
IP Alias Resolution Techniques
version 1.1, 2009-01-19

Ken Keys
Cooperative Association for Internet Data Analysis (CAIDA)

University of California, San Diego ∗

kkeys@caida.org

ABSTRACT
The well-known traceroute probing method discovers links
between interfaces on Internet routers. IP alias resolution,
the process of identifying IP addresses belonging to the same
router, is a critical step in producing Internet topology maps.
We compare known alias resolution techniques, and suggest
a practical combination of techniques that can produce the
most accurate and complete IP-to-router mapping.

1. INTRODUCTION
The traceroute tool[12] and variants of it are widely

used for discovery of network topology[13][21][20][17].
Traceroute works by probing a destination address with
a series of packets with increasing initial values of the IP
TTL (Time To Live) field. When an IP router receives
a packet to be forwarded, it first decrements the TTL
field; if the new TTL is zero, the router does not for-
ward the packet, but instead sends an ICMP Time Ex-
ceeded error back to the sender. The source address of
the ICMP message identifies an interface on the router
that sent the message. A series of probes with increas-
ing initial TTL values will normally reveal an address
at every hop along the path, with some exceptions. Re-
peating this process from multiple sources to multiple
destinations can reveal many router addresses and links
between them.

Each router by definition has at least two interfaces;
Internet core routers often have dozens. Additionally,
each interface may have multiple addresses. But each
traceroute response reveals only a single address of a
router. We must identify which addresses belong to the
same routers in order to convert the IP address topol-
ogy discovered by traceroute to a more useful router
topology. This process is called IP alias resolution.

In this report we compare the current state-of-the-art
in alias resolution techniques. In section 2, we describe
how each of the techniques works, and their strengths
and weaknesses. Then in section 3, we apply several of

∗This project is sponsored by the U.S. Department of Home-
land Security (DHS) Science and Technology (S&T) Direc-
torate.

the techniques to the real Internet, validate their results
against known data, and evaluate their effectiveness.
We conclude by identifying a practical combination of
techniques that produces the most accurate and com-
plete alias resolution information.

2. TECHNIQUES
We classify alias resolution techniques into two types:

fingerprint techniques and analytical techniques.
Fingerprint techniques work by sending probe pack-

ets to different addresses, and identifying similarities
in the responses that indicate the responses came from
the same router. Fingerprint techniques are usually ac-
curate, but incomplete because many routers do not
respond to the probes.

Analytical techniques draw inferences by analyzing
the IP address graph. They are typically less accurate
than fingerprinting because they make more assump-
tions about network engineering practice and deal with
indirect, incomplete, and sometimes conflicting data.
However, because they do not rely on responses to di-
rect router probes, they can work on non-responding
routers where fingerprinting techniques are useless.

Table 1 contains a summary of the alias resolution
techniques we will consider. The remainder of this sec-
tion will describe each technique in more detail.

2.1 Common source address
The earliest alias resolution technique was a finger-

print technique described by Pansiot and Grad[16], and
implemented in Mercator[7] and iffinder[14]. It works
by sending a UDP or TCP packet to an unused port and
comparing the source IP address of the ICMP Port Un-
reachable error message sent in reply. The router could
theoretically respond from any of its addresses. In prac-
tice, many routers respond from the address of the inter-
face on the route back to the prober. On these routers,
a probe sent to the address of any of the other inter-
faces will reveal that the probed address and response
address are aliases. However, some routers always re-
spond from the probed address, or do not respond at all

1



Technique Implementations Advantages Disadvantages

common source
address

Mercator, iffinder Effective on responding routers.
Virtually no false positives.

Completely ineffective on unre-
sponsive routers and routers that
always respond from probed ad-
dress.

common IP ID Ally Effective on responding routers.
Low false positive rate.

Requires O(n2) probes. Com-
pletely ineffective on unrespon-
sive routers.

common IP ID RadarGun Effective on responding routers.
Low false positive rate. Requires
less probing than Ally. More tol-
erant of noise than Ally.

Completely ineffective on unre-
sponsive routers.

DNS analysis No additional probing. Accurate
on routers with a parsable nam-
ing convention.

Requires significant human input.
Ineffective on routers without an
identifiable naming convention.

simple graph
analysis

No additional probing. Accuracy and completeness lim-
ited by traceroute. Simplistic
rules yield significant false posi-
tive rate.

graph analysis APAR Additional probing not required
(but can be useful).

