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ABSTRACT
Researchers have proposed a variety of metrics to measure
important graph properties, for instance, in social, biologi-
cal, and computer networks. Values for a particular graph
metric may capture a graph’s resilience to failure or its rout-
ing efficiency. Knowledge of appropriate metric values may
influence the engineering of future topologies, repair strate-
gies in the face of failure, and understanding of fundamen-
tal properties of existing networks. Unfortunately, there are
typically no algorithms to generate graphs matching one or
more proposed metrics and there is little understanding of
the relationships among individual metrics or their applica-
bility to different settings.

We present a new, systematic approach for analyzing net-
work topologies. We first introduce the dK-series of proba-
bility distributions specifying all degree correlations within
d-sized subgraphs of a given graph G. Increasing values
of d capture progressively more properties of G at the cost
of more complex representation of the probability distribu-
tion. Using this series, we can quantitatively measure the
distance between two graphs and construct random graphs
that accurately reproduce virtually all metrics proposed in
the literature. The nature of the dK-series implies that it
will also capture any future metrics that may be proposed.
Using our approach, we construct graphs for d = 0, 1, 2, 3
and demonstrate that these graphs reproduce, with increas-
ing accuracy, important properties of measured and modeled
Internet topologies. We find that the d = 2 case is sufficient
for most practical purposes, while d = 3 essentially recon-
structs the Internet AS- and router-level topologies exactly.
We hope that a systematic method to analyze and synthe-
size topologies offers a significant improvement to the set of
tools available to network topology and protocol researchers.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network
topology; G.3 [Probability and Statistics]: Distribution
functions, multivariate statistics, correlation and regression
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1. INTRODUCTION
Knowledge of network topology is crucial for understand-

ing and predicting the performance, robustness, and scala-
bility of network protocols and applications. Routing and
searching in networks, robustness to random network fail-
ures and targeted attacks, the speed of worms spreading,
and common strategies for traffic engineering and network
management all depend on the topological characteristics of
a given network.

Research involving network topology, particularly Inter-
net topology, generally investigates the following questions:

1. generation: can we efficiently generate ensembles of
random but “realistic” topologies by reproducing a set
of simple graph metrics?

2. simulations: how does some (new) protocol or appli-
cation perform on a set of these “realistic” topologies?

3. evolution: what are the forces driving the evolution
(growth) of a given network?

http://arXiv.org/abs/cs/0605007v2


Figure 1 illustrates the methodologies used to answer these
questions in its left, bottom, and right parts, respectively.
Common to all of the methodologies is a set of practically-
important graph properties used for analyzing and compar-
ing sets of graphs at the center box of the figure. Many such
properties have been defined and explored in the literature.
We briefly discuss some of them in Section 2. Unfortunately,
there are no known algorithms to construct random graphs
with given values of most of these properties, since they
typically characterize the global structure of the topology,
making it difficult or impossible to algorithmically reproduce
them.

This paper introduces a finite set of reproducible graph
properties, the dK-series, to describe and constrain ran-
dom graphs in successively finer detail. In the limit, these
properties describe any given graph completely. In our ap-
proach, we make use of probability distributions, the dK-

distributions, specifying node degree correlations within sub-
graphs of size d in some given input graph. We call dK-

graphs the sets of graphs constrained by given values of dK-
distributions. Producing a family of 0K-graphs for a given
input graph requires reproducing only the average node de-
gree of the original graph, while producing a family of 1K-
graphs requires reproducing the original graph’s node degree
distribution, the 1K-distribution. 2K-graphs reproduce the
joint degree distribution, the 2K-distribution, of the orig-
inal graph—the probability that a randomly selected link
connects nodes of degrees k and k′. 3K-graphs consider
interconnectivity among triples of nodes, and so forth. Gen-
erally, the set of (d + 1)K-graphs is a subset of dK-graphs.
In other words, larger values of d further constrain the num-
ber of possible graphs. Overall, larger values of d capture
increasingly complex properties of the original graph. How-
ever, generating dK-graphs for large values of d also become
increasingly computationally complex.

A key contribution of this paper is to define the series
of dK-graphs and dK-distributions and to employ them for
generating and analyzing network topologies. Specifically,
we develop and implement new algorithms for constructing
2K- and 3K-graphs—algorithms to generate 0K- and 1K-
graphs are already known. For a variety of measured and
modeled Internet AS- and router-level topologies, we find
that reproducing their 3K-distributions is sufficient to ac-
curately reproduce all graph properties we have encountered
so far.

Our initial experiments suggest that the dK-series has
the potential to deliver two primary benefits. First, it can
serve as a basis for classification and unification of a vari-
ety of graph metrics proposed in the literature. Second, it
establishes a path towards construction of random graphs
matching any complex graph properties, beyond the sim-
ple per-node properties considered by existing approaches
to network topology generation.

2. IMPORTANT TOPOLOGYMETRICS
In this section we outline a list of graph metrics that have

been found important in the networking literature. This
list is not complete, but we believe it is sufficiently diverse
and comprehensive to be used as a good indicator of graph
similarity in subsequent sections. In addition, our primary
concern is how accurately we can reproduce important met-
rics. One can find statistical analysis of these metrics for
Internet topologies in [30] and, more recently, in [20].

The spectrum of a graph is the set of eigenvalues of its
Laplacian L. The matrix elements of L are Lij = −1/(kikj)

1/2

if there is a link between a ki-degree node i and a kj-degree
node j; otherwise they are 0, or 1 if i = j. All the eigenvalues
lie between 0 and 2. Of particular importance are the small-
est non-zero and largest eigenvalues, λ1 and λn−1, where n
is the graph size. These eigenvalues provide tight bounds
for a number of critical network characteristics [8] including
network resilience [29] and network performance [19], i.e.,
the maximum traffic throughput of the network.

The distance distribution d(x) is the number of pairs of
nodes at a distance x, divided by the total number of pairs n2

(self-pairs included). This metric is a normalized version
of expansion [29]. It is also important for evaluating the
performance of routing algorithms [18] as well as of the speed
with which worms spread in a network.

Betweenness is the most commonly used measure of cen-
trality, i.e., topological importance, both for nodes and links.
It is a weighted sum of the number of shortest paths pass-
ing through a given node or link. As such, it estimates the
potential traffic load on a node or link, assuming uniformly
distributed traffic following shortest paths. Metrics such as
link value [29] or router utilization [19] are directly related
to betweenness.

Perhaps the most widely known graph property is the node

degree distribution P (k), which specifies the probability of
nodes having degree k in a graph. The unexpected finding
in [13] that degree distributions in Internet topologies closely
follow power laws stimulated further interest in topology
research.

The likelihood S [19] is the sum of products of degrees
of adjacent nodes. It is linearly related to the assortativity

coefficient r [25] suggested as a summary statistic of node
interconnectivity: assortative (disassortative) networks are
those where nodes with similar (dissimilar) degrees tend to
be tightly interconnected. They are more (less) robust to
both random and targeted removals of nodes and links. Li
et al. use S in [19] as a measure of graph randomness to show
that router-level topologies are not “very random”: instead,
they are the result of sophisticated engineering design.

