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Networks portray a multitude of interactions through which people meet, ideas

are spread, and infectious diseases propagate within a society [1–5]. Identifying

the most efficient “spreaders” in a network is an important step to optimize the

use of available resources and ensure the more efficient spread of information.

Here we show that, in contrast to common belief, there are plausible circum-

stances where the best spreaders do not correspond to the best connected people

or to the most central people (high betweenness centrality) [6–10]. Instead, we

find: (i) The most efficient spreaders are those located within the core of the

network as identified by the k-shell decomposition analysis [11–13]. (ii) When

multiple spreaders are considered simultaneously, the distance between them

becomes the crucial parameter that determines the extent of the spreading.

Furthermore, we find that infections persist in the high k-shells of the network,

even in the case where recovered individuals do not develop immunity. Our anal-

ysis provides a plausible route for an optimal design of efficient dissemination

strategies.

Spreading is a ubiquitous process which describes many important activities in society

[2–5]. The knowledge of the spreading pathways through the network of social interactions is

crucial for developing efficient methods to either hinder spreading in the case of diseases, or

accelerate spreading in the case of information dissemination. Indeed, people are connected

according to the way they interact with each other in society and the large heterogeneity of

the resulting network greatly determines the efficiency and speed of spreading. In the case

of networks with a broad degree distribution (number of links per node) [6], it is believed

that the most connected people (hubs) are the key players being responsible for the largest

scale of the spreading process [6–8]. Furthermore, in the context of social network theory,

the importance of a node for spreading is often associated with the betweenness centrality, a

measure of how many shortest paths cross through this node, which is believed to determine

who has more ‘interpersonal influence’ on others [9, 10].

Here we argue that the topology of the network organization plays an important role such

that there are plausible circumstances under which the highly connected nodes or the highest

betweenness nodes have little effect in the range of a given spreading process. For example,

if a hub exists at the end of a branch at the periphery of a network, it will have a minimal

impact in the spreading process through the core of the network, while a less connected
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person who is strategically placed in the core of the network will have a significant effect

that leads to dissemination through a large fraction of the population. In order to identify the

core and the periphery of the network we use the k-shell (also called k-core) decomposition

of the network [11–14]. Examining this quantity in a number of real networks allows us

to identify the best individual spreaders in the network when the spreading originates in a

single node. For the case of a spreading process originating in many nodes simultaneously

we show that we can further improve the efficiency by considering spreading origins located

at a determined distance from each other.

We study real-world complex networks that represent archetypical examples of social

structures. We investigate (i) the friendship network between 3.4 million members of the

LiveJournal.com community [15], (ii) the network of email contacts in the Computer Science

Department of the University College London (Zhou, S., private communication), (iii) the

contact network of inpatients (CNI) collected from hospitals in Sweden [16], and (iv) the

network of actors who have co-starred in movies labeled by imdb.com as adult [17] (see

Supplementary Information Section I for details).

To study the spreading process we apply the Susceptible-Infectious-Recovered (SIR) and

Susceptible-Infectious-Susceptible (SIS) models [2, 3, 18] on the above networks (see Methods

section). These models have been used to describe disease spreading as well as information

and rumor spreading in social processes where an actor constantly needs to be reminded

[19]. We denote the probability that an infectious node will infect a susceptible neighbor as

β. In our study we use relatively small values for β, so that the infected percentage of the

population remains small. In the case of large β values, where spreading can reach a large

fraction of the population, the role of individual nodes is no longer important and spreading

would cover almost all the network, independently of where it originated from.

The location of a node in the network is obtained using the k-shell decomposition analysis

[11–13]. This process assigns an integer index or coreness, kS, to each node representing

its location according to successive layers (k-shells) in the network. The kS index is a

quite robust measure and the nodes ranking is not influenced significantly in the case of

incomplete information (for details see SI-Fig. 6 in SI-Section II). Small values of kS define

the periphery of the network and the innermost network core corresponds to large kS (see

Fig. 1a and SI-Section II). Figures 1b-d illustrate the fact that the size of the population

infected in a spreading process (shown in this example in the CNI network) is not necessarily
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related to the degree of the node, k, where the spreading have started. Spreading may be

very different even when it starts from hubs of similar degree as comparatively shown in

Figs. 1b and c. Instead, the location of the spreading origin given by its kS index predicts

more accurately the size of the infected population. For instance, Figs. 1b and 1d show that

nodes in the same kS layer produce similar spreading areas even if they have different k (by

definition, in a given layer there could be many nodes with k ≥ kS).

The above example suggests that the position of the node relative to the organization of

the network determines its spreading influence more than a local property of a node, like

the degree k. To quantify the influence of a given node i in an SIR spreading process we

study the average size of the population Mi infected in an epidemic originating at node i

with a given (kS, k). The infected population is averaged over all the origins with the same

(kS, k) values:

M(kS , k) =
∑

i∈Υ(kS ,k)

Mi

N(kS, k)
, (1)

where Υ(kS, k) is the union of all N(kS, k) nodes with (kS, k) values.