Accuracy and completeness lim-
ited by traceroute.

graph analysis kapar Additional probing not required
(but can be useful). More ac-
curate and efficient than original
APAR.

Accuracy and completeness lim-
ited by traceroute.

graph analysis DisCarte Combines data from traceroute
and Record Route; potentially
highly accurate.

Prohibitively computationally
expensive.

Table 1: Summary of alias resolution techniques.

to this type of probe, making their aliases undetectable
with this method. Additionally, if the source address
of the error message is in private (RFC 1918) address
space, it may not be unique, and additional techniques
are required to disambiguate it.

2.2 Common IP ID counter: Ally
The IP identification field of packets is designed to

identify and allow reassembly of IP datagrams that have
been fragmented. Many routers maintain a simple IP
ID counter that is incremented with each use, and shared
by all interfaces. Consecutive packets generated by such
routers will have consecutive ID values, no matter which
address is used as the source address of the packets.
This shared counter serves as the basis of another fin-
gerprint technique.

The Ally component of Rocketfuel[20] tests a candi-
date pair of alias addresses by simultaneously sending
a probe packet to each, and then sending a third probe
to whichever address responds first. If the IP IDs of
the three responses are in order and close in value, it
suggests the two addresses belong to a single router us-
ing a simple shared counter. If not, it may be because

the addresses are not aliases, or they could be aliases
on a router that does not use a simple shared counter.
This ID fingerprinting method is vulnerable to false pos-
itives due to two routers’ IDs coincidentally synchroniz-
ing during the three-packet test, although this weakness
can be mitigated by running Ally again at a later time
on each pair identified in the first pass. Ally is also
vulnerable to false negatives due to routers that do not
respond to direct probes, routers that rate-limit their
responses to direct probes, or routers whose ID coun-
ters increment too quickly. Additionally, Ally cannot
draw any conclusions about routers that appear to not
use incrementing ID counters.

But the biggest drawback of the Ally technique is
that, given n addresses, a straightforward application
of Ally would require O(n2) probes to test all possi-
ble pairs. To make Ally more practical, some other
heuristic is needed to reduce the size of the search space.
One such heuristic, used by Rocketfuel, is to restrict the
set of candidate pairs to those pairs in which both IP
addresses have similar TTL values as measured from
a number of different vantage points. Although this
heuristic does reduce the amount of probing needed, it

2



is still not enough for practical use on the large-scale
Internet graphs generated by CAIDA. Also, any prun-
ing heuristic carries the risk of excluding some candi-
date pairs that would otherwise have been identified as
aliases.

2.3 Common IP ID counter: RadarGun
RadarGun[6] avoids many of Ally’s problems by not

working with address pairs, but instead probing the en-
tire list of n addresses, iterating over the list at least 30
times. Using all of the responses for an address, Radar-
Gun can estimate the rate of change, or velocity, of the
IP ID of the router with that address. Because two
potential aliases may be probed tens of seconds apart,
their ID values cannot be compared directly. But after
calculating their velocities, RadarGun can interpolate
what their values would be at any time during the prob-
ing process, and compare the interpolated values. Any
two addresses can be inferred to be aliases if they have
similar and constant ID velocities, and the ID value in
every response from one address is similar to the inter-
polated ID value of the other address at the same time.
Because each test uses many more responses than an
Ally test, RadarGun is more tolerant of routers that are
occasionally unresponsive due to rate limiting, dropped
packets, or other intermittent losses.

The number of RadarGun probes per address is fixed
to a relatively small number, typically between 30 and
100, which much smaller than n, so the total number of
probes is only O(n). Although this is much better than
Ally’s O(n2) probes, RadarGun still has some scaling
difficulties when applied to large-scale Internet graphs
generated by CAIDA, with values of n in the millions.
Because IP ID counters are only 16 bits, they “wrap”
back to 0 after reaching 65535. Occasional single wraps
between probes are unavoidable, and can be taken into
account when calculating velocities. However, if probes
to the same address are spaced more than about 30 to
40 seconds apart, multiple wraps become so likely that
it is impossible to confidently detect linear ID change
or calculate their velocities. So if the list is too large
to probe in its entirety within this maximum packet
spacing, while also staying under a desired maximum
probing rate, some other heuristic must be used to break
the list into smaller pieces.

