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Marián Boguñá,1 Dmitri Krioukov,2 and kc claffy2

1Departament de F́ısica Fonamental, Universitat de Barcelona, Mart́ı i Franquès 1, 08028 Barcelona, Spain
2Cooperative Association for Internet Data Analysis (CAIDA), University of California,

San Diego (UCSD), 9500 Gilman Drive, La Jolla, CA 92093, USA

Routing information through networks is a universal phenomenon in both natural and manmade
complex systems. When each node has full knowledge of the global network connectivity, finding
efficient communication paths is merely a matter of distributed computation. However, in many real
networks nodes communicate efficiently even without such global intelligence. Here we show that
the peculiar structural characteristics of observable complex networks are exactly the characteristics
needed to maximize their communication efficiency without global knowledge. We also describe a
general mechanism that explains this connection between network structure and function. This
mechanism relies on the presence of a metric space hidden behind an observable network. Our find-
ings suggest that real networks in nature have underlying metric spaces that remain undiscovered.
Their discovery would have enormous practical applications ranging from routing in the Internet
and searching social networks, to studying information flows in neural, gene regulatory networks, or
signaling pathways.

I. INTRODUCTION

Networks are ubiquitous in all domains of science and
technology, and permeate many aspects of daily human
life [1–4], especially upon the rise of the information tech-
nology society [5, 6]. Our growing dependence on them
has inspired a burst of activity in the new field of net-
work science, keeping researchers motivated to solve the
difficult challenges that networks offer. Among these, the
relation between network structure and function is per-
haps the most important and fundamental. Transport is
one of the most common functions of networked systems.
Examples can be found in many domains: transport of
energy in metabolic networks, of mass in food webs, of
people in transportation systems, of information in cell
signalling processes, or of bytes across the Internet.

In many of these examples, routing –or signalling of
information propagation paths through a complex net-
work maze– plays a determinant role in the transport
properties of the system. The observed efficiency of this
routing process in real networks poses an intriguing ques-
tion: how is this efficiency achieved? When each ele-
ment of the system has a full view of the global network
topology, finding efficient routes to target destinations is
a well-understood computational process. However, in
many networks observed in nature, including those in so-
ciety and biology (signalling pathways, neural networks,
etc.), nodes efficiently find intended communication tar-
gets even though they do not possess any global view
of the system. For example, neural networks would not
function so well if they could not route specific signals to
appropriate organs or muscles in the body, although no
neurone has a full view of global inter-neurone connec-
tivity in the brain.

In this work, we identify a general mechanism that
explains routing conductivity, or navigability of real
networks based on the concept of similarity between
nodes [7–10]. Specifically, intrinsic characteristics of
nodes define a measure of similarity between them, which

we abstract as a hidden distance. Taken together, hid-
den distances define a hidden metric space for a given
network. Our recent work shows that these spaces ex-
plain the observed structural peculiarities of several real
networks, in particular social and technological ones [11].
Here we show that this underlying metric structure can
be used to guide the routing process, leading to efficient
communication without global information in arbitrarily
large networks. Our analysis reveals that, remarkably,
real networks satisfy the topological conditions that max-
imise their navigability within this framework. There-
fore, hidden metric spaces offer explanations of two open
problems in complex networks science: the communica-
tion efficiency networks so often exhibit, and their unique
structural characteristics. Our results have enormous
consequences for network science and engineering, open-
ing the possibility, for example, to design efficient routing
and searching strategies for the Internet and other tech-
nological or social networks.

