A Time Series Model of Long-Term NSFNET Backbone Traffic

Naney K. Groschwitz and  George C. Polyzos

{groschwi,polyzos}@cs.ucsd.edu

Computer Systems Laboratory
Department of Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093-0114

Abstract

We used time series analysis to create detailed forecasts
of future NSFNET backbone traffic. The resulting ARIMA
model made quite accurate forecasts of traffic levels up to
a year in advance. It appears that the model can make rea-
sonable predictions for two or more years into the future,
suggesting that ARIMA modeling has great promise as a
tool for long-range NSFNET forecasting and planning.

1 Introduction

In planning for the future needs of any complex system,
accurate forecasting of the workload is important to assess
future capacity requirements, and to plan for changes. The
research reported here investigates a method for creating
accurate, detailed forecasts of future NSFNET backbone
traffic.

The NSFNET is the cross-country backbone of the In-
ternet. The Internet is a three-level hierarchy consisting
of the NSFNET backbone, a set of regional (or mid-level)
networks that connect to NSFNET sites, and thousands
of campus or access networks that connect to the regional
networks. In the years examined by this research (1988
through 1993), the NSFNET backbone gradually evolved
from a Tl-speed (1.544 Mbps) to a T3-speed (44.736
Mbps) network. Each backbone node is connected to sev-
eral other nodes, typically 2—4. The nodes are responsible
for packet switching, routing, and data collection [1].

The most dominant feature of the backbone traffic over
the last few years is the overall increase in volume. While
a rough estimate of future traffic might be obtained by
simply fitting a smooth curve to the data, this method ig-
nores a great deal of information. For example, the traffic
may have seasonal components that greatly affect the traf-
fic levels at any given time, but that are obscured by the
curve-fitting method. A more detailed model would take
these seasonal trends into account.

One of the advantages of such a model would be that,
due to its better match to the data and more precise pre-
dictions, deviations from previous trends could be spotted
more quickly, and new and revised predictions could be
generated. A detailed forecast of yearly traffic patterns
also allows for more accurate planning and better deci-
sions. If hardware changes are required at some point in
a coming year, the model could estimate when traffic lev-
els are likely to be lowest. If a particular backbone link
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is approaching maximum capacity, a detailed model of the
traffic patterns on that link could predict when the capac-
ity is likely to be exceeded. If the traffic on a less busy
link is growing more rapidly than on another, busier link,
models of each could predict when their usage levels would
cross (which might have an impact on routing decisions).
Finally, a more accurate model may allow for reasonable
predictions several years into the future. Given the enor-
mous growth rate of traffic on the backbone, the ability
to make forecasts two or more years in advance has great
advantages for planning for future requirements.

2 Overview of Time Series Models

The first requirement for an adequate model of
NSFNET backbone traffic is that it must be stochastic,
not deterministic. There are many factors affecting the
amount of traffic on the NSFNET, most of which cannot
be measured or identified. To predict probable future traf-
fic, the best available basis is an analysis of previously
observed traffic patterns. Because we want to examine
changes in the traffic over time, the second requirement is
that the model must be a time series model. Furthermore,
the NSFNET traffic data is non-stationary, so the model
must be of a form that can accept non-stationary data. A
time series model that fits these criteria is the autoregres-
sive integrated moving average process (ARIMA) [2].

The ARIMA model is an extension of a set of time
series models called autoregressive (AR), moving aver-
age (MA), and autoregressive moving average (ARMA)
models. An autoregressive model of order p (denoted by
AR(p)), predicts the current value of a time series based
on the weighted sum of p previous values of the process
plus a random shock. (A shock is a random drawing from
a white noise process with zero mean and finite variance.)
A moving average model of order ¢ (denoted by MA(¢)),
predicts the current value based on a random shock a and
weighted values of ¢ previous a’s. If these two models are
combined, the ARMA model of order (p,q) predicts the
current value of the time series based on p previous val-
ues and ¢ previous shocks. The advantage of the ARMA
model is that many stationary time series can be modeled
with p and ¢ values of 0, 1, or 2.

The AR, MA, and ARMA models all require that
the data be stationary. It is not uncommon, how-
ever, for a time series to show growth or time-dependent
variations that violate this stationarity assumption; the
ARIMA model [2] was specifically developed for such non-
stationary patterns. A non-stationary series can often be



transformed into a stationary series by differencing the
data one or more times. An ARIMA model of order (p,d,q)
is simply an ARMA (p,¢) model that is differenced d times.
An ARIMA(p,d, ¢) model of time series z; has the form

2= Q1241+ @2zi_a+ ...+ p2t_p_q
+ a; — Hlat_l — 02at_2 — .. ant_q

where the ¢’s are the weights for the AR parameters and
the @’s are the weights for the MA parameters.