2.4 DNS analysis
If an organization assigns DNS names to router in-

terfaces with a systematic convention that identifies the
router, this information can be extracted by decoding
the names, as described by Spring et al.[19]. This ap-
proach requires a human to identify the naming con-
vention of each ISP, and write rules for interpreting the
names according to the convention. Additionally, nam-
ing conventions are subject to the whims of the ISP, and

DNS databases are not always kept up to date. Because
of the human intervention required and other problems,
we do not consider DNS analysis a viable technique for
automated alias resolution, although it can be useful for
manual validation of other techniques.

2.5 Simple graph analysis
Spring et al.[19] also described a simple set of rules

that could be used to infer aliases based only on an-
alyzing the traceroute graph. When responding to a
traceroute probe, most routers will respond from the ad-
dress on which the probe arrived. First, two addresses
with a common successor in traceroute paths are aliases,
assuming the IP links are point-to-point. That is, if
we have observed path segments (a, c) and (b, c), where
lowercase letters represent interface addresses, and links
are assumed to connect exactly two routers, then a and
b must be aliases, as illustrated in Figure 1. Second,
addresses in the same (loop-free) path are not aliases.
These rules are of limited utility, since they can infer
aliases only where two paths from different sources con-
verge, and Layer 2 constructs may allow an IP link to
connect more than two routers.

c
a

b

Figure 1: Possible topology for observed path
segments (a, c) and (b, c), assuming point-to-
point links. Large circles represent routers;
small circles are interfaces on the router.

2.6 Graph analysis: APAR
The Analytic and Probe-based Alias Resolver (APAR)

tool[9][10] uses a richer set of inference rules, based on
identifying the subnets linking routers and then aligning
traceroute paths using those subnets.

Normal network engineering practice is to assign a
unique address prefix or subnet to each IP link; each
interface on the link gets an address within that pre-
fix. The notation “/x” indicates a prefix length x, in
which the first x bits identify the subnet and the re-
maining 32 − x bits identify an address on the subnet.
In /31 subnets, there are exactly 2 interface addresses.
In subnets with shorter prefixes, the first and last ad-
dresses in the range are broadcast addresses and are
not used for interfaces, so there are 232−x − 2 interface
addresses available. In normal practice, the minimum
prefix length used for a subnet is 24 bits, which can
address up to 254 interfaces.

APAR begins by inferring subnets among all the ad-
dresses collected from a large number of traceroutes. It
starts by looking for addresses with the same /24 pre-

3



d

a

c

de

a e

2 31

a

e

b cd b c

b

Figure 2: Three possible topologies for observed path segments (a, b, c) and (d, e) with c and d on the
same subnet. Large circles represent routers; small circles are interfaces on the router.

fixes, splitting those prefixes into pairs of /25 prefixes,
and so on down to the /31 prefixes. Any candidate
prefix must meet several conditions in order to be con-
sidered a legitimate subnet.

First, by definition, if either of the broadcast ad-
dresses of the subnet were observed, the subnet cannot
be real. This “no broadcast” condition rules out many
/30 and larger subnets, but cannot rule out /31 subnets
because they do not have broadcast addresses.

Second, the “accuracy” condition requires that no
two addresses in the same prefix should ever appear as
non-neighbors in the same trace, because a path should
never traverse the same link twice. Appearing as neigh-
bors is possible when the first router on a link responds
from its outgoing interface instead of its incoming in-
terface, contrary to standard practice. For example, in
Figure 2.3, a traceroute probe sent from the left side
would normally make the first router respond from in-
terface a, and the second router from interface b; how-
ever, if the first router responds from interface e, we see
a path segment of (e, b), where e and b are on the same
subnet.

Third, more heuristically, the “completeness” condi-
tion requires that at least half of a subnet’s possible ad-
dresses were actually observed in the traceroute paths.
For example, for a /28 subnet to be acceptable, we must
have observed at least 7 of its 14 possible addresses.
Without this condition, APAR would incorrectly infer
many sparsely populated large subnets whose interfaces
really belong to a scattering of much smaller subnets in
the same address range. The completeness condition
may falsely reject a real prefix that was poorly covered
by traceroutes, but the smaller subnets (longer prefixes)
within it will still be allowed. The risk of falsely re-
jecting real subnets decreases with improved traceroute
coverage. Point-to-point (/30 and /31) subnets will al-
ways be identified if both addresses were seen. APAR
has greater confidence in subnets with higher complete-
ness.