Clustering C(k) is a measure of how close neighbors of
the average k-degree node are to forming a clique: C(k) is
the ratio of the average number of links between the neigh-
bors of k-degree nodes to the maximum number of such
links

(

k
2

)

. If two neighbors of a node are connected, then
these three nodes form a triangle (3-cycle). Therefore, by
definition, C(k) is the average number of 3-cycles involv-
ing k-degree nodes. Bu and Towsley [4] employ clustering
to estimate accuracy of topology generators. More recently,
Fraigniaud [14] finds that a wide class of searching/routing
strategies are more efficient on strongly clustered networks.

3. dK-SERIES AND dK-GRAPHS
There are several problems with the graph metrics in the

previous section. First, they derive from a wide range of
studies, and no one has established a systematic way to de-
termine which metrics should be used in a given scenario.
Second, there are no known algorithms capable of construct-
ing graphs with desired values for most of the described
metrics, save degree distribution and more recently, cluster-
ing [27]. Metrics such as spectrum, distance distribution,
and betweenness characterize global graph structure, while
known approaches to generating graphs deal only with local,
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Figure 2: The dK- and dK-random graph hierarchy.

The circles represent dK-graphs, whereas their centers rep-
resent dK-random graphs. The cross is the nK-graph iso-
morphic to a given graph G.

per-node statistics, such as the degree distribution. Third,
this list of metrics is incomplete. In particular, it cannot in-
clude any future metrics that may be of interest. Identifying
such a metric might result in finding that known synthetic
graphs do not match this new metric’s value: moving along
the loops in Figure 1 can thus continue forever.

To address these problems, we focus on establishing a fi-
nite set of mutually related properties that can form a basis
for any topological graph study. More precisely, for any
graph G, we wish to identify a series of graph properties
Pd, d = 0, 1, . . ., satisfying the following requirements:

1. constructibility: we can construct graphs having these
properties;

2. inclusion: any property Pd subsumes all properties Pi

with i = 0, . . . , d − 1: that is, a graph having prop-
erty Pd is guaranteed to also have all properties Pi

for i < d;

3. convergence: as d increases, the set of graphs having
property Pd “converges” to G: that is, there exists
a value of index d = D such that all graphs having
property PD are isomorphic to G.

In the rest of this section, we establish our construction of
the properties Pd, which we will call the dK-series. We be-
gin with the observation that the most basic properties of a
network topology characterize its connectivity. The coarsest
connectivity property is the average node degree k̄ = 2m/n,
where n = |V | and m = |E| are the numbers of nodes and
links in a given graph G(V, E). Therefore, the first prop-
erty P0 in our dK-series Pd is that the graph’s average de-
gree k̄ has the same value as in the given graph G. In Fig-
ure 2 we schematically depict the set of all graphs having
property P0 as 0K-graphs, defining the largest circle. Gen-
eralizing, we adopt the term dK-graphs to represent the set
of all graphs having property Pd.

The P0 property tells us the average number of links per
node, but it does not tell us the distribution of degrees
across nodes. In particular, we do not know the number of
nodes n(k) of each degree k in the graph. We define property
P1 to capture this information: P1 is therefore the property

that the graph’s node degree distribution P (k) = n(k)/n1

has the same form as in the given graph G. It is conve-
nient to call P (k) the 1K-distribution. P1 implies at least
as much information about the network as P0, but not vice
versa: given P (k), we find k̄ =

∑

kP (k). P1 provides more
information than P0, and it is therefore a more restrictive
metric: the set of 1K-graphs is a subset of the set of 0K-
graphs. Figure 2 illustrates this inclusive relationship by
drawing the set of 1K-graphs inside the set of 0K-graphs.

Continuing to d = 2, we note that the degree distri-
bution constrains the number of nodes of each degree in
the network, but it does not describe the interconnectiv-
ity of nodes with given degrees. That is, it does not pro-
vide any information on the total number m(k, k′) of links
between nodes of degree k and k′. We define the third
property P2 in our series as the property that the graph’s
joint degree distribution (JDD) has the same form as in
the given graph G. The JDD, or the 2K-distribution, is
P (k1, k2) = m(k1, k2)µ(k1, k2)/(2m), where µ(k1, k2) is 2 if
k1 = k2 and 1 otherwise. The JDD describes degree corre-
lations for pairs of connected nodes. Given P (k1, k2), we
can calculate P (k) = (k̄/k)

∑

k′ P (k, k′), but not vice versa.
Consequently, the set of 2K-graphs is a subset of the 1K-
graphs. Therefore, Figure 2 depicts the smaller 2K-graph
circle inside 1K.

We can continue to increase the amount of connectivity in-
formation by considering degree correlations among greater
numbers of connected nodes. To move beyond 2K, we must
begin to distinguish the various geometries that are possi-
ble in interconnecting d nodes. To introduce P3, we require
the following two components: 1) wedges: chains of 3 nodes
connected by 2 edges, called the P∧(k1, k2, k3) component;
and 2) triangles: cliques of 3 nodes, called the P△(k1, k2, k3)
component:

As the two geometries occur with different frequencies among
nodes having different degrees, we require a separate proba-
bility distribution for each configuration. We call these two
components taken together the 3K-distribution.

For P4, we need the above six distributions: where instead
of indices ∧,△ we use for d = 3, we have all non-isomorphic
graphs of size 4 numbered by 1, . . . , 6. We note that the

1Sacrificing a certain amount of rigor, we interchangeably
use the enumeration of nodes having some property in a
given graph, e.g., n(k)/n, with the probability that a node
has this property in a graph ensemble, e.g., P (k). The two
become identical when n → ∞; see [3] for further details.



order of k-arguments generally matters, although we can
permute any pair of arguments corresponding to pairs of
nodes whose swapping leaves the graph isomorphic. For
example: P∧(k1, k2, k3) 6= P∧(k2, k1, k3) 6= P∧(k1, k3, k2),
but P∧(k1, k2, k3) = P∧(k3, k2, k1).

In the following figure, we illustrate properties Pd, d =
0, . . . , 4, calculated for a given graph G of size 4, where
for simplicity, values of all distributions P are the total
numbers of corresponding subgraphs, i.e., P (2, 3) = 2 means
that G contains 2 edges between 2- and 3-degree nodes.

