
IPv6 Alias Resolution via Induced
Fragmentation

Robert Beverly1, William Brinkmeyer1, Matthew Luckie2,
and Justin P. Rohrer1

1 Naval Postgraduate School, Monterey, CA
2 CAIDA, University of California, San Diego, CA

{rbeverly,wdbrinkm,jprohrer}@nps.edu, mjl@caida.org

Abstract. Discovering router-level IPv6 topologies is important to un-
derstanding IPv6 growth, structure, and evolution and relation to IPv4.
This work presents a fingerprint-based IPv6 alias resolution technique
that induces fragmented responses from IPv6 router interfaces. We lever-
age the way in which IPv6 implements fragmentation to provide reliable
inferences. We demonstrate perfect alias resolution accuracy in a con-
trolled environment, and on a small subset of the production IPv6 In-
ternet for which we have ground-truth. Internet-wide testing finds that
over 70% of IPv6 interfaces probed respond to the test. Our promising
results suggest a valuable technique to aid IPv6 topology discovery.

1 Introduction

IPv6, standardized nearly 15 years ago [6] as the successor to Internet Protocol
version 4 (IPv4), is experiencing commercial deployment – primarily due to eco-
nomic and business constraints, rather than any technical impetus [4]. Modern
systems and hardware support IPv6, service and content providers are deploying
IPv6 [17], and government networks are mandating IPv6 [13].

The number of global IPv6 BGP routing prefixes is growing exponentially
[11]. More than 6,000 autonomous systems, approximately 15%, now announce
IPv6 reachability [16]. Amid IPv6 measurement efforts underway [7] [22], under-
standing the evolution of the IPv6 router-level topology is an ongoing challenge.

This paper investigates IPv6 alias resolution – the process of determining if
two IP addresses are assigned to different interfaces of the same physical router
[12]. Alias resolution reduces an interface-level graph, e.g. discovered via active
probing, into a router-level graph [3], thereby permitting a better understanding
of the resilience and robustness properties of the network [21].

Taking inspiration from prior IPv4 alias resolution work, we present a fin-
gerprint based IPv6 alias resolution technique that relies on eliciting fragmented
responses from IPv6 router interfaces. Although IPv6 has no in-network fragmen-
tation, sources can send large IPv6 packets in fragments. We find that, as with
IPv4 routers, the IPv6 fragment identifier counter is frequently common across a
router’s interfaces. While all IPv4 control-plane packets sourced by a router re-
quire a unique fragment identifier, IPv6 fragment identifiers increase only when



the router must source a fragmented packet. Thus, in contrast to fragmentation-
based IPv4 alias resolution that is prone to false positives due to background
control-plane traffic incrementing a small 16-bit counter, our IPv6 technique is
highly accurate because control-plane messages are rarely fragmented.

This paper seeks to detail and validate a new IPv6 alias resolution algorithm;
we leave Internet-wide alias resolution, scaling, and comparison against other
techniques to future work. We make four primary contributions:

1. Development of a fingerprint-based IPv6 alias resolution technique3.
2. Validation on a large virtualized testbed of common commercial routers.
3. Internet-wide probing of more than 49,000 distinct live IPv6 router interfaces

where we discover approximately 70% respond to our test.
4. Validation of the technique on a small subset of the production IPv6 network

for which we have alias ground-truth, where we obtain perfect accuracy.

2 Related Work

Significant prior research investigates IPv4 alias resolution; see [12] and [9] for
an overview of major techniques. Design differences between IPv4 and IPv6
obsolete some techniques used in IPv4, while enabling new ones. For instance,
the elimination of in-network fragmentation and the simplification of the IPv6
header prevents the trivial reapplication of IPv4 techniques that utilize the IPID
field [19]. Alias resolution through IPv6 source-routing has been explored in
Atlas [20], RPM [15], and the “option header method” [14]. Given a potential
alias pair (x, y), Atlas performs a UDP traceroute to y via x with the hop limit
set to expire at x and relies on the fact that routers will generally process the
routing extension header before checking the hop limit. If x and y are aliases,
“hop limit exceeded” and “port unreachable” ICMP6 messages are generated.