The analysis of M(kS , k) in the studied social networks reveals three general results (see

Fig. 2): (a) For a fixed degree, there is a wide spread of M(kS, k) values. In particular,

there are many hubs located in the periphery of the network (large k, low kS) that are

poor spreaders. (b) For a fixed kS, M(kS, k) is approximately independent of the degree of

the nodes. This result is revealed in the vertically layered structure of M(kS, k) suggesting

that infected nodes located in the same k-shell produce similar epidemic outbreaks M(kS , k)

independent of the value of k of the infection origin. (c) The most efficient spreaders are

located in the inner-core of the network (large kS region) fairly independently of their degree.

These results indicate that the k-shell index of a node is a better predictor of spreading

influence. When an outbreak starts in the core of the network (large kS) there exist many

pathways through which a virus can infect the rest of the network; this result is valid

regardless of the node degree. The existence of these pathways implies that during a typical

epidemic outbreak from a random origin, nodes located in high kS layers are more likely

to be infected and they will be infected earlier than other nodes (see SI-Section III). The

neighborhood of these nodes makes them more efficient in sustaining an infection at the

early stages, allowing thus the epidemics to reach a critical mass that will allow it to fully

develop. Similar results on the efficiency of high-kS nodes are obtained from the analysis
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of M(kS , CB) in Fig. 2, where CB is the betweenness centrality of a node in the network

[9, 10]: the value of CB is not a good predictor for spreading efficiency.

To quantify the importance of kS in spreading we calculate the “imprecision functions”

ǫkS(p), ǫk(p), and ǫCB
(p). These functions estimate for each of the three indicators kS, k,

and CB how close to the optimal spreading is the average spreading of the pN (0 < p < 1)

chosen origins in each case, (see Methods and SI-Section IV). The strategy to predict the

spreading efficiency of a node based on kS is consistently more accurate than a method based

on k in the studied p-range (Fig. 3a). The CB-based strategy gives poor results compared

to the other two strategies.

Our finding is not specific to the social networks shown in Fig. 2. In SI-Section V we

analyze the spreading efficiency in other networks not social in origin, like the Internet at the

router level [20], with similar conclusions. The key insight of our finding is that in the studied

networks a large number of hubs are located in the peripheral low kS layers (Fig. 3b shows

the location of the 25 largest hubs in the CNI, see also SI-Section V) and therefore contribute

poorly to spreading. The existence of hubs in the periphery is a consequence of the rich

topological structure of real networks. In contrast, in a fully random network obtained by

randomly rewiring a real network preserving the degree of each node (such a random network

corresponds to the configuration model [21], see SI-Section VI) all the hubs are placed in

the core of the network (see the red scatter plot in Fig. 3c) and they contribute equally

largely to spreading. In such a randomized structure the same information is contained in

the k-shell as in the degree classification since there is a one to one relation between both

quantities which is approximately linear, kS ∝ k (Fig. 3c and SI-Fig. 13). Examples of

real networks that are similar to a random structure are the network of product space of

economic goods [22] and the Internet at the AS level (analyzed in the SI-Section V).

Our study highlights the importance of the relative location of a single spreading origin.

Next, we address the question of the extent of an epidemic that starts in multiple origins

simultaneously. Figure 3d shows the extent of SIR spreading in the CNI network when the

outbreak simultaneously starts from the n nodes with the highest degree k or the highest

kS index. Even though the high kS nodes are the best single spreaders, in the case of

multiple spreading the nodes with highest degree are more efficient than those with highest

kS. This result is attributed to the overlap of the infected areas of the different spreaders:

large kS nodes tend to be clustered close to each other, while hubs can be more spread in
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the network and, in particular, they need not be connected with each other. Clearly, the

step-like features in the plot of highest kS nodes (red solid curve in Fig. 3d) suggest that the

infected percentage remains constant as long as the infected nodes belong in the same shell.

Including just one node from a different shell results in a significantly increased spreading.

This result suggests that a better spreading strategy using multiple n spreaders is to choose

either the highest k or kS nodes with the requirement that no two of the n spreaders are

directly linked to each other. This scheme then provides the largest infected area of the

network as shown in Fig. 3d.

Many contagious infections, including most sexually transmitted infections [23], do not

confer full immunity after infection as assumed in the SIR model, and therefore are suitably

described by the SIS epidemic model, where an infectious node returns to the susceptible

state with probability λ. In an SIS epidemic the number of infectious nodes eventually

reaches a dynamic equilibrium “endemic” state where as many infectious individuals become

susceptible as susceptible nodes become infectious [18]. In contrast to SIR, in the initial

state of our SIS simulations 20% of the network nodes are already infected. The spreading

efficiency of a given node i in SIS spreading is the persistence, ρi(t), defined as the probability

that node i is infected at time t [7]. In an endemic SIS state, ρi(t → ∞) becomes independent

of t (see SI-Section VII). Previous studies have shown that the largest persistence ρi(t → ∞)

is found in the network hubs which are re-infected frequently due to the large number of

neighbors [7, 24, 25]. However, we find that this result holds only in randomized network

structures. In the real network topologies studied here, we find that viruses persist mainly

in high kS layers instead, irrespectively of the degree of the nodes in the core.

In the case of random networks, it is found that viruses propagate to the entire network

above an epidemic threshold given by β > βrand
c ≡ λ〈k〉/〈k2〉 [24, 26]. In real networks, such

as the CNI network, the threshold βc is different from βrand
c . Furthermore, in real networks,

we find that viruses can survive locally even when β < βc, but only within the high kS

layers of the network, while virus persistence in peripheral kS layers is negligible (Fig. 4a-

c). Since the k-shell structure depends on the network assortativity the lower threshold is

in agreement with the observation that high positive assortativity [27] may decrease the

epidemic threshold.