Generalizing, we define the dK-distributions to be degree

correlations within non-isomorphic simple connected subgra-

phs of size d and the dK-series Pd to be the series of prop-

erties constraining the graph’s dK-distribution to the same

form as in a given graph G. In other words, Pd tells us how
groups of d-nodes with degrees k1, ..., kd interconnect. In
the ‘dK’ acronym, ‘K’ represents the standard notation for
node degrees, while ‘d’ refers to the number of degree ar-
guments k of the dK-distributions P (k1, . . . , kd) and to the
upper bound of the d istance between nodes with specified
degree correlations. Moving from Pd to Pd+1 in describing
a given graph G is somewhat similar to including the ad-
ditional d + 1’th term of the Fourier (time) or Taylor series
representing a given function F . In both cases, we describe
wider “neighborhoods” in G or F to achieve a more accurate
representation of the original structure.

The dK-series definition satisfies the inclusion and con-
vergence requirements described above. Indeed, the inclu-
sion requirement is satisfied because any graph of size d is a
subgraph of some graph of size d + 1. Convergence follows
from the observation that in the limit of d = n, the set of
nK-graphs contains only one element: G itself. As a conse-
quence of the convergence property, any topology metric we
can define on G will eventually be captured by dK-graphs
with a sufficiently large d.

Hereafter, our main concerns with the dK-series become:
1) how well we can satisfy our first requirement of con-
structibility and 2) how fast the dK-series converges toward
the original graph. We address these two concerns in Sec-
tions 4 and 5.

The reason for the second concern is that the number of
probability distributions required to fully specify the dK-
distribution grows quickly with d: see [28] for the number of
non-isomorphic simple connected graphs of size d. Relative
to the existing work on topology generators typically limited
to d = 1 [1, 22, 32], we introduce and implement algorithms
for graph construction for d = 2 and d = 3. We present
these algorithms in Section 4 and then show in Section 5 that
the dK-series converges quickly: 2K-graphs are sufficient for
most practical purposes for the graphs we consider, while
3K-graphs are essentially identical to observed and modeled
Internet topologies.

To motivate our ability to capture increasingly complex
graph properties by increasing d, we present visualizations
of dK-graphs generated using the dK-randomizing approach
we will discuss in Section 4.1.4. Figure 3 depicts random
0K-, 1K-, 2K- and 3K-graphs matching the corresponding

distributions of the HOT graph, a representative router-level
topology from [19]. This topology is particularly interesting,
because, to date reproducing router-level topologies using
only degree distributions has proven difficult [19]. However,
a visual inspection of our generated topologies shows good
convergence properties of the dK-series: while the 0K-graph
and 1K-graph have little resemblance with the HOT topol-
ogy, the 2K-graph is much closer than the previous ones and
the 3K graph is almost identical to the original. Although
the visual inspection is encouraging, we defer more careful
comparisons to Section 5.

4. CONSTRUCTING dK-GRAPHS
There are several approaches for constructing dK-graphs

for d = 0 and d = 1. We extended a number of these algo-
rithms to work for higher values of d. In Section 4.1, we
describe these approaches, their practical utility, and our
new algorithms for d > 1. In Sections 4.2 and 4.3, we in-
troduce dK-random graphs and dK-space explorations. We
use the latter to determine the lowest values of d such that
dK-graphs approximate a given topology with the required
degree of accuracy.

4.1 dK-graph-constructing algorithms
We classify existing approaches to constructing 0K- and

1K-graphs into the following categories: stochastic, pseu-

dograph, matching, and two types of rewiring: randomizing

and targeting. We attempted to extend each of these tech-
niques to general dK-graph construction. In this section, we
qualitatively discuss the relative merits of each of these ap-
proaches before presenting a more quantitative comparison
in Section 5.

4.1.1 Stochastic
The simplest and most convenient for theoretical analysis

is the stochastic approach. For 0K, reproducing an n-sized
graph with a given expected average degree k̄ involves con-
necting every pair of n nodes with probability p0K = k̄/n.
This construction forms the classical (Erdős-Rényi) random
graphs Gn,p [12]. Recent efforts have extended this stochas-
tic approach to 1K [7] and 2K [2, 9]. In these cases, one first
labels all nodes i with their expected degrees qi drawn from
the distribution P (k) and then connects pairs of nodes (i, j)
with probabilities p1K(qi, qj) = qiqj/(nq̄) or p2K(qi, qj) =
(q̄/n)P (qi, qj)/(P (qi)P (qj)) reproducing the expected val-
ues of 1K- or 2K-distributions, respectively.

In theory, we could generalize this approach for any d
in two stages: 1) extraction: given a graph G, calculate
the frequencies of all (including disconnected) d-sized sub-
graphs in G, and 2) construction: prepare an n-sized set of
qi-labeled nodes and connect their d-sized subsets into dif-
ferent subgraphs with (conditional) probabilities based on
the calculated frequencies. In practice, we find the stochas-
tic approach performs poorly even for 1K because of high
statistical variance. For example, many nodes with expected
degree 1 wind up with degree 0 after the construction phase,
resulting in many tiny connected components.

4.1.2 Pseudograph
The pseudograph (also known as configuration) approach

is probably the most popular and widely used class of graph-
generating algorithms. In its original form [1, 24], it applies
only to the 1K case. Relative to the stochastic approach,



(a) 0K-graph (b) 1K-graph (c) 2K-graph

(d) 3K-graph

(e) original HOT graph

Figure 3: Picturizations of dK-graphs and the original HOT graph illustrating the convergence of dK-series.

it reproduces a given degree distribution exactly, but does
not necessarily construct simple graphs. That is, it may
construct graphs with both ends of an edge connected to
the same node (self-loops) and with multiple edges between
the same pair of nodes (loops).

It operates as follows. Given the number of nodes, n(k),

of degree k, n =
∑kmax

k=1 n(k), first prepare n(k) nodes with
k stubs attached to each node, k = 1, . . . , kmax, and then
randomly choose pairs of stubs and connect them to form
edges. To obtain a simple connected graph, remove all loops
and extract the largest connected component.

We extended this algorithm to 2K as follows. Given the
number m(k1, k2) of edges between k1- and k2-degree nodes,

m =
∑kmax

k1,k2=1
m(k1, k2), we first prepare lists of m(k1, k2)

disconnected edges and label the both ends of each edge
by k1 and k2, k1, k2 = 1, . . . , kmax. Next, for each k, k =
1, . . . , kmax, we create a list of all edge-ends labeled with k.
From this list, we randomly select groups of k edge-ends to
form the k-degree nodes in the final graph.

The pseudograph algorithm works well for d = 2. Unfor-
tunately, we could not easily generalize it for d > 2 because
starting at d = 3, d-sized subgraphs overlap over edges. Such
overlapping introduces a series of topological constraints and
non-local dependencies among different subgraphs, and we
could not find a simple technique to preserve these combi-
natorial constraints during the construction phase.

4.1.3 Matching
The matching approach differs from the pseudograph ap-

proach in avoiding loops during the construction phase. In
the 1K case, the algorithm works exactly as its pseudograph
counterpart but skips pairs of stubs that form loops if con-
nected. We extend the matching approach to 2K in a man-
ner similar to our 2K pseudograph approach.