II. NODE SIMILARITY AND HIDDEN METRIC
SPACES

Our work is inspired by the seminal work of sociologist
Stanley Milgram on the small world problem. The small
world paradigm refers to the existence of short chains
of acquaintances among individuals in societies [17]. At
Milgram’s time, direct proof of such a paradigm was im-
possible due to the lack of large databases of social con-
tacts, so Milgram conceived an experiment to analyse
the small world phenomenon in human social networks.
Randomly chosen individuals in the United States were
asked to route a letter to an unknown recipient using only
friends or acquaintances that, according to their judge-
ment, seemed most likely to know the intended recipient.
The outcome of the experiment revealed that, without
any global network knowledge, letters reached the target
recipient using, on average, 5.2 intermediate people[22],
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FIG. 1: How hidden metric spaces influence the structure and function of complex networks. The smaller the
distance between two nodes in the hidden metric space, the more likely they are connected in the observable network topology.
If node A is close to node B, and B is close to C in the hidden space, then A and C are necessarily close, too, because of the
triangle inequality in the metric space. Therefore, triangle ABC exists in the network topology with high probability, which
explains the strong clustering observed in real complex networks. The hidden space also guides the greedy routing process: if
node A wants to reach node F (hidden distance AF is the black dashed line), it checks the hidden distances between F and
its two neighbours B and C. Distance CF (green dashed line) is smaller than BF (red dashed line), therefore A forwards
information to C. Node C then performs similar calculations and selects its neighbour D as the next hop on the path to F .
Node D is directly connected to F . The result is path A→ C → D → F shown by green edges in the observable topology.

demonstrating that social acquaintance networks were in-
deed small worlds.

The small world property can be easily induced by
adding a small number of random connections to a “large
world” network [12]. More striking is the fact that so-
cial networks are navigable without global information.
Indeed, the only information that people used to make
their routing decisions in Milgram’s experiment was a set
of descriptive attributes of the destined recipient, such as
place of living and occupation. People then determined
who among their contacts was “socially closest” to the
target. The success of the experiment indicates that so-
cial distances among individuals –even though they may
be difficult to define mathematically– play a role in shap-
ing the network architecture and that, at the same time,
these distances can be used to navigate the network.
However, it is not clear how this coupling between the
structure and function of the network leads to efficiency
of the search process, or what the minimum structural
requirements are to facilitate such efficiency [18].

In this work, we show how network navigability de-
pends on the structural parameters characterising the
two most prominent and common properties of real com-
plex networks: (1) scale-free (power-law) node degree dis-

tributions characterising the heterogeneity in the number
of connections that different nodes have, and (2) cluster-
ing, a measure of the number of triangles in the network
topology. We assume the existence of a hidden metric
space, an underlying geometric frame that contains all
nodes of the network, shapes its topology, and guides
routing decisions, as illustrated in Fig. 1. Nodes are con-
nected in the observable topology, but a full view of their
global connectivity is not available at any node. Nodes
are also positioned in the hidden metric space and identi-
fied by their co-ordinates in it. Distances between nodes
in this space abstract their similarity [7–10]. These dis-
tances influence both the observable topology and rout-
ing function: (1) the smaller the distance between two
nodes in the hidden space, i.e., the more similar the two
nodes, the more likely they are connected in the observ-
able topology; (2) nodes also use hidden distances to se-
lect, as the next hop, the neighbour closest to the destina-
tion in the hidden space. Kleinberg introduced the term
greedy routing to describe this forwarding process [18].

We use the class of network models developed in re-
cent work [11]. They generate networks with topologies
similar to those of real networks –small-world, scale-free,
and with strong clustering– and, simultaneously, with
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FIG. 2: Average length of greedy-routing paths. The
left plot shows the average hop length of successful paths, τ ,
as a function of the network size N for different values of γ
and α. Results for values of γ > 2.5 look similar but with
longer paths and are omitted for clarity. In all cases, the
path length grows polylogarithmically with the network size:
the observed values of τ are fit well by τ(N) = A[logN ]ν

(solid lines), where A and ν are some constants. The right
plot shows τ as a function of γ and α for networks of fixed
size N ≈ 105. The effect of the two parameters on average
path length is straightforward: paths are shorter for smaller
exponents γ and stronger clustering (larger α’s).