RPM finds that the source address of “hop limit exceeded” ICMP6 messages
for packets that are not destined to the router at which the expiration occurs
is frequently the ingress address. To discover aliases for address y, probes are
sent from p via x and y destined to p, with the hop limit set to expire at
y. Performing this probe for a large enough set of addresses x will result in
ICMP6 “hop limit exceeded” messages originating from aliases of y. The option
header method makes use of the fact that setting an invalid bit sequence in
the IPv6 options header will generate an ICMP6 “parameter problem” message,
originating from the ingress interface of the packet generating the response. By
probing via multiple intermediate routers (similar to RPM), multiple aliases of
the target address may be discovered. Our alias resolution method is distinct
from those listed here in that it does not depend on IPv6 source routing and
therefore is not defeated on hosts where source routing is disabled due to security
concerns, as has become the norm in IPv4.

Lastly, the THC IPv6 [10] toolkit employs false ICMP6 packet too big mes-
sages (discussed next) as part of its attack suite. However, the tool’s goal is to
maliciously reduce the MTU of a target rather than to resolve IPv6 aliases.

3 A freely licensed prototype Python implementation is available from: [2].



3 Methodology

Our technique is fingerprint-based: we require some identifier or signature that
is both common to all interfaces on an IPv6 router, and is unique across routers
such that we do not make false inferences. Further, it must be possible for a
remote probing host to obtain the identifier without any privileged access.

We take inspiration from prior work in IPv4 alias resolution that relies on
fragment identifiers [19]. The IPv4 header contains a 16-bit identifier that is
used by an end-host receiving fragmented packets such that it can reconstruct
the original packet. Prior research [19] has shown that packets originated by
IPv4 routers often use a common counter, irrespective of physical interface, for
the identifier field. Since this counter increases sequentially, it is possible to infer
whether two interfaces are aliases by querying the router, e.g. via ping.

Two factors complicate IPv4 identifier-based alias resolution. First, the natu-
ral rate of counter increase as the router sends other control plane traffic implies
that observed counters from two true aliases may have large gaps. Second, the
16-bit identifier space is small relative to the number of possible Internet router
interface aliases, yielding false positives.

This section describes our IPv6 alias resolution technique and how we induce
a remote router to send fragmented packets. We then describe our controlled
environment for ground-truth testing where we show that our technique does
not suffer from the false positive problems inherent in similar IPv4 approaches.

3.1 Eliciting Fragmented Responses

IPv6 does not permit in-network fragmentation, and the IPv6 header does not
include any identifier field akin to IPv4. However, IPv6 supports end-host frag-
mentation. If a router’s forwarding table entry for a packet is via an interface
with a Maximum Transmission Unit (MTU) smaller than the size of the packet,
the router drops the packet and sends an ICMP6 “packet too big” message to the
source of the packet [5]. It is then the responsibility of the end-host to maintain
state, typically in the destination cache, of the path MTU (PMTU) feasible for
a particular destination. The host then sends packets smaller than the PMTU,
or can fragment large packets by using the IPv6 fragment header [6].

Our approach, which we term the “Too-Big Trick” (TBT) induces a remote
router to originate fragmented packets. Figure 1 is a timing diagram of TBT
between a prober and an IPv6 interface. The prober first sends a 1300 byte
ICMP6 echo request to a candidate IPv6 interface. The request is 1300 bytes –
larger than the IPv6 minimum MTU of 1280 bytes, but small enough to pass
most tunnels. The prober receives an 1300 byte ICMP6 echo response and then
sends an ICMP6 packet too big message with its own source IPv6 address to the
interface under test, and includes an MTU of 1280 along with the first 1184 bytes
of the original ICMP6 echo request ([5] states that the packet-too-big message
include “as much of the invoking packet as possible without the ICMP6 packet
exceeding the minimum IPv6 MTU.”). This “false” too big message mimics a
PMTU constraint coming from a router along the reverse path from the interface



to our prober. While we use the prober’s source IPv6 address for the too big
message rather than an intermediate router, the receiving router is indifferent.