Unfortunately, loop avoidance suffers from various forms
of deadlock for both 1K and 2K. In both cases, the algo-
rithms can end up in incomplete configurations when not all
edges are formed, and the graph cannot be completed be-
cause there are no suitable stub pairs remaining that can be
connected without forming loops. We devised several tech-
niques to deal with these problems. With these additional
techniques, we obtained good results for 2K graphs. As
in the pseudograph case however, we could not generalize
matching for d > 2 for essentially the same reasons related
to subgraphs’ overlapping and non-locality.

4.1.4 Rewiring
The rewiring approaches are generalizable to any d and

work well in practice. They involve dK-preserving rewiring
as illustrated in Figure 4. The main idea is to rewire ran-

dom (pairs of) edges preserving an existing form of the dK-
distribution. For d = 0, we rewire a random edge to a ran-
dom pair of nodes, thus preserving k̄. For d = 1, we rewire
two random edges that do not alter P (k), as shown in Fig-
ure 4. If, in addition, there are at least two nodes of equal
degrees adjacent to the different edges in the edge pair, then
the same rewiring leaves P (k, k′) intact. Due to the inclusion
property of the dK-series, (d + 1)K-rewirings form a subset
of dK-rewirings for d > 0. For example, to preserve 3K, we



Figure 4: dK-preserving rewiring for d = 0, 1, 2.

permit a 2K-rewiring only if it also preserves the wedge and
triangle distributions.

The dK-randomizing rewiring algorithm amounts to per-
forming dK-preserving rewirings a sufficient number of times
for some dK-graph. A “sufficient number” means enough
rewirings for this process to lead to graphs that do not
change their properties even if we subject them to additional
rewirings. In other words, this rewiring process converges af-
ter some number of steps, producing random graphs having
property Pd. Even for d = 1, there are no known rigorous re-
sults regarding how quickly this process converges, but [15]
shows that this process is an irreducible, symmetric and ape-
riodic Markov chain and demonstrates experimentally that
it takes O(m) steps to converge.

In our experiments in Section 5, we employ the following
strategy applicable for any d. We first calculate the num-
ber of possible initial dK-preserving rewirings. By “initial
rewirings” we mean rewirings we can perform on a given
graph G, to differentiate them from rewirings we can apply
to graphs obtained from G after its first (and subsequent)
rewirings. We then subtract the number of rewirings that
leave the graph isomorphic. For example, rewiring of any
two (1, k)- and (1, k′)-edges is a dK-preserving rewiring, for
any d, and more strongly, the graph before rewiring is iso-
morphic to the graph after rewiring. We multiply this differ-
ence by 10, and perform that number of random rewirings.
At the end of our rewiring procedure, we explicitly verify
that randomization is indeed complete and the process has
converged by further increasing the number of rewirings and
checking that all graph characteristics remain unchanged.

One obvious problem with dK-randomization is that it
requires an original graph G as input to construct its dK-
random versions. It cannot start with a description of the
dK-distribution to generate random dK-graphs as is possi-
ble with the other construction approaches discussed above.

To address this limitation, we consider the inverse pro-
cess of dK-targeting d′K-preserving rewiring, also known as
Metropolis dynamics [23]. It incorporates the following mod-
ification to d′K-preserving rewiring: every rewiring step is
accepted only if it moves the graph “closer” to Pd. In prac-
tice, we can then employ targeting rewiring to construct
dK-graphs with high values of d by beginning with any d′K-
graph where d′ < d. Recall that we can always compute Pd′

from Pd due to the inclusion property of the dK-series. For
instance, we can start with a graph having a given degree
distribution (d′ = 1) [31], and then move it toward a dK-
graph via dK-targeting 1K-preserving rewiring.

The definition of “closer” above requires further expla-
nation. We require a set of distance metrics that quan-
titatively differentiate two graphs based on the values of
their dK-distributions. In our experiments, we use the sum
of squares of differences between the existing and target

numbers of subgraphs of a given type. For example, in
the d = 2 case, we measure the distance between the tar-
get graph’s JDD and the JDD of the current graph being
rewired by D2 =

∑

k1,k2
[mcurrent(k1, k2) − mtarget(k1, k2)]

2,
and at each rewiring step, we accept the rewiring only if it
decreases this distance. Note that D2 is non-negative and
equals zero only when reaching the target JDD. For d = 3,
this distance D3 is a sum of squares of differences between
the current and target numbers of wedges and triangles, and
we can generalize it to Dd for any d.

A potential problem with dK-targeting d′K-preserving
rewiring is that it can be nonergodic, meaning that there
might be no chain of d′K-preserving Dd-decreasing rewirings
leading from the initial d′K-graph to the target dK-graph.
In other words, we cannot be sure beforehand that any two
d′K-graphs are connected by a sequence of d′K-preserving
and Dd-decreasing rewirings.

To address this problem we note that the d′K-randomizing
and dK-targeting d′K-preserving rewirings are actually two
extremes of an entire family of rewiring processes. Indeed,
let ∆Dd = Dd,after −Dd,before be the difference of distance
to the target dK-distribution computed before and after
a d′K-preserving rewiring step. As with the usual dK-
targeting rewiring, we accept a rewiring step if ∆Dd < 0,
but even if ∆Dd > 0, we also accept this step with prob-
ability e−∆Dd/T , where T > 0 is some parameter that we
call temperature because of the similarity of the process to
simulated annealing.

In the T → 0 limit, this probability goes to 0, and we have
the standard dK-targeting d′K-preserving rewiring process.
When T → ∞, the probability approaches 1, yielding the
standard d′K-randomizing rewiring process. To verify er-
godicity, we can start with a high temperature and then
gradually cool the system while monitoring any metric known
to have different values in dK- and d′K-graphs. If this met-
ric’s value forms a continuous function of the temperature,
then our rewiring process is ergodic. Maslov et al. per-
formed these experiments in [21] and demonstrated ergod-
icity in the case with d′ = 1 and d = 2. In our experiments
in Section 5 where d and d′ are below 4, we always obtain a
good match for all target graph metrics. Thus, we perform
rewiring at zero temperature without further considering er-
godicity. If however in some future experiments one detects
the lack of a smooth convergence of rewiring procedures,
then one should first verify ergodicity using the methodol-
ogy described above.

For all the algorithms discussed in this section, we do
not check for graph connectedness at each step of the algo-
rithm since: 1) it is an expensive operation and 2) all result-
ing graphs always have giant connected components (GCCs)
with characteristics similar to the whole disconnected graphs.

4.2 dK-random graphs
No dK-graph-generating algorithm can quickly construct

the set of all dK-graphs because: 1) such sets are too large,
especially for small d; and, less obviously, 2) all algorithms
try to produce graphs having property Pd while remaining
unbiased (random) with respect to all other properties. One
can check directly that the last characteristic applies to all
the algorithms we have discussed above.

As a consequence, the dK-graph construction algorithms
result in non-uniform sampling of graphs with different val-



Table 1: The summary of dK-series.

