying certain structural constraints, which are the specified values of
the average degree, degree distribution, and clustering in our case. Informally,
these graphs can be thought of as “maximally random” static graphs satisfying
the structural constraints above.

(b) The uniform distribution of nodes in the hyperbolic space yields power-law graphs
with exponent γ = 3, never observed in reality—a vast majority of real networks
have γ close to 2. The power-law exponent can be adjusted only if the node
density in the space is not uniform. In this case however, the modeled graphs are
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no longer random geometric graphs. That is, they no longer reflect the geometry
of hyperbolic manifolds.

The weaknesses of the described model motivate our proposed work, and strongly suggest
that the geometry of real networks, although similar to hyperbolic geometry, is actually
different.

Some other results and methods developed in the course of our previous work that we
will utilize in this project include:

1. Tests for the presence of a geometric space under a given real network, which show
that some real networks do have such spaces underneath [2];

2. Evidence that the observed structure of some large real networks is exactly as needed
to make them navigable [3];

3. Proof that successful paths that geometric routing produces are asymptotically optimal
in networks with strong clustering and heterogeneity [4];

4. Methods to map a given real network to its hyperbolic space by inferring the latent
hyperbolic coordinates for each node, and the execution of such mapping for the In-
ternet, effectively solving a long-standing problem of designing optimal—as efficient as
theoretically possible—routing for the Internet, which attracted a lot of attention in
the media worldwide [7].

In summary, we have developed solid foundations of a geometric theory of large real
networks. To the best of our knowledge, this is the first approach that simultaneously
explains not only common structural properties of these networks but also their functional
optimality, providing further evidence that the latter may shape the former. Finally, we have
designed first-cut methods, robust to noise and missing information, to map real networks
to their latent geometries [7]. However, the developed framework fails short in modeling and
explaining two key properties of real networks—their dynamics and universality of exponent
γ = 2—suggesting that the geometry of real networks is different. In this project we set to
resolve these weaknesses and to find the manifolds describing real networks in the category
of pseudo-Riemannian manifolds.

4.3 Pseudo-Riemannian Manifolds

Pseudo-Riemannian manifolds are manifolds with non-degenerate metric tensors gµν(x),
which are positive-definite tensors in Riemannian manifolds. This difference implies that
distances between two different points on a pseudo-Riemannian manifold can be not only
positive, but also negative or zero. If the metric tensor has signature (−,+,+, . . . ,+), then
the manifold is called Lorentzian. Lorentzian manifolds form an important and well-studied
class of pseudo-Riemannian manifolds [10]. In these manifolds, the coordinate corresponding
to the minus sign in the signature represents time. Therefore positive and negative distances
are often called spacelike and timelike, respectively.

11



For each point p on a Lorentzian manifold M, one can split the set of all points at timelike
distances from p into two parts: I−(p)—all points in the past of p whose time coordinate is
smaller than p’s, and I+(p)—all points to the future of p, see Fig. 2(a). If point q ∈ I+(p),
then intersection A(p, q) = I−(q) ∩ I+(p) is called an Alexandrov set, see Fig. 2(b). These
sets form a base of a topology on M called the Alexandrov topology. Manifold M is called
strongly causal if there are no closed timelike curves on M, and if there is no point p ∈ M
with timelike curves passing via its small neighborhood (see e.g. [10] for formal definitions
and further background). If M is strongly causal, which is the case for all the manifolds we
will consider in this project, then the Alexandrov topology on M agrees with its standard
manifold topology [11]. Informally, this fact means that Alexandrov sets are analogs of open
balls in the Riemannian case. In view of the definition of random hyperbolic graphs in
Section 4.2, this analogy leads us to a natural definition of random Lorentzian graphs.

4.4 Random Lorentzian Graphs (RLGs)

In analogy with RHGs, we propose to constructively define random Lorentzian graphs
(RLGs) as follows:

1. consider a compact subset (patch) P of Lorentzian manifold M;

2. distribute N nodes on P with a uniform node density, e.g., by the Poisson point process;
and

3. connect all pairs of nodes located at timelike distances, see Fig. 2(c).