The importance of high kS nodes in SIS spreading is confirmed when we analyze the

asymptotic probability that nodes of given (kS, k) values will be infected. This probability
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is quantified by the persistence function

ρ(kS, k) ≡
∑

i∈Υ(kS ,k)

ρi(t → ∞)

N(kS, k)
, (2)

as a function of (kS, k) at different β values (Fig. 4a and b). High kS layers in networks

might be closely related to the concept of a core group in Sexually Transmitted Infections re-

search [23]. The core groups are defined as subgroups in the general population characterized

by high partner turnover rate and extensive intergroup interaction [23].

Similar to the core group, the dense sub-network formed by nodes in the innermost k-

shells helps the virus to consistently survive locally in the inner-core area and infect other

nodes adjacent to the area. These k-shells preserve the existence of a virus, in contrast to

e.g. isolated hubs in the periphery. Note that a virus cannot survive in the degree-preserving

randomized version of the CNI network, due to the absence of high k-shells.

The importance of the inner-core nodes in spreading is not influenced by the infection

probability values, β. In both models, SIS and SIR, we find that the persistence ρ or the

average infected fraction M , respectively, is systematically larger for nodes in inner k-shells

compared to nodes in outer shells, over the entire β range that we studied (Fig. 4c,d). Thus,

the k-shell measure is a robust indicator for the spreading efficiency of a node.

Finding the most accurate ranking of individual nodes for spreading in a population can

influence the success of dissemination strategies. When spreading starts from a single node,

the kS value is enough for this ranking, while in the case of many simultaneous origins,

spreading is greatly enhanced when we additionally repel the spreaders with large degree or

kS. In the case of infections that do not confer immunity on recovered individuals, the core

of the network in the large kS layers forms a reservoir where infection can survive locally.

I. METHODS

A. The k-shell decomposition

Nodes are assigned to k-shells according to their remaining degree, which is obtained

by successive pruning of nodes with degree smaller than the kS value of the current layer.

We start by removing all nodes with degree k = 1. After removing all the nodes with

k = 1, some nodes may be left with one link, so we continue pruning the system iteratively
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until there is no node left with k = 1 in the network. The removed nodes, along with the

corresponding links, form a k-shell with index kS = 1. In a similar fashion, we iteratively

remove the next k-shell, kS = 2, and continue removing higher k-shells until all nodes are

removed. As a result, each node is associated with a unique kS index, and the network can

be viewed as the union of all k-shells. The resulting classification of a node can be very

different than when the degree k is used.

B. The spreading models

To study the spreading process we apply the Susceptible-Infectious-Recovered (SIR) and

Susceptible-Infectious-Susceptible (SIS) models. In the SIR model, all nodes are initially

in susceptible state (S) except for one node in the infectious state (I). At each time step,

the I nodes attempt to infect their susceptible neighbors with probability β and then enter

the recovered state (R) where they become immunized and cannot be infected again. The

SIS model aims to describe spreading processes that do not confer immunity on recovered

individuals: infected individuals still try to infect their neighbors with probability β but

they return to the susceptible state with probability λ (here we use λ = 0.8) and can be

reinfected at subsequent time steps, while they remain infectious with probability 1− λ.

C. The imprecision function

The betweenness centrality, CB(i), of a node i is defined as follows: Consider two nodes

s and t and the set σst of all possible shortest paths between these two nodes. If the subset

of this set that contains the paths that pass through the node i is denoted by σst(i), then

the betweenness centrality of this node is given by:

CB(i) =
∑

s 6=t

σst(i)

σst

, (3)

where the sum runs over all nodes s and t in the network.

The imprecision function ǫ(p) quantifies the difference in the average spreading between

the pN nodes (0 < p < 1) with highest kS, k, or CB from the average spreading of the pN

most efficient spreaders (N is the number of nodes in the network). Thus, it tests the merit

of using k-shell, k and CB to identify the most efficient spreaders. For a given β value and
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a given fraction of the system p we first identify the set of the Np most efficient spreaders

as measured by Mi (we designate this set by Υeff). Similarly, we identify the Np individuals

with the highest k-shell index (ΥkS). We define the imprecision of k-shell identification as

ǫkS(p) ≡ 1 −MkS/Meff , where MkS and Meff are the average infected percentages averaged

over the ΥkS and Υeff groups of nodes respectively. ǫk and ǫCB
are defined similar to ǫkS .
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FIG 1. When the hubs may not be good spreaders. a, A schematic representation

of a network under the k-shell decomposition. The two nodes of degree k = 8 (blue and

yellow nodes) in this network are in different locations: one lies in the periphery, (kS = 1)

while the other hub is in the innermost core of the network, i.e. it has the largest kS (kS = 3).

b-d, The extent of the efficiency of the spreading process cannot be accurately predicted

based on a measure of the immediate neighborhood of the node, such as the degree k. For

the contact network of inpatients (CNI), we compare infections originating from single nodes

having the same degree k = 96 (nodes A and B) or the same index kS = 63 (nodes A and

C), with infection probability β = 0.035. In the corresponding plots, the colors indicate the

probability that a node will be infected when spreading starts in the corresponding origin,

as long as this probability is higher than 25%. The results are based on 10000 different

realizations for each case. In the first case, where origin A has kS = 63, spreading reaches

a much wider area more frequently, in contrast to origin B (kS = 26), where the infection

remains largely localized in the immediate neighborhood of B. Spreading is very similar

between origins A and C, which have the same kS value, although the degree of C is much

smaller than A. The importance of the network organization is also highlighted when we

randomly rewire the network (preserving the same degree for all nodes). In this case the

standard picture is recovered: the extent of spreading coincides and both hubs contribute

equally largely to spreading (see SI-Section VI).

