
security vs performance Proc. INET '95 k cla�y

Measured interference of network security mechanisms with network
performance

Hans-Werner Braun <hwb@sdsc.edu>

Kimberly Cla�y <kc@sdsc.edu>

Andrew Gross <grossa@sdsc.edu>

Abstract

Since starting to use Kerberos [1], which pro-
vides the option to encrypt rlogin sessions at the
application layer, we noticed that using encryp-
tion caused a severe performance impact across
dial-up lines, e.g., a 14.4kbps line using PPP with
modem compression of data.

We took measurements and veri�ed the source
of the problem as a non-synergistic interaction be-
tween the application, transport, and lower net-
work layers. We modi�ed the Kerberized rlogin
(klogin) to accommodate this situation, and will
make the modi�cations publicly available. Since
normal ascii text data is quite compressible, this
modi�cation could become important for ubiqui-
tous low speed access.

1 statement of problem

Since starting to use Kerberos,1 which pro-
vides the option to encrypt rlogin sessions at the
application layer, we noticed that using encryp-
tion caused a severe performance impact for inter-
active applications across dial-up lines, e.g., even
14.4kbps line using PPP.

To investigate the impact of the move to more
Internet-wide use of end-to-end encryption, we
took measurements to verify the source of the
problem. We found a clearly non-synergistic in-
teraction between the application, transport, and
lower network layers. Although the issue became
visible to us with Kerberos, it is a generic prob-
lem of performing compression and encryption
in the right order. Since encryption is inher-
ently a randomization process, it is clear that try-
ing to compress after performing encryption will
yield suboptimal results. However, many applica-
tions perform encryption at higher layers without
�rst performing compression, leaving lower lay-
ers (e.g., modems) unable to e�ectively compress
data before transmission. We modi�ed the Ker-
berized rlogin (klogin) to accommodate the situ-
ation, and will make the modi�cations publicly

1 Both versions, Kerberos 4 and 5, exhibit the same

behavior.

available [2]2.

2 background

With most dial-up lines, often not faster than
14.4kbps, variations in interactive performance
are extremely visible to users. Many optimiza-
tions can improve performance over slow links;
examples include Jacobson's header compression
[3] and the V.42bis compression [4] used in many
modems. Modem compression can raise the ef-
fective end-to-end throughput of a 14.4kbps line
to 20-30kbps. For example, after the rlogin ap-
plication sends packets to the network layer, the
host sends the packets out via a modem that com-
presses the data as it transmits it. The bene�t of
compression is particularly strong for data that
exhibits considerable redundancy, e.g., ascii text
data. Encrypting at the application layer, e.g., as
performed in Kerberos services, makes it virtually
impossible for the modem to compress the data
before transmitting it. This essentially limits the
system to the raw 14.4kbps that the modem can
o�er. To con�rm this hypothesis we veri�ed that
disabling compression on the modem yielded sim-
ilarly sluggish performance for encrypted as well
as unencrypted rlogin streams.

Note that one would likely not notice a perfor-
mance di�erence on machines connected via an
Ethernet or higher speed medium. Since both
the end hosts and the network can perform fast
enough without compression, even with compet-
ing tra�c on the LAN, the optimization function
of a modem is unnecessary. This e�ect also will
not manifest itself for very small packets, e.g.,
the one or very few character packets sent from
the client to the server side of a telnet session.
Such packets are not ideally amenable to com-
pression since most compression algorithms rely
on repeated patterns in the data. The e�ect of the
suboptimal ordering on the end user is most acute
with interactive sessions, requiring large packets
in at least one direction, over low speed lines.

2 We are currently cleaning up the code modi�ca-

tions and will make it available by the conference

date.



security vs performance Proc. INET '95 k cla�y

3 performance measurements

In order to determine the extent of the
throughput di�erence between encrypted and un-
encrypted sessions, we measured the throughput
performance of a �le transfer (ftp), in both direc-
tions across a 14.4kbps serial link line, using three
text�les that were equal in length (100,000 char-
acters) but di�ered in the degree to which they
were conducive to compression. We then mea-
sured the latency to transfer each �le in encrypted
and nonencrypted form, across a 14.4kbps dialup
PPP line, using modem compression.