The fact that Alexandrov sets in Lorentzian geometry are analogous to open balls in Rie-
mannian geometry justifies the last point in the definition.

The main deliverables of Task 1 in Section 3 are manifold M and patch P whose RLGs
model real networks, as well as the proof that P is invariant under the group of isometries
of M. In what follows we describe the most likely candidates for M and P .

An important feature of the RHG model is its simplicity. The simplest formulation of
the model uses the simplest hyperbolic manifold, i.e., the hyperbolic plane, and the simplest
compact patch in it, i.e., a hyperbolic disc, invariant under the group of hyperbolic isometries
SO(1, 2). To identify M and P we will use a similar strategy, starting with the simplest
Lorentzian manifolds and their compact subsets.

The simplest Lorentzian manifolds are Lorentzian manifolds with constant curvature,
which can be zero, positive, or negative. The corresponding spaces are called Minkowski, de
Sitter, and anti-de Sitter spaces. In two dimensions, their metrics in the “polar” coordinates
are:

ds2 = −dt2 + dr2, t ∈ (−∞,∞), r ∈ (−∞,∞), (6)

ds2 = −dt2 + cosh2 t dr2, t ∈ (−∞,∞), r ∈ [0, 2π), (7)

ds2 = − cosh2 r dt2 + dr2, t ∈ [0, 2π), r ∈ (−∞,∞), (8)

12



I+(p)

I-(p)(a)

p
space

ti
m
e

(b)

A(p,q)

p

q

space

ti
m
e

(c)

Figure 2: Lorentzian geometry. The grey color shows a subset of a Lorentzian manifold
with the value of the time coordinate lying in a certain range. The white color in panel (a)
shows the sets of points I−(p) and I+(p) at negative distances from point p in its past and
future. The white color in panel (b) shows the Alexandrov set A(p, q) = I−(q) ∩ I+(p) of
two points p and q. Panel (c) shows a finite point set, in which all pairs of points at negative
distances are connected, thus forming a graph. In this graph, if two points p and q are
connected, then A(p, q) contains all their common neighbors. If the graph is an RLG, then
the number of common neighbors connected to two connected nodes p and q is a random
variable distributed according to the Poisson distribution with the mean equal to the volume
of A(p, q).
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and their groups of orientation-preserving isometries are SO(1, 1), SO(1, 2), and SO(2, 1).
In the above expressions, t is the time coordinate, and r is the space “radial” coordinate. In
the Minkowski space, one can immediately see that sets of points at zero distances from any
point p, forming the boundaries of I−(p) and I+(p), lie on straight lines intersecting the t-
and r-axes at 45o (Fig. 2). In the de Sitter space, the spatial coordinate r ∈ [0, 2π) spans
a circle, so does time t ∈ [0, 2π) in the anti-de Sitter space, thus forming closed timelike
curves. Yet in the latter case one can unwrap time to be t ∈ (−∞,∞) by considering the
universal cover of the space, which does not have closed timelike curves. Both de Sitter and
anti-de Sitter spaces can be represented as one-sheeted hyperboloids in the three-dimensional
Minkowski space. Coordinates lines of constant r and, respectively, t are hyperbolas on these
hyperboloids.

Direct inspection of Eqs. (6-8) and (1) suggests that the de Sitter space is the most
likely candidate for M. Indeed, space (circles) expands exponentially with time t in this
space, similarly to its exponential expansion with r in the hyperbolic plane—the key prop-
erty yielding power-law degree distribution in RHGs. In the Minkowski space, there is no
exponential expansion, while in the anti-de Sitter space, not space but time expands expo-
nentially with r. Further, the group of isometries of the d-dimensional de Sitter space is
the same as the group of hyperbolic isometries, SO(1, d), vs. SO(2, d− 1) for anti-de Sitter
space—yet another indication that out of these three simplest Lorentzian manifolds, the de
Sitter space is the most likely candidate.