FIG 2. The k-shell index predicts the outcome of spreading more reliably

than the degree k or the betweenness centrality CB. The networks used are (top to

bottom): email contacts (β = 8%), CNI network (β = 4%), the actors network (β = 1%),

and the Livejournal.com friendship network (β = 1.5%). a, c, e, g Average infected size of

the population M(kS, k) when spreading originates in nodes with (kS, k). b, d, f, h The

infected size M(kS, CB) when spreading originates in nodes of a given combination of kS

and CB. In both cases, spreading is larger for nodes of higher kS, while nodes of a given

k or CB value can result in either small or large spreading, depending on the value of kS.

(There is an exception at large kS and small k of the livejournal database, which is due to

artificial closed groups of virtual characters that connect with each other for the purpose of

online gaming and do not correspond to regular users, as the rest of the database.)

FIG 3. k-shell structure of the CNI network. a, The imprecision functions ǫkS(p),

ǫk(p), and ǫCB
(p), for β = 4%. Even though both k-shell and k identification strategies
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yield comparable results for p = 2%, the k-shell strategy is consistently more accurate for

2% < p < 10% with ǫkS approximately twice lower than ǫk. The CB identification of the

most efficient spreaders is the least accurate, with ǫCB
exceeding 40%. b, We visualize

the CNI network as a set of concentric circles of nodes representing inpatients, each circle

corresponding to a particular k-shell. The kS indices of a given layer increase as one moves

from the periphery to the center of the network [28, 29]. Node size is proportional to the

logarithm of the degree of the node. We highlight the 25 inpatients with the largest degree

values. Note that inpatients with high k values are not concentrated at the “center” of the

network but instead are scattered throughout different k-shells. We highlight the position of

the three nodes A, B, and C, of the origins that were used in the example of Fig. 1. c, Scatter

plot of the node degree k as a function of kS for all the nodes in the CNI network (black

symbols) and the degree-preserving randomized version of the same network (red symbols).

Note that there are many inpatients with large k and low kS values in the original network

while in the randomized email network all the hubs are located in the inner core of the

network. We also show the position of the three origins used in Fig. 1. d, When spreading

starts from multiple origins, the set of nodes with highest degree (blue continuous line) can

spread significantly more than the set of highest-kS nodes (red continuous line), because in

the latter case most of these nodes are connected to each other. If we only consider in this

set nodes that are not directly linked, then both the sets of highest k or kS nodes yield a

similar result (dashed lines), where spreading is significantly enhanced. Results are shown

for β = 3% in the CNI.

FIG 4. SIS spreading in the CNI network and β dependence for SIS and

SIR. a, b, Virus persistence ρ(kS, k) as a function of k and kS values of inpatients in the

CNI network for, β = 2%, and β = 4%, respectively, where 20% of the individuals are

initially infected. The infection survives mainly in nodes with large kS values. c, We form

four groups of nodes of the CNI network based on their k-shell values. For all values of β,

virus persistence is consistently higher in the inner k-shells. d, Influence of the infection

probability β on the spreading efficiency of nodes, grouped according to their k-shell values,

for SIR spreading. The solid black line refers to the average infected percentage over all

network nodes. Nodes in higher k-shells are consistently the most efficient, independently

of the β value.
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Identifying influential spreaders in complex networks

SUPPLEMENTARY INFORMATION

I. DATASETS

In this study we have mainly focused on social networks, but our results can be extended

to networks from practically any discipline. The datasets that were used in the paper and

in this Supplementary Information are the following:

a) Contact Network of Inpatients. We use records from Swedish hospitals [16] and estab-

lish a link between two inpatients if they have both been hospitalized in the same quarters.

We restrict the recording period to one week. All the data have been handled in a de-

indentified form. There are 8622 inpatients in the largest component, with an average

degree of around 35.1.

b) IMDB actors in adult films. We have created a network of connections between actors

who have co-starred in films, whose genre has been labeled by the Internet Movie Database

[17] as ‘adult’. This network is a largely isolated sub-set of the original actor collabora-

tion network. Additionally, all these films have been produced during the last few decades,

rendering the network more focused in time. The largest component comprises 47719 ac-

tors/actresses in 39397 films. The average degree of the network is 46.0.

c) Email Contact Network. The network of email contacts is based on email messages

sent and received at the Computer Sciences Department of University College London. The

data have been collected in the time window between December 2006 and May 2007. Nodes

in the network represent email accounts. We connect two email accounts with an undirected

link in the case where at least two emails have been exchanged between the accounts (at

least one email in each direction). There are 12701 nodes with an average degree of 3.2.

d) LiveJournal.com. The network of friends in the LiveJournal community, as recorded

in a 2008 snapshot. We only consider reciprocal links, i.e. when two members are in each

other’s list of friends. There are 3453394 nodes in the largest component, and the average

degree is 12.4.