Tag
dK

Property
symbol

dK-
distribution

Pd defines Pd−1 Edge existence probability in
stochastic constructions

Maximum entropy value of (d+1)K-
distribution in dK-random graphs

0K P0 k̄ p0K = k̄/n P0K(k) = e−k̄k̄k/k!
1K P1 P (k) k̄ =

∑

kP (k) p1K(q1, q2) = q1q2/(nq̄) P1K(k1, k2) = k1P (k1)k2P (k2)/k̄2

2K P2 P (k1, k2) P (k) =
(k̄/k)

∑

k′ P (k, k′)
p2K(q1, q2) =
(q̄/n)P (q1, q2)/(P (q1)P (q2))

See [10] for clustering in 2K-random
graphs

3K P3 P∧(k1, k2, k3)
P△(k1, k2, k3)

By counting edges, we get P (k1, k2) ∼
∑

k {P∧(k, k1, k2) + P△(k, k1, k2)} /(k1 − 1) ∼
∑

k {P∧(k1, k2, k) + P△(k1, k2, k)} /(k2−1), where we omit normalization coefficients.
. . . . . . . . . . . . . . . . . .
nK Pn G

ues of properties that are not fully defined by Pd. More
specifically, two generated dK-graphs having different forms
of a d′K-distribution with d′ > d can appear as the output
of these algorithms with drastically different probabilities.
Some dK-graphs have such a small probability of being con-
structed that we can safely assume they never arise.

For example, consider the simplest 0K stochastic con-
struction, i.e., the classical random graphs Gn,p. Using a
probabilistic argument, one can show that the naturally-
occurring 1K-distribution (degree distribution) in these gra-
phs has a specific form: binomial, which is closely approxi-

mated by the Poisson distribution: P0K(k) = e−k̄k̄k/k! [11].
The 0K stochastic algorithm may produce a graph with a
different 1K-distribution, e.g., the power-law P (k) ∼ k−γ ,
but the probability of such an outcome is extremely low. In-
deed, suppose n ∼ 104, k̄ ∼ 5, and γ ∼ 2.1, so that the char-
acteristic maximum degree is kmax ∼ 2000 (we chose these
values to reflect measured values for Internet AS topologies).
In this case, the probability that a Gn,p-graph contains at
least one node with degree equal to kmax is dominated by
1/2000! ∼ 10−6600 , and the probability that the remaining
degrees simultaneously match those required for a power law
is much lower.

It is thus natural to introduce a set of graphs that corre-
spond to the graphs most likely to be generated by dK-
graph constructing algorithms. We call such graphs the
dK-random graphs. These graphs have property Pd but
are unbiased with respect to any other more constraining
property. In this sense, the dK-random graphs are the max-

imally random or maximum-entropy dK-graphs. Our term
maximum entropy here has the following justification. As
we have just seen, 0K-random graphs have the maximum-
entropy value of the 1K-distribution since their node de-
gree distribution is the distribution with the maximum en-
tropy among all the distributions with a fixed average.2

The 1K-random graphs have the maximum-entropy value
of the 2K-distribution since their joint degree distribution,
P1K(k1, k2) = P̃ (k1)P̃ (k2), where P̃ (k) = kP (k)/k̄ [11], is
the distribution with the maximum joint entropy (minimum
mutual information)3 among all the joint distributions with
fixed marginal distributions.4

2The entropy of a discrete distribution P (x) is H [P (x)] =
−

∑

x P (x) log P (x). If the sample space is also finite, then
among all the distributions with a fixed average, the bino-
mial distribution maximizes entropy [16].
3The mutual information of a joint distribution P (x, y) is
I [P (x, y)] = H [P (x)] + H [P (y)] − H [P (x, y)], where P (x)
and P (y) are the marginal distributions.
4In reality, the last statement generally applies only to

The main point we extract from these observations is that
in trying to construct dK-graphs, we generally obtain graphs
from subsets of the dK-space. We call these subsets dK-
random graphs and schematically depict them as centers of
the dK-circles in Figure 2. These graphs do have prop-
erty Pd and, consequently, properties Pi with i < d, but
they might not ever display property Pj with j > d since
their jK-distributions have specific, maximum-entropy val-
ues that may be different from the jK-distribution values in
the original graph.

4.3 dK-space explorations
Often we wish to analyze the topological constraints a

given graph G appears to obey. In other cases, we are inter-
ested in exploring the structural diversity among dK-graphs.
If we are attempting to determine the minimum d such that
all dK-graphs are similar to G, we can start with a small
value of d, generate dK-graphs, and measure their “dis-
tance” from G. If the distance is too great, we can increase d
and repeat the process. On the other hand, to explore struc-
tural diversity among all dK-graphs, we must generate dK-
graphs that are not random. These non-random dK-graphs
are still constrained by Pd but have extremely low proba-
bilities of being generated by unperturbed dK-graph con-
structing algorithms.

We cannot construct all dK-graphs, so we need to use
heuristics to generate some dK-graphs and adjust them ac-
cording to a distance metric that draws us closer to the types
of dK-graphs we seek. One such heuristic is based on the in-
clusion feature of the dK-series. Because all dK-graphs have
the same values of dK- but not of (d + 1)K-distributions,
we look for simple metrics fully defined by Pd+1 but not
by Pd. While identifying such metrics can be challenging
for high d’s, we can always retreat to the following two sim-
ple extreme metrics:

• the correlation of degrees of nodes located at distance d;

• the concentration of d-simplices (cliques of size d + 1).

These metrics are “extreme” in the sense that they cor-
respond to the (d + 1)-sized subgraphs with, respectively,
the maximum (d) and minimum (1) possible diameter. We
can then construct dK-graphs with extreme values, e.g., the
smallest or largest possible, for these (extreme) metrics. The
dK-random graphs have the values of these metrics lying
somewhere in between the extremes.

the class of all (not necessarily connected) pseudographs.
Narrowing the class of graphs to simple connected graphs
introduces topological constraints affecting the maximum-
entropy form of the 2K-distribution.



If the goal is to find the smallest d that results in suffi-
ciently constraining graphs, we can compute the difference
between the extreme values of these metrics, as well as of
other metrics we might consider. If this difference is too
large, then the selected value of d is not constraining enough
and we need to increase it. If the goal is to visit exotic lo-
cations in a large space of dK-graphs, then such dK-space
exploration may be used to move beyond the relatively small
circle of dK-random graphs.

To illustrate this approach in practice, we consider 1K-
and 2K-space explorations. For 1K, the simplest metric
defined by P2 is any scalar summary statistics of the 2K-
distribution, such as likelihood S (cf. Section 2). To con-
struct graphs with the maximum value of S, we can run a
form of targeting 1K-preserving rewiring that accepts each
rewiring step only if it increases S. We can perform the op-
posite to minimize S. This type of experiment was at the
core of recent work that led the authors of [19] to conclude
that d = 1 was not constraining enough for the topology
they considered.