ICMP6 Echo Resp 1300B

ICMP6 Echo Req 1300B, Seq=1

ICMP6 Echo Req 1300B, Seq=0

ICMP6 Too Big

Frag ID=x, Offset=0

Frag ID=x, Offset=1232

ICMP6 Echo Req 1300B, Seq=2

Frag ID=x+1, Offset=0

Frag ID=x+1, Offset=1232

IP
v

6
 In

terface
P

ro
b

er

Fig. 1. TBT, the “Too-Big Trick:” A prober spoofs an ICMP6 too big message such
that subsequent large ping responses are fragmented.

We then send a series of 1300 byte ICMP6 echo requests. These arrive at
the interface without fragmentation, but the end IPv6 stack now has a cached
PMTU of 1280 for packets destined to the prober. Each ping causes the router to
send two fragments, each with the same fragment identifier, but different offsets.
As we will show next (§3.2), popular commercial routers use a common counter
for the fragment identifier, regardless of the physical interface. Further, in §4 we
show that this counter frequently is monotonic and sequential.

A natural question is whether the ICMP6 too big packet is required. The
prober could instead send a larger than typical MTU echo request packet, e.g.
2000 bytes. Once received and reassembled, the remote router should respond
in-kind with a 2000 byte reply that would be fragmented. Thus, the echo packets
would be fragmented in both the forward and reverse direction. However, as we
find in our real-world testing in §4, such fragmented requests are frequently either
blocked or not processed by the receiving router. Using TBT results in ≈ 6%
more interfaces successfully identified than when sending large request packets,
most likely due to destination hosts only being required to accept fragments with
a reassembled size of 1500 bytes [6].

3.2 Ground-Truth Testing

To develop, test, and validate TBT, we employ the Graphical Network Simulator
(GNS3) [8] to build virtual test topologies of routers and virtual hosts.

TBT emulates a normal operational mode whereby the forward path from
the prober to an interface can carry full 1500 byte packets, while the reverse path
is asymmetric and has a smaller, 1280 byte MTU. To understand the behavior
of commercial routers in such situations, we implement the topology of Figure 2
in GNS3. In this test, static IPv6 routes pin traffic from Host 1 to Host 2 to
take the upper path from R1 → R2 → R4. Reverse traffic from Host 2 to Host
1 is statically configured to take R4 → R3 → R1. We set the MTU of all links
to 1500 bytes, except for the R1C ↔ R3A link which is set to 1280 bytes.



A

Host 1

R2

R3

Host 2R4R1

A
B

A B

A

B

C

B

C

Fig. 2. GNS3 Test topology with asymmetric MTU paths inducing ICMP6 too big.

A 1300 byte ICMP6 ping request from Host 1 to Host 2 induces a 1300 byte
ping response (blue arrows). However, R3 sends an ICMP6 too big message to
Host 2 (red arrows). Host 1 receives no reply to this first ping since the packet
is dropped at R3. Host 2 records a new PMTU for traffic destined to Host 1 and
maintains soft-state resulting in Host 2 fragmenting future responses to Host 1.

Next, we send 1300 byte ICMP6 ping requests from Host 1 to the router inter-
face R4A. R4 receives the ICMP6 packet too big message from R3 upon sending
the ping response to Host 1, and R4 updates its destination cache PMTU value.
We observe that subsequent pings to R4A results in fragments with sequential
identifiers, with the first identifier after router boot being 1.

We then send ICMP6 ping requests to R4B and R4C. Critically, we observe
that identifiers come from a common counter, i.e. the fragment identifier is one
more than the last identifier received from the other interface. Specifically, for
a large ICMP6 echo request to R4A that returns fragments with identifier x, a
subsequent probe to R4B returns x+1, and a third probe to R4C returns x+2.
Probing R4A again returns x + 3. Thus, with the Cisco images we test, these
routers use a fragment identifier counter that is common across interfaces.