The �rst text �le consisted of a series of a
repeated character. The second �le consisted
of the result of a ls -R command, presumably
somewhat analogous to English text. The third
�le consisted of a a series of characters selected
randomly3 We created two encrypted versions of
each �le, one with the unix crypt utility, the other
with a unix des program. We then sent the nine
�les across a dialup link to a remote system three
times in each direction. There was little di�erence
among the throughput performance of the three
iterations. Table 1 shows the maximum values
of the measured throughput performance of the
�le transfers. The table veri�es our hypothesis;
performance drops in half on random text (e.g.,
the result of encryption) if one is bandwidth-
limited rather than CPU-limited. The interfer-
ence among multiple layers of the network is crit-
ical to system performance.

For comparison, we measured the �le sizes (in
bytes) that the unix gzip and compress utilities
were able to achieve on the nine 100,000 bytes
�les. Table 2 shows the results; n/a indicates
that compress did not yield a �le smaller than
the original �le.

4 remedy

We now dicuss methods to obtain higher per-
formance in slow speed environments. Note that
disabling the modem compression renders com-
parable the throughput of encrypted vs non-
encrypted sessions. The existing order of oper-
ations is suboptimal. One solution would be to
compress prior to encryption, in klogin itself. So
rather than encrypting the data within klogin,
and then letting lower layers compress, we com-
press the data �rst, and then encrypt:

Current functionality:

3 We used the perl rand() function, which returns a

random fractional number between 0 and a spec-

i�ed positive value.

application generates data
application encrypts data
host sends data
(modem) compress
send across network
(modem) decompress
decrypt
consume data

To obtain a higher throughput the application
should compress bulk information before encrypt-
ing it:

application generates data
application compresses data
application encrypts data
host sends data
(modem) compress (minimally)
send across network
(modem) decompress
decrypt
consume data

As noted above, some cases will not be
amenable to performance improvements, such as
applications that communicate using only very
short packets that are not compressible. We focus
instead on areas where improvement is possible,
that is, where we have large enough blocks of data
that compression will provide a net bene�t.

5 implementation details

For slow speed links, the application design-
ers should be aware of the underlying behavior of
the network. A designer may generate code that
uses many more packets than are necessary to ac-
complish a given task. This approach will result
in an increase in latency that will be apparent in
interactive sessions.

Kerberos handles encrypted data by transmit-
ting two separate packets for each transmission
of an otherwise unencrypted packet: one packet
holds the length of encrypted data, and the sec-
ond packet holds the data itself. In klogin this
behavior results in the generation of 7 packets
for a single keystroke, caused by the application
doing two writes rather than a writev to merge
the data into a single bu�er. By using writev on
both sides, we reduce 7 packets to 3 and save
network bandwidth as well as latency. Figure 3
shows packet traces for the transmission of a sin-
gle character stroke, using both the original klogin
and our modi�ed version of klogin.

We also added a byte at the beginning of the
encryped data to indicate whether the data is
compressed. This mechanism allows us to forgo
compression for cases where it does not provide a
bene�t.



security vs performance Proc. INET '95 k cla�y

Table 1: throughput performance (in kBytes/sec) for unencrypted, crypt encrypted, and des encrypted
�les from home machine to sdsc machine across 14.4kbps line (using PPP)

send recv
plain crypt des plain crypt des

same char (u) 3.63 1.59 1.58 3.52 1.54 1.53
text (lsR) 3.59 1.58 1.58 3.52 1.52 1.53
random char (r) 1.59 1.57 1.59 1.54 1.53 1.52

Table 2: compression performance using gzip (.gz) and compress (.Z) on the 100,000-byte �les described
(unencrypted, crypt encrypted, and des encrypted)

plain crypt des
.gz .Z .gz .Z .gz .Z

same char (u) 138 530 100049 n/a 100056 n/a
text (lsR) 26632 37548 100051 n/a 100058 n/a
random char (r) 100044 n/a 100049 n/a 100056 n/a

6 other examples

Adding any extra functionality to network
applications will always detract somewhat from
performance. Security is no exception. For
example, the Andrew File System (AFS) im-
plements a great deal of security functionality
that imposes a performance cost. Similarly,
routers and application-level �rewalls impact per-
formance when �ltering.

