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Network Mapping by Replaying Hyperbolic Growth
Fragkiskos Papadopoulos, Constantinos Psomas, and Dmitri Krioukov

Abstract—Recent years have shown a promising progress in
understanding geometric underpinnings behind the structure,
function, and dynamics of many complex networks in nature
and society. However, these promises cannot be readily fulfilled
and lead to important practical applications, without a simple,
reliable, and fast network mapping method to infer the latent
geometric coordinates of nodes in a real network. Here, we present
HyperMap, a simple method to map a given real network to its
hyperbolic space. The method utilizes a recent geometric theory
of complex networks modeled as random geometric graphs in
hyperbolic spaces. The method replays the network's geometric
growth, estimating at each time-step the hyperbolic coordinates
of new nodes in a growing network by maximizing the likelihood
of the network snapshot in the model. We apply HyperMap to the
Autonomous Systems (AS) Internet and find that: 1) the method
produces meaningful results, identifying soft communities of ASs
belonging to the same geographic region; 2) the method has a
remarkable predictive power: Using the resulting map, we can
predict missing links in the Internet with high precision, outper-
forming popular existing methods; and 3) the resulting map is
highly navigable, meaning that a vast majority of greedy geometric
routing paths are successful and low-stretch. Even though the
method is not without limitations, and is open for improvement,
it occupies a unique attractive position in the space of tradeoffs
between simplicity, accuracy, and computational complexity.
Index Terms—Applications, inference, network geometry.

I. INTRODUCTION

O UR GROWING dependence on networks has inspired a
burst of research activity in the field of network science.

One focus of this research is to derive network models capable
of explaining common structural characteristics of large real
networks, such as the Internet, social networks, and many other
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1Here, we use terms complex networks and scale-free networks interchange-
ably to mean real networks with distributions of node degrees following
power laws (exponent is usually between 2 and 3), and with
strong clustering, i.e., with large numbers of triangular subgraphs [2].

complex networks [2]–[4].1 A particular goal is to understand
how these characteristics affect the various processes that run
on top of these networks, such as routing, information sharing,
data distribution, searching, and epidemics [2], [3], [5]. Un-
derstanding the mechanisms that shape the structure and drive
the evolution of real networks can also have important applica-
tions in designing more efficient recommender and collabora-
tive filtering systems [6] and for predicting missing and future
links—an important problem in many disciplines [7], [8].
Some fundamental connections between complex network

topologies and hyperbolic geometry have been recently discov-
ered in [9]. This work shows that random geometric graphs [10]
in hyperbolic spaces are an adequate model for complex net-
works. The high-level explanation of this connection is that
complex networks exhibit hierarchical, tree-like organization,
while hyperbolic geometry is the geometry of trees [11]. Graphs
representing complex networks appear then as discrete samples
from the continuous world of hyperbolic geometry. The static
approach in [9] has been extended to growing networks in [12].
This work shows that tradeoffs between popularity and simi-
larity shape the structure and dynamics of growing complex net-
works, and that these tradeoffs in network dynamics give rise
to hyperbolic geometry. The growing network model in [12]
is nothing but a model of random geometric graphs growing
in hyperbolic spaces. Synthetic graphs grown according to this
simple model simultaneously exhibit many common structural
and dynamical characteristics of some real networks. Here, we
call the model in [12] the Popularity Similarity Optimiza-
tion (PSO) model.
Given the ability of the PSO model to construct synthetic

growing networks that resemble real networks across a wide
range of structural and dynamical characteristics, can one re-
verse this synthesis, and given a real network, map (embed)
the network into the hyperbolic plane, in a way congruent with
the PSO model? Would the results of such mapping be mean-
ingful? That is, can they be efficiently used in some applications,
such as soft community detection, link prediction, or network
navigation?
Here, we give the affirmative answers to these questions. We