Based on these findings, we reset all links to the standard Ethernet 1500
byte MTU. Here we seek to determine whether we can masquerade as an in-
path router instructing the probed router to update its PMTU for traffic sent to
Host 1. We first verify that large 1300 byte echo requests traverse the network
to and from the target without fragmentation. We then repeat testing, but send
an ICMP6 too big message with Host 1’s source IPv6 address to the target.
We verify that the ICMP6 too big message arrives at Host 2 and that Host 2
fragments subsequent echo replies, confirming that our technique is indeed able
to induce remote interfaces to send fragmented traffic.

Lastly, we find that while the routers use a common fragment counter, the
destination cache appears to be per-interface. After sending an ICMP6 too big
message from host 1 to e.g. R4A, a large probe to R4C does not return frag-
mented responses to host 1. In our testing, the ICMP6 too big message must be
sent to each interface to reliably induce fragmentation.

3.3 IPv6 Alias Resolution Algorithm

Given the success in the controlled test environment, we develop an IPv6 alias
resolution algorithm. There are several points of note. First, as we will detail in
§4, more than 28% of live Internet interfaces we probed had sequential identifiers



Algorithm 1 v6aliases(A,B): Determine whether A and B are IPv6 aliases

send(A, TooBig)
2: send(B, TooBig)

for i in range(5) do
4: ID[0] ← echo(A)

ID[1] ← echo(B)
6: if (ID[0]+1) 6= ID[1] then

return False
8: ID[2] ← echo(A)

if (ID[1]+1) 6= ID[2] then
10: return False

return True

that start at either zero or one. In other words, prior to our probing these routers
had sourced no fragmented IPv6 traffic. Therefore the alias algorithm must be
careful to avoid false positives. Second, because the counter only increases when
sending fragmented IPv6 traffic, which is a rare event, we can reasonably expect,
in the absence of our probing, the counter to remain static.

Algorithm 1 provides the alias resolution pseudocode [2]. To determine whether
two IPv6 addresses (A and B) are aliases, an initial echo request probe is sent
to each destination, then the fake ICMP6 too big messages are sent. Next, a
probe is sent to A. Once the fragment ID from A is received, B is probed (each
step proceeds synchronously; no race condition exists). The fragment identifiers
from A and B are compared. If at anytime the fragment IDs are not sequential,
the test returns false to avoid generating needless traffic. Note that when per-
forming O(n2) alias comparisons between all pairs of discovered interfaces, the
common case will be a true negative where our algorithm quickly exits. Only
if the fragment IDs are sequential are further probes sent to ensure no false
positives. Based on the above observations, we ensure that, in each round of
execution through the for loop, address A is probed a different number of times
than B to avoid potential counter synchronization issues in the case that the
addresses are not true aliases.

4 Results

To understand the real-world efficacy of our technique, we perform Internet-wide
probing. For candidate IPv6 router interfaces, we utilize two traceroute datasets.
The first dataset includes 23,892 distinct IPv6 interfaces discovered via tracer-
outes from 33 vantage points belonging to a commercial Content Distribution
Network (CDN) to approximately 12,300 destinations. Interestingly, we find nine
link-local (fe80::/10) addresses included in this dataset, suggesting that these
non-public IPv6 addresses are being used for a small number of public links. The
second data set is from CAIDA [1] with 38,300 distinct IPv6 interfaces, 25,174
of which are not present in the CDN trace. For those traces that complete, we
ignore the last hop IPv6 address of the target so as to only use router interfaces.



Table 1. TBT Response Characteristics
CDN CAIDA

ICMP6 responsive 18486/23892 77.4% 18959/25174 75.3%

Post-TBT unresponsive 235/18486 1.3% 66/18959 0.4%

Post-TBT nofrags 5519/18486 29.9% 5800/18959 30.6%

TBT responsive 12732/18486 68.9% 13093/18959 69.1%

TBT sequential 8288/12732 65.1% 9183/13093 70.1%

TBT sequential (1) 3455/12732 27.1% 3496/13093 26.7%

TBT random 4320/12732 33.9% 3789/13093 28.9%

Thus, we probe a total of ≈ 49k distinct live Internet IPv6 router interfaces,
belonging to networks advertised by 2,617 different autonomous systems. The
largest number of interfaces belonging to a single AS is 2,014 (from ASN 3356,
Level 3), and the median number of interfaces per AS is 3. The CDN trace was
collected on May 3 and 23, 2012, while the CAIDA traces were collected in Au-
gust, 2012. We actively probed interfaces derived from the CDN trace on August
28, 2012, while the CAIDA interfaces were probed on August 29, 2012.