hidden metric spaces lying underneath. The simplest
model in this class (the details are in Appendix A) uses a
one-dimensional circle as the underlying metric space, in
which nodes are uniformly distributed. The model first
assigns to each node its expected degree k, drawn from a
power-law degree distribution P (k) ∼ k−γ , with γ > 2,
and then connects each pair of nodes with connection
probability r(d; k, k′) that depends both on the distance
d between the two nodes in the circle and their assigned
degrees k and k′,

r(d; k, k′) ≡ r(d/dc) = (1 + d/dc)
−α

, (1)

where α > 1 and dc ∼ kk′, which means that the prob-
ability of link connection between two nodes in the net-
work decreases with the hidden distance between them
(as∼ d−α) and increases with their degrees (as∼ (kk′)α).

These two properties have a clear interpretation. The
connection cost increases with hidden distance, thus dis-
couraging long-range links. However, in making connec-
tions, rich (well-connected, high-degree) nodes care less
about distances (connection costs) than poor nodes. Fur-
ther, the characteristic distance scale dc provides a cou-
pling between node degrees and hidden distances, and en-
sures the following three topological characteristics that
we commonly see in real networks. First, pairs of richly
connected, high-degree nodes –hubs– are connected with
high probability regardless of the hidden distance be-
tween them because their characteristic distance dc is
so large that any actual distance d between them will be
short in comparison: regardless of d, connection proba-
bility r in Eq. (1) is close to 1 if dc is large. Second, pairs
of low-degree nodes will not be connected unless the hid-
den distance d between them is short enough to compare
with the small value of their characteristic distance dc.
Third, following similar arguments, pairs composed of
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FIG. 3: Success probability of greedy routing. The two
plots on the left show the success probability ps as a function
of network size N for different values of γ with weak (top)
and strong (bottom) clustering. The top-right plot shows
ps as a function of γ and α for networks of fixed size N ≈
105. In the bottom-right plot, parameter α is mapped to the
clustering coefficient C [12] by computing C for each network
with given γ and α. For each value of C, there is a critical
value of γ = γc(C) such that the success ratio in networks
with this C and γ > γc(C) decreases with the network size
N (ps(N) −−−−→

N→∞
0), while ps(N) reaches a constant value for

large N in networks with γ < γc(C). The solid line in the
plot shows these critical values γc(C). It separates the low-γ,
high-C navigable region, in which greedy routing sustains in
the large-graph limit, from the high-γ, low-C non-navigable
region, where the efficiency of greedy routing degrades for
large networks. The same plot labels the measured values of
γ and C for several real complex networks. Internet is the
global topology of the Internet at the level of Autonomous
Systems as seen by the Border Gateway Protocol (BGP) [13];
Web of trust is the Pretty Good Privacy (PGP) social network
of mutual trust relationships [14]; Metabolic is the network of
metabolic reactions of E. coli [15]; and Airports is the network
of the public air transportation system [16].

hubs and low-degree nodes are connected only if they are
located at moderate hidden distances.

The parameter α in Eq. (1) determines the importance
of hidden distances for node connections. The larger α,
the more preferred are connections between nodes close
in the hidden space. Consequently, the triangle inequal-
ity in the metric space leads to stronger clustering in
the network, cf. Fig. 1. Clustering has a clear interpre-
tation in our approach as a reflection of the network’s
metric strength: the more powerful is the influence of
the network’s underlying metric space on the observable
topology, the more strongly it is clustered.
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III. NAVIGABILITY OF MODELLED
NETWORKS

We use the model to generate scale-free networks with
different values of power-law degree distribution expo-
nent γ and clustering strength α, covering the observed
values in a vast majority of documented complex net-
works [1–3]. We then simulate greedy routing for a large
sample of paths on all generated networks, and compare
the following two navigability parameters: 1) the aver-
age hop length τ from source to destination of successful
greedy-routing paths, and 2) the success ratio ps, de-
fined as the percentage of successful paths. Unsuccessful
paths are paths that get stuck at nodes without neigh-
bours closer to the destination in the hidden space than
themselves. These nodes usually have small degrees. See
Appendix B for simulation details.