e) Cond-mat collaboration network. This is the network of collaborations between scien-

tists that have posted reprints in the ‘cond-mat’ e-print archive, between 1995 and 2005. The

1



Network Name N NE < k > < k2 > βrand
c β kSmax

Contact Network of Inpatients 8622 151649 35.1 1633 1.7% 4% 66

Actor Network 47719 1028537 46.0 17483 0.21% 1% 199

Email Contacts 12701 20417 3.2 351.1 0.73% 8% 23

Live Journal 3453394 21378154 12.38 892.45 1.1% 1.5% 100

Cond-mat Collaboration Network 17628 52884 7.0 109.4 5.1% 10% 22

RL Internet 493312 808844 3.3 71.9 4.6% 6% 36

AS Internet 20556 62920 6.1 2111.2 0.23% n/a 41

Product Space 765 40164 104.8 16931 0.50% n/a 100

TABLE I: Properties of the real-world networks studied in this work. Here N is the number of

nodes, NE is the number of edges, < k > is the average degree in the network, < k2 > is the

average squared degree in the network, βrand
c is the epidemic threshold for a corresponding random

network (βrand
c ≈ λ < k > / < k2 >), λ = 0.8 in SIS simulations, β is the value we used in SIR

simulations and kSmax is the highest k-shell index of the network. We consider only the largest

connected cluster of the network if the original network is disconnected.

nodes of the network represent the authors, who are connected if they have co-authored at

least one paper. The cond-mat collaboration dataset consists of 17628 authors with average

degree 6.0

f) The Internet at the router level (RL). The nodes of the RL Internet network are the

Internet routers. Two routers are connected if there exists a physical connection between

them. Data have been gathered from the DIMES project [13]. The largest connected

component of the analyzed dataset contains 493312 routers with an average degree of 3.3.

g) The Internet at the autonomous system level (AS). The nodes are autonomous systems

which are connected if there exists a physical connection between them. An autonomous

system is a collection of connected IP routing prefixes under the control of one or more

network operators that presents a common, clearly defined routing policy to the Internet.

Data have been gathered by the DIMES project [13]. The largest connected component of

the AS Internet consists of 20556 autonomous systems with average degree 6.1.

h) Product space of economic goods. This is the network of proximity between products

according to Ref. [22]. We use a proximity threshold 0.3, and we recover similar results for
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different thresholds, as well.

We outline some of the basic properties for these networks in Table I.

II. THE k-SHELL DECOMPOSITION METHOD

In order to classify the nodes into k-shells we employ the k-shell decomposition algorithm.

First, we remove all nodes with degree k=1. After this first stage of pruning there may

appear new nodes with k=1. We keep on pruning these nodes, as well, until all nodes with

degree k=1 are removed. The removed nodes along with the links connecting them form the

kS = 1 k-shell. Next, we repeat the pruning process in a similar way for the nodes of degree

k=2 to extract the kS = 2 k-shell and subsequently for higher values of k until all nodes are

removed. As a result, the network can be viewed as a set of adjacent k-shells (see Fig. 5).

FIG. 5: The illustration of the k-shell extraction method. a, A schematic network is

represented as a set of 3 successively enclosed k-shells labeled accordingly. b, Nodes with edges

forming kS = 1 shell of the network. c, Nodes with edges forming kS = 2 shell of the network. d,

Nodes with edges forming kS = 3 shell of the network.

The k-shell decomposition method assigns a unique kS value to each node, that corre-
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sponds to the index of the k-shell this node belongs to. The kS index provides a different

type of information on a node than that provided by the degree k. By definition, a given

layer with index kS can be occupied with nodes of degree k ≥ kS. In the case of random

model networks, such as the configurational model, there is a strong correlation between k

and the kS index of a node and, therefore, both quantities provide the same type of informa-

tion. Thus, the low-degree nodes are generally in the periphery, and the high-degree nodes

are generally in the innermost k-shells. In real networks, however, this relation is often not

true. In real networks hubs may have very different kS values and can be located both in

the periphery (yellow node in Fig. 5) or in the core (blue node in Fig. 5) of the network.
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FIG. 6: Robustness of kS under incomplete network information. We randomly remove

10% of the network links and 50% of the network links (results shown in black and red symbols,

respectively). The relative ranking of the nodes remains invariant under both removals, for all the

networks studied: Email, Hospital, Adult IMDB, and Livejournal.com.

The assignment of a kS index to a node is also quite robust. We have randomly removed

10% and 50% of the links in the networks that we study, simulating thus incomplete infor-
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mation. When we measure the new kS value for the same nodes in the resulting networks

(Fig. 6) we find that their relative ranking remains the same. We recover a practically linear

dependence on the kS values of the original and the incomplete networks, showing that this

measure would work equally well for predicting the spreading efficiency of nodes in a network

with missing information.

III. PROBABILITY AND TIME OF INFECTION

We have demonstrated that the location of a node, as described through the kS index, is

important for the extent of spreading Mi when this node is the spreading origin. Here, we

show that nodes with high kS are more probable to be infected during an epidemic outbreak

and are infected earlier than nodes with low kS, when spreading starts at a random node.