4.1 Efficacy of TBT

Our goal is two-fold, determine: i) how many live IPv6 interfaces respond to
TBT; and ii) in what way these interfaces respond. We perform all testing from
a single IPv6 vantage point. For each interface, we first send a 1300 byte ICMP6
echo request in order to determine if the interface is live and responding to pings.
We then use TBT to send the ICMP6 message too big that will update the
interface’s PMTU to our vantage point. Finally, we send ten 1300 byte ICMP6
echo requests. Contemporaneous to our probing, we capture all IPv6 packets to
disk for analysis; our packet monitor did not experience any packet loss.

Table 1 summarizes the responsiveness of our sample of Internet interfaces
to TBT. We observe 18,486 of 23,892 (77.4%) and 18,959 of 25,174 (75.3%)
interfaces respectively responding to “normal” ICMP6 pings. The unresponsive
interfaces may be due to router behavior, or ICMP6 filtering. As these interfaces
cannot be expected to respond to TBT, we exclude them from our analysis. Of
the interfaces responding to our initial echo request, we find ≈ 70% returning
fragmented echo replies after we send a packet too big to the interface. Thus,
our technique works for a significant fraction of Internet IPv6 routers we probe.

Three primary conditions result from sending the TBT: subsequent ping
responses are sent fragmented, subsequent ping responses are sent unfragmented,
or the router stops responding to ping requests. We observe approximately 29%
of the interfaces we probe continuing to send unfragmented responses after we
send TBT. Between 1.3 and 0.4 percent of interfaces respond to the initial echo
request, but then respond to no subsequent echo requests after the packet too
big for a few minutes. We conjecture that these behaviors are due to paths that
filter fragments or ICMP6 too-big messages, routers incorrectly implementing
IPv6, or security measures. In future work we plan to more precisely understand
the root causes of such non-responsive behavior.

Next, we characterize the sequence of returned fragment identifiers. Recall
that we send ten ICMP6 echo requests after the TBT, therefore we expect to



1 11 2 0 3 10 12 21 13 4 5 22 20 14 31 9
Initial Fragment ID

0

5

10

15

20

25

30

Fr
ac

tio
n 

of
 R

es
po

nd
in

g 
In

te
rf

ac
es

(a) CDN

1 11 2 21 0 12 3 31 10 13 41 20 4 22 23 14 51 30
Initial Fragment ID

0

5

10

15

20

25

30

Fr
ac

tio
n 

of
 R

es
po

nd
in

g 
In

te
rf

ac
es

(b) CAIDA

Fig. 3. Histogram of IPv6 Fragment Identifiers Occurring ≥ 0.3%

receive ten responses where each response consists of two fragmented packets,
i.e. 20 total packets with identifiers. As shown in Table 1, ≥65% of interfaces
that respond to TBT return sequential identifiers, e.g. 120, 121, ..., 130.
However, as many as 34% return random identifiers, a behavior consistent with
BSD systems and BSD-based routers [18]. While TBT works for these interfaces,
it does not admit a fingerprint for alias resolution.

An interesting characteristic of those interfaces with sequential identifiers is
that a significant fraction (27.1% and 26.7% respectively) had an initial identifier
of one. This suggests that, in the uptime of the router, it had sent no fragmented
IPv6 packets prior to our probing. As discussed in §3, we take into account non-
alias interfaces that begin with correlated counters; our algorithm advances them
at different rates to prevent false positives.