Fig. 2 shows the impact of the network’s degree distri-
bution and clustering on the average length τ of greedy
routing paths. We observe a straightforward dependency:
paths are shorter for smaller exponents γ and stronger
clustering (larger α’s). The dependency of the success
ratio (the fraction of successful paths) ps on the two
topology parameters γ and α is more intertwined. Fig. 3
shows that the effect of one parameter, γ, on the success
ratio depends on the other parameter, the level of clus-
tering. If clustering is weak (low α), the percentage of
successful paths decays with network size N regardless
of the value of γ (Fig. 3 top-left). However, with strong
clustering (large α), the percentage of successful paths
increases with N and attains a maximum for large net-
works if γ . 2.6, whereas it degrades for large networks
if γ > 2.6 (Fig. 3 bottom-left). Fig. 3 top-right shows
this effect for networks of the same size (N = 105) with
different γ and α. The value of γ = 2.6± 0.1 maximises
the number of successful paths once clustering is above
a threshold, α ≥ 1.5. These observations mean that for
a fixed clustering strength, there is a critical value of the
exponent γ (Fig. 3 bottom-right) below which networks
remain navigable as their size increases, but above which
their navigability deteriorates with their size.

In summary, strong clustering improves both naviga-
bility metrics. We also find a delicate trade-off between
values of γ close to 2 minimising path lengths, and higher
values – not exceeding γ ≈ 2.6 – maximising the percent-
age of successful paths. We explain these findings in the
next section, but we note here that qualitatively, this
navigable parameter region contains a majority of com-
plex networks observed in reality [1–3], as confirmed in
Fig. 3 (bottom-right), where we juxtapose few paradig-
matic examples of communication, social, biological, and
transportation networks vs. the identified navigable re-
gion of clustering and degree distribution exponent.

IV. AIR TRAVEL BY GREEDY ROUTING AS
AN EXPLANATION

We illustrate the greedy routing function, and the
structure of networks conductive to such routing, with
an example of passenger air travel. Suppose we want
to travel from Toksook Bay, Alaska, to Ibiza, Spain, by
the public air transportation network. Nodes in this net-
work are airports, and two airports are connected if there
is at least one flight between them. We travel accord-
ing to the greedy routing strategy using geography as
the underlying metric space. At each airport we choose
the next-hop airport geographically closest to the desti-
nation. Under these settings, our journey goes first to
Bethel, then to Anchorage, to Detroit, over the Atlantic
to Paris, then to Valencia and finally to Ibiza, see Fig. 4.
The sequence and sizes of airport hops reveal the struc-
ture of our greedy-routing path. The path proceeds from
a small airport to a local hub at a small distance, from
there to a larger hub at a larger distance, and so on un-
til we reach Paris. At that point, when the distance to
the destination becomes sufficiently small, greedy routing
leads us closer to our final destination by choosing not
another hub, but a less connected neighbouring airport.

We observe that the navigation process has two, some-
what symmetric phases. The first phase is a coarse-
grained search, travelling longer and longer distances per
hop toward hubs, thus “zooming out” from the starting
point. The second phase corresponds to a fine-grained
search, “zooming in” onto the destination. The turning
point between the two phases appears naturally: once we
are in a hub near the destination, the probability that it
is connected to a bigger hub closer to the destination
sharply decreases, but at this point we do not need hubs
anyway, and greedy routing directs us to smaller airports
at shorter distances next to the destination.

This zoom out/zoom in mechanism works efficiently
only if the coupling between the airport network topol-
ogy and the underlying geography satisfies the follow-
ing two conditions: the sufficient hubs condition and
the sufficient clustering condition. The first condition
ensures that a network has enough hub airports (high-
degree nodes) to provide an increasing sequence during
the zoom out phase. This condition is fulfilled by the real
airport network and by other scale-free networks with
small values of degree distribution exponent γ, because
the smaller the γ, the larger the proportion of hubs in
the network.