We introduce the quantity Ei, as the probability that a node i is going to be infected during

an epidemic outbreak originating at a random location, and Ti, as the average time before

node i is infected during the same process.

As shown in Figs. 7a-d all three quantities that characterize the role of a node in an

epidemics process, Mi, Ei and Ti are strongly correlated. The nodes that are infected by a

given node i form a cluster of size Mi, and they are statistically the nodes that can reach i

when they act as origins themselves. Thus, the probability Ei to reach this node in general

is directly proportional to the size Mi, as shown in the plots. The average time Ti to reach a

node is inversely proportional to its spreading efficiency Mi, which emphasizes the fact that

these nodes are easily reachable from different network locations. In conclusion, the nodes

with the largest kS values consistently a) are infecting larger parts of the network, b) are

infected more frequently, and c) are infected earlier, than nodes with smaller kS values.

IV. THE IMPRECISION FUNCTIONS

We quantify the spreading efficiency of an individual origin i through the infected number

of nodes Mi. In order to compare the different methods, we rank all network nodes according

to their spreading efficiency, independently of their other properties, and we consider a

fraction p of the most efficient spreaders (p ∈ [0, 1]). We designate this set by Υeff (p).

Similarly, we define ΥkS(p) as the set of individuals with highest k-shell values. In order to
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FIG. 7: Cross-plots of Mi as a function of Ti, and Mi as a function of Ei (inset) for a) email, b)

hospital inpatients, c) actor network and d) RL Internet. Every point denotes the corresponding

quantities for a given node, and the color denotes the k-shell index of this node. The kS values

are aggregated and highlighted with red (large kS regime), green (intermediate kS regime) and

blue (low kS values) colors, respectively. A high level of correlation between Mi and Ei indicates

that the most efficient spreaders (as measured by Mi) are the most likely to be infected during

an epidemic outbreak originating at random inpatient in the network. On the other hand, the

anti-correlation between Mi and Ti indicates that the most efficient spreaders are typically infected

earlier than other nodes during an epidemic outbreak.

assess the merit of using k-shell decomposition to identify the most efficient SIR spreaders

one needs to compare the two sets Υeff(p) and ΥkS(p). In order to consider individual Mi

values, we calculate the average Meff(p) and MkS(p) values for the sets Υeff(p) and ΥkS(p)

respectively: MkS(p) ≡
∑

i∈ΥkS
(p)Mi/Np and Meff (p) ≡

∑
i∈Υeff (p)

Mi/Np, where Np is
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FIG. 8: The imprecision functions ǫ(p) test the merit of using k-shell, k and CB to

identify the most efficient spreaders in the CNI, actor, collaboration, and email contact

networks. The k-shell based identification method yields consistently lower imprecision compared

to the k and CB based methods.

the number of nodes that we consider in the comparison. By definition, Meff (p) ≥ MkS(p),

and the equality is only reached if Υeff(p) = ΥkS(p). We assess the imprecision of k-shell

identification by calculating the ratio between Meff (p) and MkS(p):

ǫkS(p) ≡ 1−
MkS(p)

Meff (p)
. (4)

Similarly, we can define ǫk(p) and ǫCB
(p):

ǫk(p) ≡ 1−
Mk(p)

Meff (p)
, ǫCB

(p) ≡ 1−
MCB

(p)

Meff (p)
. (5)

A value for ǫ close to 0 denotes a very efficient process, since the nodes that are chosen are

practically those that contribute most to epidemics. In all cases, the kS method yields a
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spreading that is closer to the optimum than either the degree or the betweenness centrality.

Additionally, this behavior is independent on the fraction of spreaders p that we consider in

each case.
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FIG. 9: The shell index kS predicts the outcome of spreading more reliably than the

degree k or the betweenness centrality CB. The networks that were analyzed are: (a, b) the

RL Internet and (c, d) the collaboration network. a and c, The average infected size M(kS , k)

as a function of (kS ,k) values of the infection origin nodes. b and d, The average infected size

M(kS , CB) as a function of (kS ,CB) values of the infection origin nodes.

V. SIR SPREADING EFFICIENCY

In the main text we present results for M(kS, k) for the email network, the CNI, the

actor network and the Livejournal network. Here, we present additional results of the k-shell

analysis of the Internet at the Router Level (RL) and the scientific collaboration network.

Figure 9 shows the results for M(kS, k) and M(kS , CB). The conclusion on the spreading

importance of high kS nodes is exactly the same as for the social networks in the main text.

The results on the nodes efficiency are not significantly influenced by the choice of the

infected probability value, β. In Fig. 10 we present the infected percentage M for different

networks, as an average over nodes that belong in the same kS range, for different β values.
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FIG. 10: The infected percentage is always higher in higher k-shells, independently

of the infection probability β. Nodes are grouped according to their k-shell and we calculate

the average infected percentage for each group as a function of β. The solid lines correspond to

the grand average over all nodes acting as spreading origins. The networks that were analyzed

are: a, the email network, b, the CNI, c, the adult IMDB actors network, and d, the cond-mat

collaboration network.

The nodes in higher k-shells are consistently reaching a larger fraction of the network. Our

main interest is in the β range where we are above the critical point, 〈M〉 > 0, but the

average infection reaches a finite but small fraction, in the range of 1-20%. When the

average spreading is even larger, nodes of lower k-shells can become efficient too, because in

this case there is a high probability to reach the ‘core’ of the network, and this would enable

the spreading to extend over an even larger part of the network.