To perform 2K-space explorations, we need to find simple
scalar metrics defined by P3. Since the 3K-distribution is
actually two distributions, P∧(k1, k2, k3) and P△(k1, k2, k3),
we should have two independent scalar metrics. The second-

order likelihood S2 is one such metric for P∧(k1, k2, k3). We
define it as the sum of the products of degrees of nodes lo-
cated at the ends of wedges, S2 ∼

∑

k1,k2,k3
k1k3P∧(k1, k2, k3).

Any graphs with the same P∧(k1, k2, k3) have the same S2.
For the P△(k1, k2, k3) component, average clustering C̄ ∼
∑

k1,k2,k3
k1P△(k1, k2, k3) is an appropriate candidate. We

note that these two metrics are also the two extreme metrics
in the sense defined above: S2 measures the properly nor-
malized correlation of degrees of nodes located at distance 2,
while C̄ describes the concentration of 2-simplices (trian-
gles). The 2K-explorations amount then to performing the
following two types of targeting 2K-preserving rewiring: ac-
cept a 2K-rewiring step only if it maximizes or minimizes:
1) S2, or 2) C̄.

5. EVALUATION
In this section, we conduct a number of experiments to

demonstrate the ability of the dK-series to capture impor-
tant graph properties. We implemented all the dK-graph-
constructing algorithms from Section 4.1, applied them to
both measured and modeled Internet topologies, and calcu-
lated all the topology metrics from Section 2 on the resulting
graphs.

We experimented with three measured AS-level topolo-
gies, extracted from CAIDA’s skitter traceroute [5], Route-
Views’ BGP [26], and RIPE’s WHOIS [17] data for the
month of March 2004, as well as with a synthetic router-
level topology—the HOT graph from [19]. The qualitative
results of our experiments are similar for the skitter and
BGP topologies, while the WHOIS topology lies somewhere
in-between the skitter/BGP and HOT topologies. In the
case of skitter comprising of 9204 nodes and 28959 edges,
we will see that its degree distribution places significant con-
straints upon the graph generation process. Thus, even 1K-
random graphs approximate the skitter topology reasonably
well. The HOT topology with 939 nodes and 988 edges is
at the opposite extreme. It is the least constrained; 1K-
random graphs approximate it poorly, and dK-series’ con-
vergence is slowest. We thus report results only for these

Table 2: Scalar graph metrics notations.

Metric Notation
Average degree k̄
Assortativity coefficient r
Average clustering C̄
Average distance d̄
Standard deviation of distance distribution σd

Second-order likelihood S2

Smallest eigenvalue of the Laplacian λ1

Largest eigenvalue of the Laplacian λn−1

Table 3: Scalar metrics for 2K-random HOT graphs

generated using different techniques.

Met- Stoch- Pseu- Match- 2K- 2K- Orig.
ric astic dogr. ing rand. targ. HOT
k̄ 2.87 2.19 2.22 2.18 2.18 2.10
r -0.22 -0.24 -0.21 -0.23 -0.24 -0.22
d̄ 4.99 6.25 6.22 6.32 6.35 6.81
σd 0.85 0.75 0.74 0.70 0.70 0.57

two extreme cases, skitter and HOT.
Our results represent averages over 100 graphs generated

with a different random seed in each case, using the notation
in Table 2.

5.1 Algorithmic Comparison
We first compare the different graph generation algorithms

discussed in Section 4.1. All the algorithms give consistent
results, except the stochastic approach, which suffers from
the problems related to high statistical variance discussed
in Section 4.1.1. This conclusion immediately follows from
Figure 5 and Tables 3 and 4 showing graph metric values for
the different 2K and 3K algorithms described in Section 4.1.

In our experience, we find that dK-randomizing rewiring
is easiest to use. However, it requires the original graph as
input. If only the target dK-distribution is available and
if d 6 2, we find the pseudograph algorithm most appropri-
ate in practice. We note that our 2K version results in fewer
pseudograph “badnesses”, i.e., (self-)loops and small con-
nected components (CCs), than PLRG [1], its commonly-
known 1K counterpart. This improvement is due to the
additional constraints introduced by the 2K case. For ex-
ample, if there is only one node of high degree x and one
node of another high degree y in the original graph, then
there can be only one link of type (x, y). Our 2K mod-
ification of the pseudograph algorithm must consequently
produce exactly one link between these two x- and y-degree
nodes, whereas in the 1K case, the algorithm tends to cre-
ate many such links. Similarly, a 1K generator tends to

Table 4: Scalar metrics for 3K-random HOT graphs

generated using different techniques.

Metric 3K-randomizing 3K-targeting Original
rewiring rewiring HOT

k̄ 2.10 2.13 2.10
r -0.22 -0.23 -0.22
d̄ 6.55 6.79 6.81
σd 0.84 0.72 0.57
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Figure 5: Comparison of 2K- and 3K-graph-constructing algorithms.

Table 5: Numbers of possible initial dK-randomizing

rewirings for the HOT graph.

d Possible initial Possible initial rewirings,
rewirings ignoring obvious isomorphisms

0 435,546,699 -
1 477,905 440,355
2 326,409 268,871
3 146 44

produce many pairs of isolated 1-degree nodes connected to
each another. Since the original graph does not have such
pairs, i.e., (1,1)-links, our 2K generator, as opposed to 1K,
does not form these small 2-node CCs either.

While the pseudograph algorithm is a good 2K-random
graph generator, we could not generalize it for d > 3 (see
Section 4.1.2). Therefore, to generate dK-random graphs
with d > 3 when an original graph is unavailable, we use dK-
targeting rewiring. We first bootstrap the process by con-
structing 1K-random graphs using the pseudograph algo-
rithm and then apply 2K-targeting 1K-preserving rewiring
to obtain 2K-random graphs. To produce 3K-random graphs,
we apply 3K-targeting 2K-preserving rewiring to the 2K-
random graphs obtained at the previous step.

5.2 Topology Comparisons
We next test the convergence of our dK-series for the skit-

ter and HOT graphs. Since all dK-graph constructing algo-
rithms yield consistent results, we selected the simplest one,
the dK-randomizing rewiring from Section 4.1.4, to obtain
dK-random graphs in this section.

The number of possible initial dK-randomizing rewirings
is a good preliminary indicator of the size of the dK-graph
space. We show these numbers for the HOT graph in Ta-
ble 5. If we discard rewirings leading to obvious isomorphic
graphs, cf. Section 4.1.4, then the number of possible initial
rewirings is even smaller.

We compare the skitter topology with its dK-random coun-
terparts, d = 0, . . . , 3, in Table 6 and Figure 6. We report
all the metrics calculated for the giant connected compo-
nent (GCCs). Minor discrepancies between values of av-
erage degree k̄ and r result from GCC extractions. If we

Table 6: Comparing scalar metrics for dK-random

and skitter graphs.