After identifying subnets, APAR iterates over them
starting with those in which it has the most confidence.
It uses each subnet to align segments of path traces and
infer aliases. Note that the TTL Exceeded messages
generated by traceroute are usually sent from the inter-

face that received the probe. Therefore, given two path
segments (a,b,c) and (d,e) from different paths, where
c and d are on the same inferred subnet, we align the
traces in the following manner:

a → b → c
↗↙

e ← d

There are three possible topologies that would ex-
plain this alignment, shown in Figure 2. Addresses b
and d are potential aliases. The “common neighbor”
condition looks for shared topology on the left side (in
the alignment diagram) of the potential aliases. If b and
e are also on the same subnet as each other1, only cases
2 and 3 can be correct, and b and d must be aliases.
Similarly, if a and e are the same address or are already
known aliases, only case 3 can be correct, and again b
and d must be aliases. The “no loop” condition must
also hold: two addresses cannot be aliases if they both
appear in the same trace, because that would imply a
path passed through the same router twice.

After one pass over the inferred subnets, we make a
second pass over just the point-to-point (i.e., /30 and
/31) subnets, this time without enforcing the common
neighbor condition. The common neighbor condition
is unnecessary because a point-to-point subnet cannot
contain a third address, and so case 1 is ruled out and
b and d must be aliases. This relaxation of the common
neighbor condition is done in a second pass because we
are less confident of the size of the subnet containing
c and d than we are of the existence of a subnet con-
taining c and d. The “no loop” condition is particularly
important in this second pass where the common neigh-
bor condition is not required. For example, in case 1
of Figure 2, if we incorrectly infer that the c - d subnet
is point-to-point, but there was another path observed
that passed through (...a,b,d,e...), the “no loop” condi-
tion will rule out (b,d) as an alias pair.

1The publicly available implementation of APAR[8] used a
weaker definition for the neighboring subnet than that sug-
gested by [10]: it required only that b and e shared a prefix
that was not shorter than that of the c - d subnet. In partic-
ular, it did not require the b - e subnet to pass the accuracy
and subnet distance conditions.

4



Additionally, APAR can make use of TTL data to
avoid some false positives. To collect this data, one
monitor must directly probe each interface address ob-
served in the traceroute paths. Because interfaces on
the same subnet are topological neighbors, their dis-
tance from a given vantage point should differ by at
most 1 hop. Thus, during the subnet inference phase,
the “subnet distance” condition requires that the min-
imum and maximum values of TTLs of interfaces within
a potential subnet must differ by no more than 1. Avoid-
ing false positive subnet inferences can prevent both
false positive and false negative alias inferences later.
Similarly, during the alias inference phase, the “alias
distance” condition requires that for any two interfaces
to be aliases, their TTL values must differ by no more
than 1.

2.7 Graph analysis: kapar
Although the APAR algorithm is promising, the orig-

inal implementation[8] was not well optimized for pro-
duction use on large-scale Internet topologies. We wrote
our own highly optimized implementation of APAR,
called “kapar”, to overcome this problem and to fix a
few bugs, as well as to experiment with our own im-
provements to the algorithm.

The most significant optimization was to avoid stor-
ing the complete set of paths in memory. Instead, kapar
makes a single pass over the set of traces and extracts
only the minimum information it needs. First, it finds
all unique 3-hop segments to use for the alias resolution
phase. Second, it identifies common prefixes of length
24 or greater among addresses in the same trace to gen-
erate a list of subnets that cannot exist according to the
subnet accuracy condition. Finally, it assigns a unique
ID number to each trace, and stores a list of all ob-
served addresses and a compressed bitmap of the IDs
of the traces in which each address appeared. These
trace ID sets contain sufficient information for checking
the no-loop condition.

Kapar also improves upon the APAR algorithm in
several ways. First, it can load a set of aliases obtained
from another source, e.g. the results of a fingerprint
technique or even published topologies. These aliases
are considered more reliable than traceroute paths, so
when a combination of an alias pair and a path would
violate the no-loop condition, the path is considered
incorrect. Rejecting incorrect paths leads to fewer false
inferences.