For β values in this ‘intermediate’ range, the distribution P (M) of the infected percentage

M is composed by two well-defined peaks (Fig. 11). The first is at M = 0 and corresponds

to those instances where the infection dies within the first few infection steps. The second

peak is at a finite fraction M , and it seems to be at the same point for all origins. However,

the intensity of each peak strongly differs, depending on the kS value of the origin. For
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FIG. 11: Distribution of spreading based on individual origins. The probability distribution

P (M) of the infected percentage for the contact network of inpatients, when the epidemic starts at

four nodes of different properties. The infection probability is β = 4%, which is above the critical

threshold. All distributions exhibit two peaks at similar ranges every time, i.e. around M = 0

(epidemics dies very fast) and M ≃ 33%. However, the intensity of each peak differs, and in higher

k-shells the majority of the realizations result in large infections, compared to the much higher

ratio of zero-spreading realizations for origins of small kS values.

the higher kS value in the plot, the stronger peak is at the non-zero value, and very few

realizations end up at M = 0 even for smaller degrees. On the contrary, an origin with larger

degree k, but smaller kS value results in a stronger peak at M = 0. These distributions

converge quite well, and we can expect that nodes with small kS will in general result in a

higher peak at M = 0. The above means that if an infection can reach a critical mass of

nodes then it will eventually cover a significant part of the network. The low k-shell nodes

cannot reach this critical mass so that the infection dies at the early stages, resulting to the

strong peak at M = 0. On the contrary, the neighborhood of high k-shell nodes is favorable

for sustaining an infection at early stages, allowing the system to reach this critical mass.
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FIG. 12: k-shell structure of the analyzed networks. (Top row): Visualization of the k-shell

structure. We represent networks as sets of concentric circles of nodes, each one corresponding

to the particular k-shell, with low kS values in the periphery and large kS values towards the

center of the network. The size of each visualized node is proportional to the logarithm of its

degree value. We highlight the 25 highest degree nodes with black squares. Many of the hubs are

found in outer layers. (Bottom row): Scatter plots of node degree k as a function of its k-shell

index kS for the original networks (black symbols) and the degree-preserving randomized version

of the networks (red symbols). The networks correspond to: the cond-mat collaboration network,

the actor network, the email contact network, the RL Internet, the AS Internet, and the Product
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We also highlight the location of the 25 largest hubs in the k-shell structure of the studied

networks. Fig. 12 shows the results for the collaboration, actor, email, RL Internet, AS

Internet, and Product space networks. High-degree nodes in most of the studied networks

are scattered at different k-shells: the high-k nodes appear both in the periphery (starting

as low as kS = 1) and in the network center (large kS value). In certain cases, such as in

the actors network, the largest hubs are located in the highest kS layers. The relation of kS

and k in the AS Internet and the product space is strongly monotonic, and there are very

few nodes where kS is large or small compared to the degree k. This is a typical behavior

for random networks, and the structure of these two networks is significantly close to their

randomized counterparts. In these cases, choosing a node based on its degree or its k-shell

index does not make a difference, since they practically lead to the same nodes.
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FIG. 13: Deviations from the average behavior highlight the importance of the k-shell

structure. The average degree (red symbols) for a given kS index follows roughly a power-law

dependence, as a function of kS . The deviation from this behavior can be significant, e.g. in RL

internet, or negligible, as e.g. in the product space network.

It is clear that the assortative behavior in a network can influence the extent to which

hubs will appear in the periphery or in the core of a network. In principle, in a highly

disassortative network we expect more hubs in the periphery, due to their tendency to

connect to low-degree nodes. However, even in assortative networks it is possible that some

hubs may still belong to low k-shells, so that the kS value will appropriately rank even these

12



exceptions. The average degree of the nodes in a specific shell follows roughly a power law

with kS (Fig. 13). The deviations from this average behavior emphasize the importance of

spreaders within the core of the network having high values of kS and potentially smaller

degrees, than those with high k and low kS values.

The complex organization of the nodes in the k-shells is highlighted when we randomly

rewire the links in the networks, yet preserving the nodes degree. This rewiring ‘restores’ all

the hubs to the innermost k-shell of the system and imposes a strict hierarchy of nodes in

terms of both k and kS. The bottom row of plots in Fig. 12 shows the scatter-plots of degree

k as a function of k-shell index kS for every node in the network. In all cases, a monotonic

relation of k vs kS is followed in the ’rewired’ networks (red symbols), where now all the

hubs appear in the highest k-shell) as opposed to the weak correlation between k and kS in

the original networks (shown in black).

VI. REWIRING HIGHLIGHTS THE IMPORTANCE OF k-SHELL

In Figs. 1a and 1b of the main text we show that the extent of infection can be remark-

ably different, although we start from two origins with similar degree. The importance of

the structure in the dynamics of spreading can be highlighted if we randomly rewire the

network. During this process the original degrees of all nodes are preserved, but random

neighbors are chosen for each node, destroying thus any correlations and any patterns in

the local connectivity. We denote by P (M |i) the probability that a percentage M of the

total population will be infected if a disease originates on node i. In Figs. 1a,b of the main

text and in Fig.14a we show that two nodes #1 and #2 with similar degree may yield

markedly different distributions P (M |1) and P (M |2). After rewiring, these distributions

become practically indistinguishable (see Fig. 14b).