Metric 0K 1K 2K 3K skitter
k̄ 6.31 6.34 6.29 6.29 6.29
r 0 -0.24 -0.24 -0.24 -0.24
C̄ 0.001 0.25 0.29 0.46 0.46
d̄ 5.17 3.11 3.08 3.09 3.12
σd 0.27 0.4 0.35 0.35 0.37
λ1 0.2 0.03 0.15 0.1 0.1
λn−1 1.8 1.97 1.85 1.9 1.9

do not extract the GCC, then k̄ is the same as that of the
original graph for all d = 0, . . . , 3, and r is exactly the same
for d > 1.

We do not show degree distributions for brevity. How-
ever, degree distributions match when considering the entire
graph and are very similar for the GCCs for all d > 0. When
d = 0, the degree distribution is binomial, as expected.

We see that all other metrics gradually converge to those
in the original graph as d increases. A value of d = 1 pro-
vides a reasonably good description of the skitter topology,
while d = 2 matches all properties except clustering. The
3K-random graphs are identical to the original for all met-
rics we consider, including clustering.

We perform the 2K-space explorations described in Sec-
tion 4.3 to check if d = 2 is indeed sufficiently constraining
for the skitter topology. We observe small variations of clus-
tering C̄, second-order likelihood S2, and spectrum, shown
in Table 7 and Figure 7. All other metrics do not change, so
we do not show plots for them. We conclude that d = 2, i.e.,
the joint degree distribution provides a reasonably accurate
description of observed AS-level topologies.

The HOT topology is more complex than AS-level topolo-
gies. Earlier work argues that this topology cannot be ac-
curately modeled using degree distributions alone [19]. We
therefore selected the HOT topology graph as a difficult case
for our approach.

A preliminary inspection of visualizations in Figure 3 indi-
cates that the dK-series converges at a reasonable rate even
for the HOT graph. The 0K-random graph is a classical ran-
dom graph and lacks high-degree nodes, as expected. The



0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Distance in hops

PD
F

 

 

0K−random
1K−random
2K−random
3K−random
Skitter

(a) Distance distribution

100 101 102 103 10410−8

10−6

10−4

10−2

100

Node degree

N
or

m
al

iz
ed

 n
od

e 
be

tw
ee

nn
es

s

 

 

0K−random
1K−random
2K−random
3K−random
Skitter

(b) Betweenness

100 101 102 103 10410−4

10−3

10−2

10−1

100

Node degree

C
lu

st
er

in
g

 

 

0K−random
1K−random
2K−random
3K−random
Skitter

(c) Clustering

Figure 6: Comparison of dK-random and skitter graphs.
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random and HOT graphs

Table 7: Scalar metrics for 2K-space explorations

for skitter.
Metric Min Max Min Max 2K- Skit-

C̄ C̄ S2 S2 rand. ter
k̄ 6.29 6.29 6.29 6.29 6.29 6.29
r -0.24 -0.24 -0.24 -0.24 -0.24 -0.24
C̄ 0.21 0.47 0.4 0.4 0.29 0.46
d̄ 3.06 3.12 3.12 3.10 3.08 3.12
σd 0.33 0.38 0.37 0.36 0.35 0.37
λ1 0.25 0.11 0.11 0.1 0.15 0.1
λn−1 1.75 1.89 1.89 1.89 1.85 1.9
S2/Smax

2 0.988 0.961 0.955 1.000 0.986 0.958

1K-random graph has all the high-degree nodes we desire,
but they are crowded toward the core, a property absent in
the HOT graph. The 2K constraints start pushing the high-
degree nodes away to the periphery, while the lower-degree
nodes migrate to the core, and the 2K-random graph be-
gins to resemble the HOT graph. The 3K-random topology
looks remarkably similar to the HOT topology.

Of course, visual inspection of a small number of randomly
generated graphs is insufficient to demonstrate our ability
to capture important metrics of the HOT graph. Thus,
we compute the different metric values for each of the dK-
random graph and compare them with the corresponding

value for the original HOT graph. In Table 8 and Figures 8
and 9 we see that the dK-series converges more slowly for
HOT than for skitter. Note that we do not show cluster-
ing plots because clustering is almost zero everywhere: the
HOT topology has very few cycles; it is almost a tree. The
1K-random graphs yield a poor approximation of the origi-
nal topology, in agreement with the main argument in [19].
Both Figures 3 and 9 indicate that starting with d = 2, low-
but not high-degree nodes form the core: betweenness is
approximately as high for nodes of degree ∼ 10 as for high-
degree nodes. Consequently, the 2K-random graphs provide
a better approximation, but not nearly as good as it was for
skitter.5 However, the 3K-random graphs match the orig-
inal HOT topology almost exactly. We thus conclude that
the dK-series captures the essential characteristics of even
particularly difficult topologies, such as HOT, by sufficiently
increasing d, in this case to 3.

6. DISCUSSION AND FUTUREWORK
While we feel our approach to topology analysis holds sig-

nificant promise, a number of important avenues remain for

5The speed of dK-series convergence depends both on the
structure and size of an original graph. It must converge
faster for smaller input graphs of similar structure. However,
here we see that the graph structure plays a more crucial
role than its size. The dK-series converges slower for HOT
than for skitter, even though the former graph is an order
of magnitude smaller than the latter.



Table 8: Comparing scalar metrics for dK-random

and HOT graphs.

Metric 0K 1K 2K 3K HOT
k̄ 2.47 2.59 2.18 2.10 2.10
r -0.05 -0.14 -0.23 -0.22 -0.22
C̄ 0.002 0.009 0.001 0 0
d̄ 8.48 4.41 6.32 6.55 6.81
σd 1.23 0.72 0.71 0.84 0.57
λ1 0.01 0.034 0.005 0.004 0.004
λn−1 1.989 1.967 1.996 1.997 1.997

further investigation. First, one must determine appropri-
ate values of d to carry out studies of interest. Our experi-
ence to date suggests that d = 2 is sufficient to reproduce
most metrics of interest and that d = 3 faithfully repro-
duces all metrics we are aware of for Internet-like graphs.
It also appears likely that d = 3 will be sufficient for self-
organized small-worlds in general. This issue is particularly
important because the computational complexity of produc-
ing dK-graphs grows rapidly with d. Studies requiring large
values of d may limit the practicality of our approach.

In general, more complex topologies may necessitate de-
veloping algorithms for generating dK-random graphs with
high d’s. We needed higher d to describe the HOT topology
as accurately as the skitter topology. The intuition behind
this observation is that the HOT router-level topology is
“less random” because it results from targeted design and
engineering. The skitter AS-level topology, on the other
hand, is “more random” since there is no single point of ex-
ternal human control over its shape and evolution. It is a
cumulative result of local decisions made by individual ASes.