Focusing on de Sitter space for a moment, we show that a particular definition of RLGs
on it leads to power-law graphs with exponent γ = 2. To define RLGs, we have to fix
patch P first. The coordinate system in Eq. (7), in view of its similarity to Eq. (1), dictates
to define patch P as a compact subset lying between t = 0 and t = T , mimicking hyperbolic
discs, which are compact subsets of H lying between r = 0 and r = R, except that T is
now a dynamical variable modeling graph growth with time. With this choice, a particular
ensemble of RLGs is now fully defined. Equation (7) leads to the following temporal node
density:

ρ(t) =
cosh t

sinhT
≈ et−T , where t ∈ [0, T ], (9)

similar to Eq. (3).
Consider now node p at time coordinate t ∈ [0, T ]. Since nodes are distributed uniformly

in P , p’s degree is proportional to the sum of areas I+(p) and I−(p) (Fig. 2). To compute
these areas we have two options: either derive the equations for the boundaries of I+(p)
and I−(p) in the (t, r) coordinates, or change the time coordinate t to conformal time coor-
dinate η defined by dη = dt/ cosh t, i.e., sec η = cosh t, η ∈ (−π/2, π/2). In these coordinates
the metric in Eq. (7) and the volume form on patch P become

ds2 = sec2 η
(
−dη2 + dr2

)
, η ∈ [0, arcsec coshT ], r ∈ [0, 2π), (10)

dV = sec2 η dη dr, (11)

and the boundaries of I+(p) and I−(p) are straight lines intersecting the η- and r-axes
at 45o. Therefore, with notations ηt = arcsec cosh t and ηT = arcsec coshT , the areas |I+(p)|
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and |I−(p)| are given by

|I+(p)| =

∫ ηT

ηt

dη′
∫ η′−ηt

0

dr sec2 η′ = ln
cos ηT
cos ηt

+ (ηT − ηt) tan ηT , (12)

|I−(p)| =

∫ ηt

0

dη′
∫ ηt−η′

0

dr sec2 η′ = ln sec ηt = ln cosh t. (13)

For large times t� 0, the second integral is simply proportional to t, while if T � t� 0, then
the first integral, and consequently the expected degree k(t) of node p at time coordinate t,
scale as

|I+(p)| ∼ k(t) ∼ eT−t. (14)

That is, similar to RHGs, we observe the combination of two exponentials, the density of
nodes in Eq. (9) and their expected degrees in Eq. (14). Yet we notice an important difference
between Eqs. (5) and (14): the exponent in the latter is not 1/2 but 1, yielding the power-law
degree distribution in RLGs with exponent γ = 1 + 1 = 2.

We may find however that map Φ described in Task 1 does not exist, or that it is not
extensible for higher dimensions, or that it is not invariant under SO(1, d), in which case
the RLG construction above, contrary to RHGs, is just an artifact of a particular choice of
the coordinate system and patch P . That is, such RLGs do not really reflect the geometry
of the underlying manifold. If none of the Lorentzian spaces with constant curvature satisfy
the requirements of Task 1, then we will consider a wider class of homogeneous and isotropic
Lorentzian manifolds whose metric can be written as

ds2 = −dt2 + a2(t)dΩ2, (15)

where the spatial part of the metric dΩ does not depend on time. An even wider class of
manifolds are manifolds with only spherical symmetry with metric

ds2 = −dt2 + a2(t, r)dΩ2, (16)

where r is the radial coordinate. We expect that manifold M representing real networks will
belong to this class since RHGs must be dual, in the sense of Task 1, to RLGs, and since
the RHG definition is manifestly spherically symmetric.