VII. VIRUS PERSISTENCE IN SIS

Many infectious diseases, including most sexually transmitted infections, do not confer

immunity after infection, so that they cannot be described via the SIR model. These cases

are better simulated through the SIS epidemic model [18]. The dynamics of SIS epidemics

is different, since the number of infected nodes eventually reaches a dynamic equilibrium
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FIG. 14: Why the hubs may not be good spreaders. The probability distribution P (M |i)

of the infected percentage for the contact network of inpatients, when the epidemic starts at two

of the origin hubs in Fig. 1 i = A,B with the same degree (k = 96), but different kS values

(kS = 63 and kS = 26, respectively). In each histogram, we use 1000 random realizations of the

simulation, starting an SIR epidemic from the same given origin i. Despite the fact that the two

origins of the epidemic spreading have the same degree, the two histograms present a radically

different character. In one case (red histogram), the hub infects up to 30% of the population,

while most of the spreading attempts from the other hub (yellow histogram) practically cannot

propagate the infection at all. The importance of the organization of the network is highlighted

when we randomly rewire the network (preserving the same degree for all nodes). In this case both

distributions P (M |A) and P (M |B) coincide and both hubs contribute equally to spreading. Notice

also that spreading in the rewired network extends over a much larger size of the population.

“endemic” state at which exactly as many infectious individuals become susceptible as sus-
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ceptible nodes become infected [18]. The quantity characterizing the role of nodes in SIS

spreading is the persistence, ρi(t), defined as the probability that node i is infected at time

t [7]. In an endemic SIS state, which is reached asymptotically, ρi becomes independent of

t. The persistence ρ has been shown to be higher in hubs which are reinfected frequently

due to the large number of their neighbors [7, 24, 25]. To uncover the role of k-shell layers

in SIS spreading we use the joint persistence function

ρ(kS, k) ≡
∑

i∈Υ(kS ,k)

ρi
N(kS, k)

. (6)

Here we present results for the virus persistence in the Actor, Collaboration, Email and

RL Internet Networks. Similar to Fig. 4, we depict ρ(kS, k) in both supercritical (β > βc)

and subcritical (β < βc) regimes, where βc is the critical threshold. In the supercritical

regime, ρ(k, kS) increases with both k and kS, with maximum values corresponding to hubs

in the innermost layers (see Fig. 15). As depicted in Fig. 15, in the subcritical regime, viruses

persist only in the highest kS layers, while the probability of finding an infected node in low

k-shells is negligible.

In order to determine in the above networks the actual epidemic threshold βc we study

the behavior of SIS spreading over a wide range of β values. In order to highlight the

role of k-shells in spreading, we organize several groups of nodes based on the kS layers of

each network. Every such group comprises approximately 100 randomly chosen nodes with

the corresponding k-shell indices. In order to achieve similar average degree in each of the

groups, we pick nodes with uniform probability based on their degree. As shown in Fig. 16,

virus persistence is consistently higher in the inner k-shells for all values of β. Moreover,

we find substantially lower epidemic thresholds than in the random cases βc < βrand
c in all

considered networks except for the Email Contact network.

The results of Figs. 15 and 16 suggest that the observed persistence of a virus is due to

the dense sub-network formed by nodes in the innermost k-shell, which helps the virus to

consistently survive locally in this area. Indeed, the innermost layers can be regarded as

a small subgraph exclusively consisting of hubs. By definition, all nodes in this innermost

k-shell will have degrees k ≥ kSmax
. Therefore, as a simple approximation, one can regard

the innermost core of a network as a regular graph consisting of nodes with the same degree

k = kSmax
.

The mean-field solution of the SIS spreading in a regular graph can be found, for instance
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in Ref. [24]. We reproduce this solution below for the sake of convenience.

The master equation describing the time evolution at a mean-field level of the average

density of infected individuals ρ(t):

dρ(t)

dt
= −ρ(t) + βkρ(t)(1− ρ(t)), (7)

where k is the degree of all nodes in the regular graph. The first term on the right hand

side of Eq. (7) accounts for infected nodes becoming healthy. The second term on the right

hand side of Eq. (7) accounts for healthy nodes becoming infected: a randomly chosen node

is healthy with probability 1 − ρ(t), this healthy node can be infected by either of its k

neighbor nodes with total probability of βkρ(t). The stationary endemic state is reached

when dρ(t)/dt = 0 which leads to

ρ = 1−
1

βk
, (8)

indicating the existence of a nonzero epidemic threshold of β = 1/k. The innermost core of

a network consisting only of nodes with degrees k ≥ kSmax
will have epidemic threshold

βc ≤ 1/kSmax
. (9)

The above inequality holds for all considered networks. Moreover, this inequality becomes

an equality for CNI and collaboration networks where nearly all nodes in the innermost

cores have degree k ≈ kSmax
.

16



FIG. 15: SIS maps
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FIG. 16: How average SIS persistence in different k-shells depends on virus conta-

giousness. For every network we randomly sample several groups of nodes based on k-shell index

(as described in SI). We plot the average virus persistence ρ for every group of nodes as a function

of β for the Email, Actor, Collaboration and RL Internet networks. Virus persistence is higher for

nodes located in higher k-shells.
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