A second important question concerns the discrete nature
of our model. For instance, we are able to reproduce 1K-
and 2K-distributions but it is not meaningful to consider re-
producing 1.4K-distributions. Consider a graph property X
not captured by 1K but successfully captured by 2K. It
could turn out that the space of 2K-random graphs over-
constrains the set of graphs reproducing X. That is, while
2K-graphs do successfully reproduce X, there may be other
graphs that also match X but are not 2K-graphs.

Fundamental to our approach is that we seek to repro-
duce important characteristics of a given network topology.
We cannot use our methodology to discover laws governing
the evolutionary growth of a particular network. Rather, we
are restricted to observing changes in degree correlations in
graphs over time, and then generating graphs that match
such degree correlations. However, the goals of reproducing
important characteristics of a given set of graphs and dis-
covering laws governing their evolution are complementary
and even symmetric.

They are complementary because the dK-series can sim-
plify the task of validating particular evolutionary mod-
els. Consider the case where a researcher wishes to validate
a model for Internet evolution using historical connectiv-
ity information. The process would likely involve starting
with an initial graph, e.g., reflecting connectivity from five
years ago, and generating a variety of larger graphs, e.g.,
reflecting modern-day connectivity. Of course, the resulting
graphs will not match known modern connectivity exactly.
Currently, validation would require showing that the graph
matches “well enough” for all known ad hoc graph proper-

ties. Using the dK-series however, it is sufficient to demon-
strate that the resulting graphs are dK-random for an ap-
propriate value of d, i.e., constrained by the dK-distribution
of modern Internet graphs, with d = 3 known to be sufficient
in this case. As long as the resulting graphs fall in the dK-
random space, the nature of dK-randomness explains any
graph metric variation from ground truth. This methodol-
ogy also addresses the issue of defining “well enough” above:
dK-space exploration can quantify the expected variation
in ad hoc properties not fully specified by a particular dK-
distribution.

The two approaches are symmetric in that they both at-
tempt to generate graph models that accurately capture val-
ues of topology metrics observed in real networks. Both
approaches have inherent tradeoffs between accuracy and
complexity. Achieving higher accuracy with the dK-series
requires greater numbers of statistical constraints with in-
creasing d. The number of these constraints is upper-bound-
ed by nd (the size of dK-distribution matrices) times the
number of possible simple connected d-sized graphs [28].6

Achieving higher accuracy with network evolution model-
ing requires richer sets of system-specific external parame-
ters [6]. Every such parameter represents a degree of freedom

in a model. By tuning larger sets of external parameters,
one can more closely match observed data. It could be the
case—which remains to be seen—that the number of pa-
rameters needed for evolution modeling is smaller than the
number of constraints required by the dK-series to charac-
terize the modern Internet structure with the same degree
of accuracy. However, with the dK-series, the same set of
constraints applies to any networks, including social, bio-
logical, communication, etc. With evolution modeling, one
must develop a separate model for each specific network.

Directions for future work all stem from the observation
that the dK-series is actually the simplest basis for statisti-
cal analysis of correlations in complex networks. We can in-
corporate any kind of technological constraints into our con-
structions. In a router-level topology, for example, there is
some dependency between the number of interfaces a router
has (node degree) and their average bandwidth (between-
ness/degree ratio) [19]. In light of such observations, we can
simply adjust our rewiring algorithms (Section 4.1.4) to not
accept rewirings violating this dependency. In other words,
we can always consider ensembles of dK-random graphs sub-
ject to various forms of external constraints imposed by the
specifics of a given network.

Another promising avenue for future work derives from
the observation that abstracting real networks as undirected
graphs might lose too much detail for certain tasks. For
example, in the AS-level topology case, the link types can
represent business AS relationships, e.g., customer-provider
or peering. For a router-level topology, we can label links
with bandwidth, latency, etc., and nodes with router man-
ufacturer, geographical information, etc. Keeping such an-

notation information for nodes and links can also be use-
ful for other types of networks, e.g., biological, social, etc.
We can generalize the dK-series approach to study networks

6Although the upper bound of possible constraints increases
rapidly, sparsity of dK-distribution matrices increases even
faster. The result of this interplay is that the number of non-
zero elements of dK-distributions for any given G increases
with d first but then quickly decreases, and it is surely 1 in
the limit of d = n, cf. the example in Section 3.



with more sophisticated forms of annotations, in which case
the dK-series would describe correlations among different
types of nodes connected by different types of links within
d-sized geometries. Given the level of constraint imposed
by d = 2 and d = 3 for our studied graphs and recognizing
that including annotations would introduce significant addi-
tional constraints to the space of dK-graphs, we believe that
2K-random annotated graphs could provide appropriate de-
scriptions of observed networks in a variety of settings.

In this paper, all synthetic graphs’ sizes equal to a given
graph’s size. We are working on appropriate strategies of
rescaling the dK-distributions to arbitrary graph sizes.

7. CONCLUSIONS
Over the years, a number of important graph metrics

have been proposed to compare how closely the structure of
two arbitrary graphs match and to predict the behavior of
topologies with certain metric values. Such metrics are em-
ployed by networking researchers involved in topology con-
struction and analysis, and by those interested in protocol
and distributed system performance. Unfortunately, there
is limited understanding of which metrics are appropriate
for a given setting and, for most proposed metrics, there are
no known algorithms for generating graphs that reproduce
the target property.

This paper defines a series of graph structural properties
to both systematically characterize arbitrary graphs and to
generate random graphs that match specified characteristics
of the original. The dK-distribution is a collection of distri-
butions describing the correlations of degrees of d connected
nodes. The properties Pd, d = 0, . . . , n, comprise the dK-
series. A random graph is said to have property Pd if its
dK-distribution has the same form as in a given graph G.
By increasing the value of d in the series, it is possible to
capture more complex properties of G and, in the limit,
a sufficiently large value of d yields complete information
about G’s structure.

We find interesting tradeoffs in choosing the appropri-
ate value of d to compare two graphs or to generate ran-
dom graphs with property Pd. As we increase d, the set of
randomly generated graphs having property Pd becomes in-
creasingly constrained and the resulting graphs are increas-
ingly likely to reproduce a variety of metrics of interest. At
the same time, the algorithmic complexity associated with
generating the graphs grows sharply. Thus, we present a
methodology where practitioners choose the smallest d that
captures essential graph characteristics for their study. For
the graphs that we consider, including comparatively com-
plex Internet AS- and router-level topologies, we find that
d = 2 is sufficient for most cases and d = 3 captures all
graph properties proposed in the literature known to us.

In this paper, we present the first algorithms for construct-
ing random graphs having properties P2 and P3, and sketch
an approach for extending the algorithms to arbitrary d. We
are also releasing the source code for our analysis tools to
measure an input graph’s dK-distribution and our genera-
tor able to produce random graphs possessing properties Pd

for d < 4.
We hope that our methodology will provide a more rig-

orous and consistent method of comparing topology graphs
and enable protocol and application researchers to test sys-
tem behavior under a suite of randomly generated yet ap-
propriately constrained and realistic network topologies.
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