However, the presence of many hubs does not ensure
that greedy routing will use them. Unlike humans, who
can use their knowledge of airport size to selectively
travel via hub airports, greedy routing uses only one con-
straint at each hop: minimise distance to the destination.
Therefore, the network topology must satisfy the second
condition, which ensures that Bethel is larger than Tok-
sook Bay, Anchorage larger than Bethel, and so on. More
generally, this condition is that the next greedy hop from
a remote low-degree node likely has a higher degree, so
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The inset shows the changing distance to Ibiza (in the x axis) and the degree of the visited airports (y axis, in logarithmic
scale).

that greedy paths typically head first toward the highly
connected network core. But the network metric strength
is exactly the required property: preference for connec-
tions between nodes nearby in the hidden space means
that low-degree nodes are less likely to have connectivity
to distant low-degree nodes; only high-degree nodes can
have long-range connection that greedy routing will ef-
fectively select. The stronger this coupling between the
metric space and topology (the higher α in Eq. (1)), the
stronger the clustering in the network.

To illustrate, imagine an airport network without suf-
ficient clustering, one where the airport closest to our
destination (Ibiza) among all airports connected to our
current node (Toksook Bay, Alaska) is not Bethel, which
is bigger than Toksook Bay, but Nightmute, Alaska, a
nearby airport of comparable size to Toksook Bay. As
greedy routing first leads us to Nightmute, then to an-
other small nearby airport, and then to another, we can
no longer get to Ibiza in few hops. Worse, travelling via
these numerous small airports, we could reach one with
no connecting flights heading closer to Ibiza. Our greedy
routing would be stuck at this airport with an unsuccess-
ful path.

These factors explain why the most navigable topolo-
gies correspond to scale-free networks with small expo-
nents of the degree distribution, i.e., a large number of
hubs, and with strong clustering, i.e., strong coupling be-
tween the hidden geometry and the observed topology.

V. THE STRUCTURE OF GREEDY-ROUTING
PATHS

We observe the discussed zoom-out/zoom-in mecha-
nism in analytical calculations and numerical simula-
tions. Specifically, we calculate in Appendix C the prob-
ability that the next hop from a node of degree k located
at hidden distance d from the destination has a larger
degree k′ > k, in which case the path moves toward the
high-degree network core, see Fig. 5. In the most navi-
gable case, with small degree-distribution exponent and
strong clustering, the probability of increasing the node
degree along the path is high at low-degree nodes, and
sharply decreases to zero after reaching a node of a crit-
ical degree value, which increases with distance d. This
observation implies that greedy-routing paths first prop-
agate up to higher-degree nodes in the network core and
then exit the core toward low-degree destinations in the
periphery. In contrast, with low clustering, paths are
less likely to find higher-degree nodes regardless of the
distance to the destination. This path structure violates
the zoom-out/zoom-in pattern required for efficient nav-
igation.

Fig. 6 shows the structure of greedy-routing paths
in simulations, further confirming our analysis. We
again see that for small degree-distribution exponents
and strong clustering (upper left and middle left), the
routing process quickly finds a way to the high-degree
core, makes a few hops there, and then descends to a low-
degree destination. In the other, non-navigable cases, the
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FIG. 5: Probability that greedy routing travels to
higher-degree nodes. More precisely, the probability
Pup(k, d) that the greedy-routing next hop after a node of
degree k located at distance d from a destination has higher
degree k′ ≥ k and is closer to the destination. The distance
legend in the right-bottom plot applies to all the plots. The
results are for the large-graph limit N →∞.

process can almost never get to the core of high-degree
nodes. Instead, it wanders in the low-degree periphery
increasing the probability of getting lost at low-degree
nodes.