To understand the initial values of fragment counters in the wild, Figures 3(a)
and 3(b) are histograms of initial fragment identifiers that occur with at least a
0.3% frequency. We see that one is the most common initial identifier for every
sequence echoed and that all common identifiers are less than 50.

While this paper presents and validates a new technique for IPv6 alias reso-
lution, we leave large-scale alias resolution on the IPv6 Internet for future work.
However, we observe that the second most common initial identifier within a re-
turned identifier sequence is 11, while there are modes at 21, 31, and 41. These
modes are due to our probing naturally encountering aliases. Since we probe
each interface 10 times, if we happen to later probe an alias, the counter will
have advanced to 10 and we expect to receive 11.

Finally, a natural question is whether we can induce routers to send frag-
mented responses without TBT. Instead, we experiment with sending large
ICMP6 echo requests that are themselves fragmented, such that the receiving
IPv6 router interface must reassemble the fragments to respond, and then send
a fragmented response. We again probe our two datasets of IPv6 interfaces and
find that this method results in 64.2% and 65.1% of interfaces successfully re-
sponding. However, using TBT results in over 5% more responses, which can
equate to significantly more absolute interfaces. More importantly, sending large,



fragmented probes results in much more traffic whereas our technique is more
efficient. For these reasons, we focus on TBT for alias resolution.

4.2 Accuracy of TBT Alias Resolution

Imperative to understanding the performance of our TBT alias resolution tech-
nique is having known ground-truth. In this subsection we test the inference
accuracy of our tool on both a virtual network topology in GNS3 [8], as well as
on a small subset of the live IPv6 Internet for which we have ground-truth.

First, we construct a virtual network topology in GNS3 [8] consisting of
26 Cisco routers, each containing up to four interfaces. Using our TBT tool,
and Algorithm 1 as implemented in our publicly available ScaPy tool [2], we
run a complete test comparing each interface to every other interface in the
topology, i.e. the O(n2) all pairs testing that would be performed in the wild,
and verify the results against known truth. The test results provide a count
of identified aliases and identified non-aliases. This controlled test results in
92/92 alias matches and 1584/1584 non-alias matches for a total accuracy of
100 percent with perfect precision and recall. The results, although constrained
by the virtual topology and simulation available in GNS3, help validate the
ability of our tool in identifying IPv6 aliases and non-aliases.

Finally, we obtain a list of IPv6 interfaces from eight physical production
routers of a commercial IPv6 service provider. This small ground-truth dataset
includes 72 interfaces with each router having between 2 and 21 interfaces. Using
TBT we correctly identify 808/808 true alias pairs with no false positives. Given
this encouraging result, we plan more extensive probing in the future.

5 Conclusion
This research develops and tests a new method for IPv6 alias resolution. Our
technique, the “Too-Big Trick” (TBT), elicits a fragment identifier fingerprint
from a significant fraction of production IPv6 router interfaces. We demonstrate
that our alias resolution algorithm, a prototype of which is publicly available, is
highly accurate among networks for which we have ground truth.

To understand instances where TBT fails, we plan to use multiple vantage
points to help distinguish between path and host filtering of fragments. We
plan to test additional routers, both in hardware and within GNS3 to better
understand the variety of behaviors we observe in Table 1.

We leave to future work the task of leveraging TBT to perform Internet-
wide IPv6 alias resolution. An important step is making the algorithm robust
to packet loss, or another TBT-like process causing the fragment counter to
increase. Toward this goal, we are investigating sequential hypothesis detection
to provide a bounded confidence in the alias pair. Further, at scale, we must
modify the algorithm to be more intelligent than pair-wise resolution.

As IPv6 grows and gains importance, understanding its router-level topology
and relationship to the IPv4 topology is increasingly important. In particular,
our current research examines how TBT compares with and compliments existing
resolution schemes, while generating router-level IPv6 topologies. Comparing
these topologies to those previously inferred will yield valuable insights into the
structure of the IPv6 network, and how it differs from the IPv4 topology.