Second, during the subnet formation phase, kapar op-
tionally uses a stricter test for subnet existence. Note
that the existence of one of a subnet’s broadcast ad-
dresses in a path (or any other source) rules out the
existence of the subnet. Thus, any subnet with pre-
fix shorter than 29 can be split into two subnets of
half the size (with prefixes 1 bit longer) if its middle

two addresses were not observed, because the middle
two addresses correspond to broadcast addresses in the
smaller subnets. APAR treats the large subnet and
both small subnets as real in this case. However, kapar
can use probes to these two “missing middle” (MM) ad-
dresses to help disambiguate. If either address elicits a
response, the smaller subnet to which it would belong
cannot exist, and the larger subnet is considered real.
But if neither address elicits a response, kapar (option-
ally) assumes that the larger subnet is not real, but the
two smaller subnets are still real. We call this conjec-
ture the MM constraint. These additional probes can
be conveniently folded into the probes used to collect
TTL data, and/or the probes of a fingerprint technique
whose results are fed into kapar.

We do not expect MM probes to generate any addi-
tional complaints from network operators. If the MM
addresses are normal addresses in the middle of a real
subnet, they are qualitatively no different than the other
addresses we already probe on the same subnet. And if
the MM addresses are broadcast addresses belonging to
the smaller subnets, they will normally be filtered at or
before the router connected to the subnet to which they
belong. Also, we expect the number of MM addresses
that need to be probed to be only a small fraction of
the total addresses probed.

Finally, the kapar implementation can make use of
TTL data obtained from multiple vantage points. This
additional data imposes more constraints on both the
subnet formation phase and alias resolution phase, fur-
ther reducing the rate of false positives in each.

2.8 Graph analysis: DisCarte
The Record Route IP option provides another source

of topology data that could be used for analytic alias
resolution, but has historically been difficult to use ef-
fectively because of inconsistent implementations by rou-
ters and conflicts when attempting to align it with tracer-
oute data. DisCarte[18] addresses these problems by
using disjunctive logic programming (DLP) to apply a
set of constraints based on Internet engineering practice
to Record Route and traceroute data, and make logical
inferences about topology and alias resolution.

Unfortunately, DisCarte’s DLP approach as currently
implemented is extremely computationally expensive.
Working with traces between 379 sources and 376,408
destinations, the authors found the complete solution
intractable. Even after dividing the data into subsets
that would result in an incomplete solution, their run-
time on a 341 processor Condor cluster was measured
in CPU-years. For this reason, we do not consider Dis-
Carte a practical technique for routine alias resolution.

3. EVALUATION
We used the scamper[15] tool running on CAIDA’s

5



network

CAnet GÉANT Internet2 NLR
technique R TP FP R TP FP R TP FP R TP FP
reality 5 172 18 540 9 713 7 231

iffinder 0 0 0 0 0 0 0 0 0 6 100 0
iffinder + all TTLs 0 0 0 0 0 0 0 0 0 6 95 0

kapar 5 30 0 14 75 9 14 193 25 9 61 7
kapar + MM 5 21 0 14 75 6 15 193 26 9 61 7
kapar + 1 TTL + MM 5 11 0 12 51 5 13 183 26 8 62 6
kapar + all TTLs 3 41 0 11 80 6 12 163 6 8 67 6
kapar + all TTLs + MM 3 41 0 11 80 6 12 163 6 8 67 6

iffinder + kapar + MM 4 29 0 16 63 6 15 209 13 6 132 0
iffinder + kapar + 1 TTL + MM 4 17 0 13 52 5 15 206 7 6 126 0
iffinder + kapar + all TTLs 3 41 0 11 84 6 14 167 4 7 127 0
iffinder + kapar + all TTLs + MM 3 41 0 11 84 6 14 167 4 7 127 0

Table 2: Comparison of alias resolution techniques on four known networks. Columns under each
network list the number of routers with multiple interfaces (R), true positive alias pairs (TP), and
false positive alias pairs (FP). In the technique labels, “1 TTL” means TTLs measured from a single
monitor, “all TTLs” means TTLs measured from all monitors, and “MM” means the Missing Middle
constraint was used.

Archipelago (“Ark”)[11] measurement infrastructure to
collect 372,623,376 ICMP Paris[5] traceroute-style traces
over 58 days from 26 geographically distributed moni-
tors. The destinations of these traces were selected from
every /24 sub-prefix of every routed prefix on the Inter-
net. These traces served as the base input to all of
our tests. We extracted two sets of addresses from this
dataset: all 2,409,959 intermediate path addresses, i.e.
router interfaces, and 65,626 “missing middle” (MM)
addresses as described in section 2.7. Additionally, TTL
datasets were collected by sending a single ICMP Echo
Request (“ping”) probe from each Ark monitor to every
address in both sets.