VI. CONCLUSION

In this paper, we have shown that the existence of
hidden metric spaces, coupled with heterogeneous degree
distributions and strong clustering, explains the surpris-
ing navigability of real networks. Discovery of the explicit
structure of such hidden metric spaces underlying actual
networks may have profound practical implications. In
social or some communication networks (e.g., the Web,
overlay, or online social networks) hidden spaces would
yield efficient strategies for searching specific individuals
or content. The metric spaces hidden under some biolog-
ical networks (such as neural, gene regulatory networks,
or signalling pathways) can become a powerful tool in
studying the structure of information or signal flows in
these networks. Even more promising and immediately
applicable is the potential use of hidden metric spaces
in the global Internet. Its routing architecture bears

FIG. 6: The structure of greedy-routing paths. We vi-
sualise the results of our simulation of greedy routing in mod-
elled networks with different values of γ and α observed in real
complex networks. The hidden distance between the starting
point and the destination is always approximately 104, and
the network size N and number of attempted paths is always
105 for each (γ, α) combination, but the number of successful
paths and path hop-lengths vary, cf. Figs. 2,3. All paths start
and end at low-degree nodes located, respectively, in the left-
and right-bottom corners of the diagrams (see top left plot).
For each (γ, α) we depict a single typical path in black and
use colour to indicate how often paths included a node of de-
gree k located at distance d from the destination (blue/red
indicates exponentially less/more visits to those nodes). The
simulations confirm that only when γ is small and α is large
does the average path structure follow the zoom-out/zoom-
in pattern that characterises successful greedy routing in real
networks, e.g., the airport network in our example.

long-standing scalability problems related to the need for
routers to maintain a coherent view of the increasingly
dynamic and ever-growing global Internet topology [19].
Greedy routing over the Internet’s hidden metric space
would remove this scalability bottleneck, as it does not
require any global topological awareness. In general, we
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believe that the present and future work on hidden metric
spaces and network navigability will deepen our under-
standing of the fundamental laws describing relationships
between structure and function of complex networks.

Acknowledgments
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APPENDIX A: A MODEL WITH THE CIRCLE
AS A HIDDEN METRIC SPACE

In our model we place all nodes on a circle by assign-
ing them a random variable θ, i.e., their polar angle, dis-
tributed uniformly in [0, 2π). The circle radius R grows
linearly with the total number of nodes N , 2πR = N ,
in order to keep the average density of nodes on the cir-
cle fixed to 1. We next assign to each node its expected
degree κ drawn from some distribution ρ(κ). The con-
nection probability between two nodes with hidden co-
ordinates (θ, κ) and (θ′, κ′) takes the form

r(θ, κ; θ′, κ′) =
(

1 +
d(θ, θ′)
µκκ′

)−α
, µ =

(α− 1)
2〈k〉

, (A1)

where d(θ, θ′) is the geodesic distance between the two
node on the circle, while 〈k〉 is the average degree. One
can show that the average degree of nodes with hidden
variable κ, k̄(κ), is proportional to κ.[20] This pro-
portionality guarantees that the shape of the node de-
gree distribution P (k) in generated networks is approx-
imately the same as the shape of ρ(κ). The choice of
ρ(κ) = (γ − 1)κγ−1

0 κ−γ , κ > κ0 ≡ (γ − 2)〈k〉/(γ − 1),
γ > 2, generates random networks with a power-law de-
gree distribution of the form P (k) ∼ k−γ .