Task 1 is the most intellectually challenging. The other tasks described in Section 3 are
work-intensive as well. To accomplish these tasks we will use the methods and results from
our previous work [2, 3, 4, 5, 6, 7, 8], described in Sections 4.1-4.2. We emphasize that the
graphs we will consider, both real networks and synthetic RLGs, will be dynamic. That is,
we will collect detailed historical data on networks that evolve in time, vs. their one-time
snapshots, and juxtapose their structural and dynamics properties against those in RLGs.
The growth dynamics of RLGs will be modeled by parameter T (or its equivalent). As T
grows by dT , nodes p with time coordinates in the interval [T, T + dT ] join anew an RLG
existing by time T , and connect to all the existing nodes lying in I−(p).
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4.5 Impact and significance

A successful outcome of this project will constitute a significant step forward towards a
conceptually different set of tools for anomaly detection in real networks. In shorter term, it
will likely increase the prediction accuracy of the large-scale dynamics of complex networks.
Indeed, if a network grows exactly as an RLG, then the probability of the existence of a
(new) link between a pair of nodes is either 1 or 0, depending on whether the Lorentzian
distance between two nodes is negative or positive. That is, in this hypothetical case, the link
prediction accuracy reaches 100%! However, real networks are stochastic dynamical systems,
whose measurement is prone to errors and noise. This stochasticity, inevitably present in real
networks, prevents the prediction accuracy from reaching 100%. Note that the temperature
parameter in our geometric model in Section 4.2 is a base-line parameter modeling noise
and fluctuations in the network. At zero temperature, the ties between network structure
and underlying geometry are strongest, and the duality between RHGs and RLGs given
by Φ is exact. At higher temperatures characterizing real networks, these ties weaken, and
the equivalence can no longer be exact. Since the values of temperature characterizing real
networks are close to zero [7], the deviations from the exact case cannot be strong, but
nevertheless we will quantify their effect on the prediction accuracy in Task 5.

4.6 Future work

The work proposed above for the first year is by no means our final goal. A successful
outcome of this project will prove that RLGs describe the structure and dynamics of real
networks at the large scale. The manifolds M from Task 1 will likely be homogenous and
isotropic, as is the hyperbolic space in RHGs. If we take a real network, however, e.g.,
the real Internet, and map it to its homogeneous hyperbolic space, we observe that after
the mapping, the node density in H deviates strongly from uniform [7]. This observation
naturally suggests that in reality the latent space is homogenous only at the largest scale,
while at smaller scales there are some inhomogeneities and anisotropies. In our future work
we will have to account for these deviations. Without doing so, we will not be able to
derive the universal laws of network dynamics at smaller scales, and to describe fine-grained
dynamics of these networks.

If successful, this future task will establish the universal laws of fine-grained dynamics of
nodes and links in complex networks, leading to new powerful methods and tools in network
analysis, prediction, and anomaly detection. Indeed, we will be able to predict not only the
large-scale dynamics of network growth, but also node trajectories in the latent space, the
probability of the appearance of new nodes in a given area of this space in evolving networks,
etc. More importantly, knowing the node trajectories, we will be able to predict fine-grained
dynamics of edge appearances and disappearances, simply because these edges exist or do
not exist depending on whether the Lorentzian distances between corresponding nodes are
negative or positive. Deviations from this dynamics will then indicate anomalous activity,
which we can distinguish from noise and fluctuations as discussed in Section 4.5.

To this end, we will also have to learn the dimension of Lorentzian manifolds underlying
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real networks, using persistent homology or other methods. If this dimension turns out to
be larger than 2, then we will also have to improve the network mapping methods developed
in [7]. To infer latent geometric coordinates of nodes in real networks, these methods uti-
lize Markov Chain Monte Carlo (MCMC) algorithms—specifically, the Metropolis-Hastings
algorithm [14]—which scale poorly with network size. In fact, they do not provide any com-
putation complexity guarantees. Moreover, substantial manual intervention and guidance
are required to aid those algorithms to converge and produce reliable results. Moving from
two dimensions as in [7] to higher dimension d > 2 which may characterize some real net-
work datasets, will require inferring few times as many hidden variables for each node—d−1
spatial coordinates instead of one. It seems unlikely that MCMC algorithms will scale for
any reasonably-sized real network in this case. Therefore another research direction in our
future work is to develop optimal methods to infer latent spatial node coordinates in large
real networks.