To test the common source address method, we ran
our own implementation, iffinder, on all 26 Ark moni-
tors. As input, we used the router interface addresses,
both with and without the MM addresses. We also
tested the use of TTL data to reduce false positives.

We did not attempt to evaluate any of the common
IP ID counter techniques. According to the authors’
analysis and our own preliminary evaluation, Ally has
been superseded by RadarGun in both accuracy and
efficiency. However, RadarGun was released only re-
cently, so we have not had time to fully evaluate it in
our Ark environment nor implement any of our planned
enhancements.

We also did not evaluate any DNS analysis technique,
because they require too much human input for routine
automated use.

To test analytic techniques, the original implementa-
tion of the APAR algorithm proved too inefficient and

could not run to completion with our large dataset on
our available computing resources. Instead, we used our
own kapar implementation, which is efficient enough to
run many tests in a reasonable amount of time, and has
the flexibility to experiment with various test and in-
put configurations. We tested it with and without the
MM constraint, as well as with no TTL data, with TTL
data from observed addresses, and with TTL data from
observed and MM addresses.

Finally, we combined the results of iffinder and kapar
to see how they could be used to complement each other.
Again, we used various combinations of TTL and MM
input.

For validation of our alias resolution results, we ob-
tained publicly available topology data for CAnet[1],

GÉANT[2], Internet2[3], and NLR[4] networks.
Table 2 shows the results of running various combi-

nations of iffinder and kapar, compared to known topol-
ogy data. The row labeled “reality” reflects only those
alias pairs in the real published topologies for which
both addresses appeared in Ark paths. A perfect alias
resolution technique would discover all of those pairs,
but should not be expected to discover pairs contain-
ing addresses that were not in its input. Note that a
router with i interfaces has i ∗ (i − 1)/2 pairs of inter-
faces; for example, a router with 10 interfaces has 45
pairs, and incorrectly merging a 3-interface router with
a 4-interface router would introduce 12 false alias pairs.
Also note that the number of routers can be too low
if many aliases were missed, or too high if individual
routers were split into multiple routers.

6



Iffinder works well when probed routers respond from
the interface on the route back to the prober as this
tool expects. The iffinder/NLR cell in the table illus-
trates that in this case iffinder correctly identifies many
true aliases and yields few or no false positives. How-
ever, when routers do not respond to direct probing,
or always respond from the probed address, iffinder is
completely ineffective, as is the case in the other three
networks used for verification. A single organization
typically uses similar configurations on all of its rou-
ters, so iffinder tends to work either quite well or not
at all on an entire network. Of the observed router
interfaces we probed, 64% responded with a Port Un-
reachable message to at least one of the monitors; of
those responders, 5.6% responded to at least one moni-
tor from an address other than the one probed, reveal-
ing an alias pair. This low resolution rate suggests that
the common source address technique, while useful on
some networks, is insufficient by itself on the Internet
in general.

Since iffinder found no false positives, the addition
of TTL constraints is unnecessary. In fact, adding TTL
constraints actually hurt iffinder’s results slightly by in-
correctly excluding some pairs that were correct. This
finding supports our intuition that TTL data is more
error-prone than direct probes as an indicator of topol-
ogy.

Kapar does not rely on direct probes and, therefore,
works more consistently than iffinder on all four net-
works. However, it does not find as many correct alias
pairs on networks where both techniques work, and in-
troduces a small number of incorrect alias pairs.

The addition of MM constraints to kapar appears to
hurt slightly more than it helps. This effect is due to
the fact that many real routers do not respond to the
direct MM probes, making it a mistake to interpret a
non-response as evidence of non-existence of an address.
Unless a better test of non-existence is found, we should
not use the MM constraint. However, it is still perfectly
valid to use a response to an MM probe to prove that
an address does exist and thus rule out any subnet that
would have it as a broadcast address.

The addition of TTL data from a single monitor seems
to do more harm than good. However, using TTL data
from all 26 monitors improves the true positive rate on
3 of the 4 networks, and on the remaining network im-
proves the false positive rate more than it worsens the
true positive rate. This change appears to be a net
improvement, although it is difficult to be sure with
verification on only 4 networks. Future work may help
isolate the helpful effects of TTLs from the harmful ef-
fects and make TTLs more useful.