We have highlighted only one example of sit-
uations where security measures are added long
after initial system design, at whatever layer is
convenient or easiest at the time. Other authenti-
cation and privacy schemes will have similar prob-
lems. There is the danger that users will disregard
security because it is not worth the performance
degradation. Unfortunately, modifying existing
applications and architectures so as to avoid the
performance degradation is generally more e�ort
than users are willing to expend. Application de-
signers must be aware of this risk as they design
implementations.

In summary, it is no surprise that encryption
precludes the ability to perform subsequent com-
pression. It is therefore worth examining its im-
plication for the recent popularity of adding net-
work security mechanisms to extant applications.
Although it is clear that compression should oc-
cur before encryption, implementing it properly
above the transport layer is harder than kludging
it into lower levels, albeit at the expense of per-
formance. We have o�ered this study to demon-
strate that many cases do not require the sacri-
�ce in performance, if only application builders
are willing to consider security issues as integral
to design rather than an issue to be dealt with
later.

author information

Hans-Werner Braun is a Principal Scientist
at the San Diego Supercomputer Center. Cur-
rent research interests include network perfor-
mance and tra�c characterization, and work-
ing with NSF on NREN engineering issues. He
also participates in activities fostering the evolu-
tion of the national and international network-
ing agenda. San Diego Supercomputer Cen-
ter, P.O. Box 85608, San Diego, CA 92186-9784;
hwb@sdsc.edu.

Kimberly Cla�y received her doctoral degree
from the Department of Computer Science and
Engineering at the University of California, San
Diego in June, 1994, and is currently a Asso-
ciate Sta� Scientist at the San Diego Supercom-
puter Center. Her research focuses on estab-
lishing and improving the e�cacy of tra�c and
performance characterization methodologies on
wide-area communication networks, in particu-
lar to cope with the changing tra�c workload,
�nancial structure, and underlying technologies
of the Internet. San Diego Supercomputer Cen-
ter, P.O. Box 85608, San Diego, CA 92186-9784;
kc@sdsc.edu.

Andrew Gross is a doctoral student in the De-
partment of Electrical and Computer Engineering
at the University of California, San Diego, and is
currently a security analyst at the San Diego Su-
percomputer Center. San Diego Supercomputer
Center, P.O. Box 85608, San Diego, CA 92186-
9784; grossa@sdsc.edu

References

[1] J. Kohl, C. Neuman, and J. Schiller, \Ker-
beros: An authentication service for open
network systems," in Proc. Winter USENIX
1988, 1998. Dallas,TX.



security vs performance Proc. INET '95 k cla�y

Table 3: packet traces of single keystroke with two versions of klogin
original klogin, which sends length of encrypted data in one packet and the actual data in another

01:05:05.374333 host1.5120 > host2.eklogin: P 1774:1778(4) ack 39052 win 4096
01:05:05.828330 host2.eklogin > host1.5120: . ack 4 win 4096
01:05:05.828583 host1.5120 > host2.eklogin: P 4:20(16) ack 1 win 4096
01:05:06.036337 host2.eklogin > host1.5120: P 1:5(4) ack 20 win 4096
01:05:06.220141 host1.5120 > host2.eklogin: . ack 5 win 4096
01:05:06.409713 host2.eklogin > host1.5120: P 5:21(16) ack 20 win 4096
01:05:06.420170 host1.5120 > host2.eklogin: . ack 21 win 4096

modi�ed version of klogin, which sends data and length in single packet

00:15:07.758686 host1.5120 > host2.eklogin: P 60579:60599(20) ack 36408 win 4096
00:15:07.782656 host2.eklogin > host1.5120: P 1:21(20) ack 20 win 4096
00:15:08.001707 host1.5120 > host2.eklogin: . ack 21 win 4096

[2] A. Gross, \Klogin support for compression,"
May 1995.

[3] V. Jacobson, \Compressing TCP/IP headers
for low-speed serial links." RFC 1144, Febru-
ary 1990.

[4] C. Thomborson, \V.42bis standard for data--
compressing modems," IEEE Micro, pp. 41{
53, October 1992.