Acknowledgments

We thank Arthur Berger and Geoff Xie for invaluable early feedback, and Ítalo
Cunha for shepherding. Special thanks to Aaron Hughes and 6connect for op-
erational support and insight. This work supported by collaborative NSF grant
CNS-1111445 and CNS-1111449. Views and conclusions are those of the au-
thors and should not be interpreted as representing the official policies, either
expressed or implied, of the U.S. government.

References

1. The CAIDA UCSD IPv6 Topology Dataset (2012), http://www.caida.org/data/
active/ipv6_allpref_topology_dataset.xml

2. Brinkmeyer, W.: Too-Big Trick prototype (2012), http://www.cmand.org/tbt/
3. Claffy, K., Hyun, Y., Keys, K., Fomenkov, M., Krioukov, D.: Internet mapping:

From art to science. In: Conference For Homeland Security (March 2009)
4. claffy, k.: Tracking IPv6 evolution: data we have and data we need. SIGCOMM

Comput. Commun. Rev. 41(3), 43–48 (Jul 2011)
5. Conta, A., Deering, S., Gupta, M.: Internet Control Message Protocol (ICMPv6)

for the Internet Protocol Version 6 Specification. RFC 4443 (Mar 2006)
6. Deering, S., Hinden, R.: Internet Protocol, Version 6 (IPv6) Specification. RFC

2460 (Draft Standard) (Dec 1998)
7. Dhamdhere, A., Luckie, M., Huffaker, B., claffy, k., Elmokashfi, A., Aben, E.: Mea-

suring the deployment of ipv6: topology, routing and performance. In: Proceedings
of the 2012 ACM Internet measurement conference. pp. 537–550 (2012)

8. Grossman, J., Marsili, B., Goudjil, C., Eromenko, A.: GNS3 Graphical Network
Simulator (2012), http://www.gns3.net/

9. Gunes, M.H., Sarac, K.: Resolving ip aliases in building traceroute-based internet
maps. IEEE/ACM Trans. Netw. 17, 1738–1751 (December 2009)

10. Heuse, M.: THC-IPv6 tool suite (2012), http://www.thc.org/thc-ipv6/
11. Huston, G.: IPv6 BGP Statistics (2012), http://bgp.potaroo.net/v6/as2.0/
12. Keys, K.: Internet-scale IP alias resolution techniques. SIGCOMM Comput. Com-

mun. Rev. 40, 50–55 (Jan 2010)
13. Mohan, R.: Will U.S. Government Directives Spur IPv6 Adoption? (Sep 2010)
14. Qian, S., Wang, Y., Xu, K.: Utilizing Destination Options Header to Resolve IPv6

Alias Resolution. In: GLOBECOM. pp. 1 –6 (Dec 2010)
15. Qian, S., Xu, M., Qiao, Z., Xu, K.: Route Positional Method for IPv6 Alias Reso-

lution. In: Computer Communications and Networks (ICCCN) (Aug 2010)
16. RIPE-NCC: IPv6 Enabled Networks (2012), http://v6asns.ripe.net/v/6
17. Sarrar, N., Maier, G., Ager, B., Sommer, R., Uhlig, S.: Investigating IPv6 traffic:

what happened at the world IPv6 day? In: Proceedings of PAM (2012)
18. Silbersack, M.J.: Improving TCP/IP security through randomization without sac-

rificing interoperability. In: Proceedings of BSDCan (2006)
19. Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP topologies with rocketfuel.

SIGCOMM Comput. Commun. Rev. 32, 133–145 (August 2002)
20. Waddington, D.G., Chang, F., Viswanathan, R., Yao, B.: Topology discovery for

public IPv6 networks. SIGCOMM Comput. Commun. Rev. 33, 59–68 (July 2003)
21. Willinger, W., Alderson, D., Doyle, J.C.: Mathematics and the internet: A source

of enormous confusion and great potential. Notices of the AMS 56(5) (2009)
22. Zander, S., Andrew, L.L., Armitage, G., Huston, G., Michaelson, G.: Mitigating

sampling error when measuring internet client ipv6 capabilities. In: Proceedings of
the 2012 ACM Internet measurement conference. pp. 87–100 (2012)