5 Comparison with Other Ongoing Research

The most widely used approaches to anomaly detection and network dynamics prediction are
based on data mining, machine learning, and statistics. These approaches can be very useful
in certain cases, yet their limitations are well known. These approaches lack universality:
they are often highly tailored to a specific network or specific task, leading to overfitting,
overtraining a method on a specific dataset, and thus diminishing the predictive power of
the method and its overall efficiency. Worse yet, extreme manual care and special expertise
are routinely required to tune these approaches for a task at hand, rendering them nearly
impossible to use in everyday practice with constantly changing requirements and conditions.

In this project we strive to develop a radically different approach. Our goal is to discover
the universal laws governing the dynamics of complex networks, since the knowledge of such
laws will allow us to predict network dynamics, while abnormal dynamics deviating from
such laws will then signify anomalous activity in the network. Based on the results from
our previous work, we argue in the project description above that such laws can be derived
within the theory of random geometric graphs.

Random graphs in general and random geometric graphs in particular form a vast and in-
tensively studied area of research in mathematics. The most popular and best studied graph
models include classical (Erdős-Rényi) random graphs [15], random graphs with a given
(expected) degree distribution [16], and random geometric graphs in Euclidean spaces [17],
which we review next.

Perhaps the simplest random graph ensemble is the GN,p ensemble of classical random
graphs, defined as random graphs of N nodes in which each pair of nodes is independently
connected with probability p. Structurally, these random graphs are very different from real
networks, since the degree distribution in these random graphs is Poissonian, and cluster-
ing is asymptotically zero, versus fat-tailed degree distribution and strong size-independent
clustering in real networks [1].

Random graphs with a given expected (power-law) degree distribution simply enforce
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Table 1: Taxonomy of random graphs and their basic structural properties
Degree

distribution
Clustering

Poisson Power law

Weak
(goes to zero in the 

large graph limit)

Strong
(does not depend

on graph size)

Random hyperbolic 
graphs and large 

real networks

Configuration 
model

Random geometric 
graphs

Classical random 
graphs

the degree distribution in random graphs to any pre-defined shape using the following con-
structive definition. Given a set of N nodes, and any desirable distribution ρ(κ) of expected
degrees κ, construct the graph by first assigning to each node i = 1, . . . , N a random vari-
able κi independently drawn from distribution ρ(κ), and then connection each pair of nodes i
and j with probability pij ∼ κiκj. One can then show that under certain conditions, the
degree distribution in thus-defined graphs is well approximated by ρ(κ). If one takes ρ(κ)
to be a power law, then these random graphs have a power-law degree distribution, but
clustering is still asymptotically zero.

Random geometric graphs in Euclidean spaces have found many important applications,
especially in the theory and practice of wireless networks [18]. In the simplest case, these
graphs are defined by the following construction. Consider a compact patch P of a Euclidean
space, e.g., a unit square in the Euclidean plane, distribute N nodes over P uniformly at
random, e.g., using the Poisson point process, and finally connect each pair of nodes iff the
Euclidean distance between them does not exceed a certain threshold R. Since these graphs
are geometric, they have strong clustering—similar to RHGs, the large number of triangular
subgraphs in these graphs is a consequence of the triangle inequality in the underlying
space—but their degree distribution is Poissonian, as in the classical random graphs.

In summary (see Table 1), none of these random graph models describe properly all the
common structural properties of real networks. The main contribution of our previous work
described in Section 4 is the proof that random geometric graphs in hyperbolic spaces fill this
gap. Yet this graph model has its own limitations, which we set to resolve in this project.
If successful, this project will result in a graph model, describing better real networks, and
moving us a step closer to being able to predict the dynamics of these networks, and detect
anomalous activity in them.
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6 Our Previous Accomplishments in Related Areas

Another area of our research, not mentioned in Section 4, deals with detailed analysis of
real network data, especially that of the Internet. Among many results in that area, the
works that were cited more than 100 times according to Google Scholar include the analysis
of the statistical properties of the Internet [19], inference of business relationships between
autonomous systems [20], development of a systematic series of degree-based statistics for
network analysis and generation (dK-series) that was later used in graphlets [21], and ap-
plications of compact routing to Internet(-like) graphs [22, 23].
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