Simple differencing is sufficient to deal with many kinds
of non-stationarity. There may, however, be seasonal cy-
cles that overlay other basic trends in the data, and that
are not easily handled by simple differencing. For exam-
ple, for monthly data over a period of years, the data from
a particular month would have a relationship both to the
months immediately preceding it, and to the same month
in preceding years. To accommodate such effects, a sea-
sonal form of the ARIMA model can be used. It is written
as ARIMA (p,d,q)x(P,D,Q)s, where s is the period of the
seasonal pattern. With this model, the original series of
length n is first differenced by the length of the period,
resulting in a new series of length n—s. This series is ana-
lyzed according to order (P, D, ), while the original series
is analyzed with (p,d,¢); in other words, the model (P, D, Q
links the z’s that are s units apart, and the model (p,d,q
links the entire series of z’s.

2.1 Fitting an ARIMA Model to the Data

When fitting an ARIMA model to time series data,
there are three basic steps, which are used iteratively until
a successful model is achieved:

1. Model identification: This is the determination of the
likely values of p, d, and ¢ for this set of data. Often
there will be several plausible models to be examined.

2. Parameter estimation: Once a set of possible models
has been selected, parameter values are determined
for each.

3. Diagnostic checking: This involves both checking how
well the fitted model conforms to the data, and the use
of diagnostic tests that are designed to suggest how
the model should be changed, in case of a lack of good
fit. The diagnostic tests available for ARIMA check-
ing include examination of: the standardized resid-
uals, the autocorrelation of the residuals, and Box
and Jenkin’s “portmanteau goodness of fit” statistic.
(Chapter 8 of Box and Jenkins [2] contains a complete
description of these diagnostics.) Based on the out-
come of the diagnostic tests, p, d, or ¢ may be changed,
and steps 2 and 3 are repeated.

Once a good fitting ARIMA model has been found by
this method, it can be used to make forecasts of the future
behavior of the system.

3 Data

The data used in this experiment consists of daily packet
totals between all NSFNET backbone nodes, between Au-
gust 1, 1988 and June 30, 1993. From 1988 through 1990,
all data is from the T1 network; from January 1991 to
November 1992, the data is the sum of traffic on both the
T1 and T3 networks; the T1 network was shut down in
November, 1992, and from December 1992 through June
1993 data is from the T3 network only. All data was col-
lected by Merit Network, Inc. as part of its operation and

management of the NSFNET backbone. This data is pub-
lished monthly and is available via anonymous ftp from
nis.nsf.net.

The traffic data is collected using the Simple Network
Management Protocol (SNMP) [3]. The packet counts for
each backbone node consist of all packets arriving at the
node from its regional networks. Packets arriving from
other backbone nodes are not counted.

3.1 Missing Data

All data is missing for the months of July and August,
1989. The T3 data (only) is missing for the months of
July, August, and October 1991; T3 at that point was less
than 10% of the volume of the T1. The T3 data is also
missing for the month of May, 1992, when the T3 and T1
were approximately equal in volume.

There are two options for dealing with missing data:
ignore them and omit those data points, or estimate the
missing points. Because the ARIMA model examines the
pattern of data over time, estimating the missing points
and preserving the overall pattern was judged to be more
desirable. Missing data values were interpolated by av-
eraging preceding and following data. Because the data
showed very strong weekly patterns, the interpolation was
always based on a value from the same day of the week as
the missing point.

In the few instances where a single day of data was
missing from the published monthly reports, interpolation
was performed using the data from the appropriate day
of the week, seven days before and seven days after the
missing day.

3.2 Data Analysis

To simplify data analysis, the daily totals were collapsed
into weeks. Because the data began on Monday, August
1, 1988, weeks were defined as beginning on Monday and
ending on Sunday. The data ends on Wednesday, June 30,
1993; the final partial week (Monday through Wednesday)
was ignored. Weekly totals were used because the creation
of a daily ARIMA model (with a period of 365) was com-
putationally very slow (about 24 hours on a DECstation
5000/240), which severely limited the number of model
variants that could be examined. (Using weekly data and
a period of 52 reduced model creation time to about 5
minutes on the same DECstation.)

All data analysis was done with the S-PLUS() statis-
tical package [4].

4 Model Identification

The purpose of the model identification step is to de-
termine likely values for p, d, and ¢. Once one or more
promising sets of (p,d,q) have been identified, the model
parameters for those orders can be estimated, diagnostic
tests can be run, and the resulting model forecasts can be
examined.

The order in which p, d, and ¢ are determined is fixed:
first d, the level of differencing, then p, the autoregression,
and finally ¢, the moving average. For each, the general
restriction is that the value should be 0, 1, or 2.

Differencing is required to make the data stationary.
Figure 1 shows the data before differencing, after differ-
encing once, and after differencing twice. Although most
of the non-stationarity is removed by the first differenc-
ing, there is an additional effect when differencing is done
twice, so, tentatively, we set d to 2. (Later diagnostic tests
revealed this to be the correct choice, the model produces
a better fit when dis 2.)
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Figure 2: Autocorrelation and Partial Autocorrelation on
Differenced Data

Autoregression is determined by examining the pattern
of autocorrelations after differencing. If all values except
the first are 0, p should be 0. Continually decreasing values
indicate a p of 1, and a mixture of increasing and decreas-
ing values mean a p of 2. The left half of Figure 2 shows
the autocorrelations; p for these data is clearly 2.