APPENDIX B: NUMERICAL SIMULATIONS

Our model has three independent parameters: ex-
ponent γ of power-law degree distributions, clustering
strength α, and average degree 〈k〉. We fix the latter to
6, which is roughly equal to the average degree of some
real networks of interest [13, 14], and vary γ ∈ [2.1, 3]
and α ∈ [1.1, 5], covering their observed ranges in docu-
mented complex networks [1–3]. For each (γ, α) pair, we
produce networks of different sizes N ∈ [103, 105] gener-
ating, for each (γ, α,N), a number of different network
instances—from 40 for large N to 4000 for small N . In

each network instance G, we randomly select 106 source-
destination pairs (a, b) and execute the greedy-routing
process for them starting at a and selecting, at each hop
h, the next hop as the h’s neighbour in G closest to b
in the circle. If for a given (a, b), this process visits the
same node twice, then the corresponding path leads to a
loop and is unsuccessful. We then average the measured
values of path hop lengths τ and percentage of successful
paths ps across all pairs (a, b) and networks G for the
same (γ, α,N).

APPENDIX C: THE ONE-HOP PROPAGATOR
OF GREEDY ROUTING

To derive the greedy-routing propagator in this ap-
pendix, we adopt a slightly more general formalism than
in the main text. Specifically, we assume that nodes
live in a generic metric space H and, at the same time,
have intrinsic attributes unrelated to H. Contrary to
normed spaces or Riemannian manifolds, generic metric
spaces do not admit any coordinates, but we still use the
coordinate-based notations here to simplify the exposi-
tion below, and denote by x nodes’ coordinates in H and
by ω all their other, non-geometric attributes. In other
words, hidden variables x and ω in this general formal-
ism represent some collections of nodes’ geometric and
non-geometric hidden attributes, not just a pair of scalar
quantities. Therefore, integrations over x and ω in what
follows stand merely to denote an appropriate form of
summation in each concrete case.

As in the main text, we assume that x and ω are inde-
pendent random variables so that the probability density
to find a node with hidden variables (x, ω) is

ρ(x, ω) = δ(x)ρ(ω)/N, (C1)

where ρ(ω) is the probability density of the ω variables
and δ(x) is the concentration of nodes in H. The total
number of nodes is

N =
∫
H
δ(x)dx, (C2)

and the connection probability between two nodes is an
integrable decreasing function of the hidden distance be-
tween them,

r(x, ω; x′, ω′) = r[d(x,x′)/dc(ω, ω′)], (C3)

where dc(ω, ω′) a characteristic distance scale that de-
pends on ω and ω′.

We define the one-step propagator of greedy routing as
the probability G(x′, ω′|x, ω; xt) that the next hop after
a node with hidden variables (x, ω) is a node with hid-
den variables (x′, ω′), given that the final destination is
located at xt.

To further simplify the notations below, we label the
set of variables (x, ω) as a generic hidden variable h and
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undo this notation change at the end of the calculations
according to the following rules:

(x, ω) −→ h
ρ(x, ω) −→ ρ(h)
dxdω −→ dh

r(x, ω; x′, ω′) −→ r(h, h′).

(C4)

We begin the propagator derivation assuming that a
particular network instance has a configuration given

by {h, ht, h1, · · · , hN−2} ≡ {h, ht; {hj}} with j =
1, · · · , N − 2, where h and ht denote the hidden vari-
ables of the current hop and the destination, respectively.
In this particular network configuration, the probability
that the current node’s next hop is a particular node i
with hidden variable hi is the probability that the cur-
rent node is connected to i but disconnected to all nodes
that are closer to the destination than i,

Prob(i|h, ht; {hj}) = r(h, hi)
N−2∏

j(6=i)=1

[1− r(h, hj)]Θ[d(hi,ht)−d(hj ,ht)] , (C5)

where Θ(·) is the Heaviside step function. Tak-
ing the average over all possible configurations
{h1, · · · , hi−1, hi+1, · · · , hN−2} excluding node i, we ob-
tain

Prob(i|h, ht;hi) = r(h, hi)
(

1− 1
N − 3

k̄(h|hi, ht)
)N−3

,

(C6)
where

k̄(h|hi, ht) = (N − 3)
∫
d(hi,ht)<d(h′,ht)

ρ(h′)r(h, h′)dh′

(C7)
is the average number of connections between the current
node and nodes closer to the destination than node i,
excluding i and t.