Finally, combining iffinder and kapar lets us take ad-
vantage of the strengths of both methods. Together,
the two methods discover more alias pairs than either

method does alone. Somewhat surprisingly, even on
networks where routers do not respond to iffinder probes,
adding iffinder results to kapar’s analysis was helpful.
This effect is likely due to the APAR algorithm propa-
gating information from accurate iffinder results along
path segments into neighboring networks.

Unfortunately, the version of kapar we used for test-
ing treated TTL data as more reliable than both iffinder
data and path data. So, it is not surprising that the
addition of TTL data gave mixed results. As demon-
strated in previous tests, TTL data should be consid-
ered less reliable than iffinder, but more reliable than
path data. That is, when TTL data conflicts with
iffinder data, the iffinder data should be trusted, and
the conflicting TTL data should be discarded; then if
the remaining TTL data conflicts with path data, the
conflicting path should be discarded. In the near future
we will produce a version of kapar that ranks reliability
in this manner, which we expect to generate results of
equal or greater accuracy than those reported here.

4. CONCLUSIONS
Every alias resolution technique tested has strengths

and weaknesses. Fingerprint techniques are accurate
when routers respond to their probes, but many routers
do not, leaving large gaps in their coverage. Analytic
techniques rely on indirect data and assumptions about
network design, making them somewhat less accurate,
but they do not depend on direct probing and thus work
more evenly across the entire Internet. Adding TTL
constraints and intelligently chosen additional probing
can further increase the accuracy of analytic approaches.
By combining the strengths of these techniques, we can
obtain a better set of results than we could with any
one technique alone. Specifically, we found iffinder, ka-
par, TTL constraints, and “missing middle” probes to
be an effective combination.

5. REFERENCES
[1] http://dooka.canet4.net/.
[2] http://stats.geant2.net/lg/.
[3] http://vn.grnoc.iu.edu/Internet2.
[4] http://routerproxy.grnoc.iu.edu/nlr2/.
[5] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger,

T. Friedman, and M. Latapy. Avoiding traceroute
anonmalies with Paris traceroute. In IMC,
October 2006.

[6] A. Bender, R. Sherwood, and N. Spring. Fixing
Ally’s growing pains with velocity modelling. In
IMC, 2008.

[7] R. Govindam and H. Tangmunarunkit. Heuristics
for Internet map discovery. In INFOCOM, March
2000.

[8] M. H. Gunes. APAR tool.
http://itom.utdallas.edu/data/APAR.tar.gz (accessed

7



2008-07-02).
[9] M. H. Gunes and K. Sarac. Analytical IP alias

resolution. In IEEE International Conference on
Communications (ICC 2006), June 2006.

[10] M. H. Gunes and K. Sarac. Resolving IP aliases
in building traceroute-based internet maps.
Technical report, December 2006.

[11] Y. Hyun. Archipelago measurment infrastructure.
http://www.caida.org/projects/ark/.

[12] V. Jacobson. traceroute tool.
ftp://ftp.ee.lbl.gov/traceroute.tar.gz.

[13] k. claffy, T. Monk, and D. McRobb. Internet
tomography. In Nature, January 1999.

[14] K. Keys. iffinder tool, 2000.
http://www.caida.org/tools/measurement/iffinder/.

[15] M. Luckie. scamper tool.
http://www.wand.net.nz/scamper/.

[16] J.-J. Pansiot and D. Grad. On routes and
multicast trees in the Internet. In ACM
SIGCOMM, 1998.

[17] Y. Shavitt and E. Shir. DIMES: Let the Internet
measure itself. In ACM Computer
Communications Review, October 2005.

[18] R. Sherwood, A. Bender, and N. Spring. Discarte:
A disjunctive Internet cartographer. In ACM
SIGCOMM, 2008.

[19] N. Spring, M. Dontcheva, M. Rodrig, and
D. Wetherall. How to resolve IP aliases. Technical
report, May 2004.

[20] N. Spring, R. Mahajan, and D. Wetherall.
Measuring ISP topologies with Rocketfuel. In
ACM SIGCOMM, 2002.

[21] N. Spring, D. Wetherall, and T. Anderson.
Scriptroute: A public Internet measurement
facility. In 4th USENIX Symposium on Internet
Technologies and Systems, 2002.

APPENDIX
Changes

• v1.0, 2008-12-12

– initial revision

• v1.1, 2009-01-19

– clarified relaxation of common neighbor condition for

point-to-point subnets in APAR

– added notes on differences between APAR description

and implementation

– added more detail on response rate to iffinder

– other minor clarifications

8