The moving average is determined in a similar fashion,
by examining the pattern of the partial autocorrelations,
again after the data has been differenced. The meaning
of the patterns is the same as for the autoregression. As
seen in the right half of Figure 2, the pattern is somewhat
ambiguous, possibly indicating a 1, or possibly a 2.

Thus, after the first round of model identification, the
tentative choices were (2,2,1) and (2,2,2).

4.1 Diagnostic Checking

The ARIMA diagnostic tests were run on the most
promising of the model orders. The three diagnostic tests
used are described in Chapter 8 of [2].

Because the data contains evidence of a yearly cycle,
diagnostics were also examined for seasonal versions of the
promising model orders. Of all model orders tested, the
goodness of fit for the seasonal model (2,2,1)x(2,2,0)52 was
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Figure 3: Tests on Order

(2,2,1)x(2,2,0)52

Diagnostic

determined to be the best.

Figure 3 shows diagnostics results for model order
(2,2,1)x(2,2,0)52. The upper plot in Figure 3 shows the
standardized residuals. For a good model, the residuals
should approximate a Gaussian white noise process, with
zero mean, variance of one, and no cycles or patterns; this
appears to be a good fit. The middle figure shows an auto-
correlation plot of the residuals. The level at which points
are significantly different from zero is marked by the dot-
ted line; for a good fitting model, only the first autocorre-
lation (which is 1.0 by definition) will be significant, which
is what is observed here. The lower figure shows the re-
sults of the Box and Jenkins portmanteau goodness of fit
statistic, a measure of the overall fit of the autocorrela-
tion residuals. A desirable result is that all points should
be significantly above zero. The level of statistical signifi-
cance is marked by the dotted line; all data points are well
above the line.



ARIMA Forecast Compared to Observed Data, July 1992 to June 1993
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4.2 The Model Parameters
The estimated parameters (weights) for the model of

order (2,2,1)x(2,2,0)55 are:
For (2,2,1) ¢ = —0.1768216344
5 = —0.0006852888
8 = 0.9938941
For (2,2,0) ¢; = —0.2735108
¢y = 0.6535305

5 Results

The available data is from August 1988 through June
1993. To test the ARIMA model’s ability to predict across
a full year, the model was given only the data from 1988
through June 1992, and was asked to forecast the subse-
quent year (i.e., July 1992 through June 1993). This pre-
diction was then compared to the actual data for those 12
months. Figure 4 and 5 show this comparison. Figure 4
shows all data, from 1988 through 1993; Figure 5 shows
only the 12 months of the prediction. As can be seen from
the figures, the model’s prediction was quite accurate over
the entire year, although it was too conservative is predict-
ing the size of the oscillations towards the end of 1992.

The model was then used to forecast NSFNET back-
bone traffic levels for the coming year. All available data,
from August 1988 through June 1993, was used for the
prediction. Figure 6 shows the forecast for July of 1993
through June of 1994.

A model that could make reasonable forecasts two or
more years into the future would have enormous useful-
ness as a long-range planning tool. In order to evaluate
this model’s ability to make long-range predictions, the
data from 1988 through June of 1992 was used to make a
forecast two years into the future (i.e., from July of 1992
through July of 1994). Figure 7 shows this forecast over-
laid with the data from Figure 6, which shows a one year
forecast based on all available data (1988-1993).

The model’s ability to accurately predict one year into
the future has been shown by the forecast illustrated in
Figures 4 and 5. Thus we can have some confidence in
the one-year forecast through July 1994. The fact that the
model makes a very similar prediction, based only on data
ending two years earlier, suggests that it has real potential
as a tool for long-range planmng
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6 Conclusions

The purpose of this study was to examine the feasibility
of using time series analysis to make detailed long-range
predictions about NSFNET backbone traffic. In this, it
was quite successful. The close match between predicted
and observed traffic levels suggests that this approach can
be used for long-range forecasts and planning with some
confidence.

ARIMA models could also be used to make predictions
about the traffic levels on individual NSFNET backbone
nodes, rather than on the aggregate. Preliminary model
building, however, suggests that it would be necessary to
use a separate model order for each node. This should not
be surprising, since traffic patterns and growth on indi-
vidual backbone nodes may be strongly affected by local
factors not shared by other nodes, for example, the state
of the economy in the region where the node is located, or
the addition of a new backbone node that handles traffic
formerly handled by this node.

However these examples of outside factors do point to
one ultimate limitation of the ARIMA model approach,
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which is that all predictions are necessarily made on the
sole basis of previous data. Such models cannot, by their
very nature, take any account of outside forces that may
fundamentally change the pattern of the data. As access
to the Internet becomes more widespread, a greater pro-
portion of users may be from commercial, rather than aca-
demic, institutions; the pattern of use over a calendar year
is likely to be quite different for a business than for a uni-
versity. As new multimedia applications come into wider
use, the extremely high volume generated by such appli-
cations may affect traffic patterns. Such factors as new
technologies, new government regulation, or changes in the
national economy may have significant effects that cannot
be predicted by this approach.
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