The probability that the next hop has hidden variable
h′, regardless of its label, i.e., index i, is

Prob(h′|h, ht) =
N−2∑
i=1

ρ(h′)Prob(i|h, ht;h′). (C8)

In the case of sparse networks, k̄(h|h′, ht) is a finite quan-

tity. Taking the limit of large N , the above expression
simplifies to

Prob(h′|h, ht) = Nρ(h′)r(h, h′)e−k̄(h|h′,ht). (C9)

Yet, this equation is not a properly normalized probabil-
ity density function for the variable h′ since node h can
have degree zero with some probability. If we consider
only nodes with degrees greater than zero, then the nor-
malization factor is given by 1 − e−k̄(h). Therefore, the
properly normalized propagator is finally

G(h′|h, ht) =
Nρ(h′)r(h, h′)e−k̄(h|h′,ht)

1− e−k̄(h)
. (C10)

We now undo the notation change and express this
propagator in terms of our mixed coordinates:

G(x′, ω′|x, ω; xt) =
δ(x′)ρ(ω′)

1− e−k̄(x,ω)
r

[
d(x,x′)
dc(ω, ω′)

]
e−k̄(x,ω|x′,xt),

(C11)
with

k̄(x, ω|x′,xt) =
∫
d(x′,xt)>d(y,xt)

dy
∫
dω′δ(y)ρ(ω′)r

[
d(x,y)
dc(ω, ω′)

]
. (C12)

In the particular case of the S1 model, we can express
this propagator in terms of relative hidden distances in-
stead of absolute coordinates. Namely, G(d′, ω′|d, ω) is
the probability that an ω-labeled node at hidden distance

d from the destination has as the next hop an ω′-labeled
node at hidden distance d′ from the destination. After
tedious calculations, the resulting expression reads:
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G(d′, ω′|d, ω) =


(γ−1)
ω′γ

[
1

(1+ d−d′
κωω′ )

α
+ 1

(1+ d+d′
κωω′ )

α

]
exp

{
(1−γ)κω
α−1

[
B(d−d

′

κω , γ − 2, 2− α)− B(d+d′

κω , γ − 2, 2− α)
]}

; d′ ≤ d

(γ−1)
ω′γ

[
1

(1+ d′−d
κωω′ )

α
+ 1

(1+ d+d′
κωω′ )

α

]
exp

{
(1−γ)κω
α−1

[
2

γ−2 − B(d
′−d
κω , γ − 2, 2− α)− B(d+d′

κω , γ − 2, 2− α)
]}

; d′ > d

,

(C13)
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FIG. 7: Probability Pup(ω/d
1/2, d).

where we have defined function

B(z, a, b) ≡ z−a
∫ z

0

ta−1(1 + t)b−1dt, (C14)

which is somewhat similar to the incomplete beta func-
tion B(z, a, b) =

∫ z
0
ta−1(1− t)b−1dt.

One of the informative quantities elucidating the struc-
ture of greedy-routing paths is the probability Pup(ω, d)
that the next hop after an ω-labeled node at distance d
from the destination has a higher value of ω. The greedy-
routing propagator defines this probability as

Pup(ω, d) =
∫
ω′≥ω

dω′
∫
d′<d

dd′G(d′, ω′|d, ω), (C15)

and we show Pup(ω/d1/2, d) in Fig. 7. We see that the
proper scaling of ωc ∼ d1/2, where ωc is the critical
value of ω above which Pup(ω, d) quickly drops to zero,
is present only when clustering is strong. Furthermore,
Pup(ω, d) is an increasing function of ω for small ω’s only
when the degree distribution exponent γ is close to 2.
A combination of these two effects guarantees that the
layout of greedy routes properly adapts to increasing dis-
tances or graph sizes, thus making networks with strong
clustering and γ’s greater than but close to 2 navigable.
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