first present a systematic framework to map a given complex
network to its hyperbolic space by replaying the network's geo-
metric growth in accordance with the PSO model. The pro-
posed network mapping method, called HyperMap, is simple
(cf. Fig. 3) and supported by theoretical analysis Section IV. We
apply HyperMap to the Autonomous Systems (AS) topology of
the Internet to show that it producesmeaningful results. It identi-
fies soft communities of ASs belonging to the same geographic
region. Given the Internet map constructed by HyperMap, we
can predict missing links in the AS Internet with high precision
by giving higher missing-link scores to disconnected node pairs
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located closer to each other. We show that this prediction yields
better results than popular existing methods [8], especially for
the links that are hard to predict. The AS Internet is known to
be navigable [13], [14]. Therefore, the Internet map constructed
by a good mapping method must be navigable as well. We show
that this is indeed the case with HyperMap—greedy forwarding
in the map can reach destinations with more than 90% success
probability and low stretch.
The rest of the paper is organized as follows. In Section II, we

review the PSO model. In Section III, we introduce a modified
version of this model, which is needed for an accurate replay
of the hyperbolic growth of a given network. In Section IV,
we present the HyperMap method. In Section V, we validate
HyperMap on synthetic networks in the model. In Section VI,
we apply the method to the real AS Internet and show that
it identifies soft communities of ASs belonging to the same
country. In Section VII, we show that HyperMap predicts
missing links in the Internet with high precision and compare its
performance against popular existing link-prediction methods.
In Section VIII, we compute the navigability properties of
the HyperMap-constructed map of the Internet. Finally, in
Section IX, we discuss open problems and conclude the paper.

II. PRELIMINARIES

In this section, we review the PSO model [12], limiting our-
selves only to the basic details that we will need in the rest of
the paper.
The basic PSO model has four input parameters ,

, , and . Parameter is the average number
of existing nodes to which new nodes connect, defining the av-
erage node degree in the growing network. Parameter
defines the exponent of the power-law

degree distribution in the network.2 Temperature
controls the average clustering [2] in the network, which

is maximized at , nearly linearly decreases to zero with
, and is asymptotically zero if . Parameter

where is the curvature of the hyperbolic plane. This
parameter is dumb in the sense that it does not affect any proper-
ties of generated networks, so that it can be set to any value [12],
e.g., . However, we do not fix to any value in our anal-
ysis below to make it more general. Having these parameters
specified, the PSO model constructs a growing scale-free net-
work up to nodes according to the following PSO model
definition.

1) Initially the network is empty;
2) Coordinate assignment and update:

a) at time , new node is added to
the hyperbolic plane at polar coordinates ,
where radial coordinate , while the an-
gular coordinate is sampled uniformly at random
from ;

2Symbol “ ” means proportional to, i.e., means ,
where is a constant, . Sometimes there are additive terms so that

can also mean . Symbol “ ” means approx-
imately equal. The approximations often become exact in the large graph size
limit.

b) each existing node , moves in-
creasing its radial coordinate according to

;
3) Creation of edges: node connects to each existing node

with different probability
given by

(1)

In the last expression, is the hyperbolic distance be-
tween nodes and [15]

where

while is derived from the condition that the expected
number of nodes to which connects is indeed ,
yielding [12]

(2)

where . Note that the appear-
ance “time” of a node is its order of appearance in the
network, i.e., the new node is said to appear at time .
The radial coordinate of a node abstracts its popularity.
The smaller the radial coordinate of a node, the more
popular the node is, and the more likely it attracts new
connections. The angular distance between two nodes
abstracts their similarity. The smaller this distance, the
more similar the two nodes are, and the more likely
they are connected. The hyperbolic distance is then
a single-metric representation of a combination of the
two attractiveness attributes, radial popularity and an-
gular similarity. The connection probability is a
decreasing function of , meaning that new connec-
tions take place by optimizing tradeoffs between popu-
larity and similarity [12].
The connections between new nodes and existing nodes
are called external links. In many real networks, how-
ever, certainly in the Internet, new links appear at a cer-
tain rate not only between new and old nodes, but also
between old nodes only. The basic PSO model can be
easily extended to account for such internal links as
well. This is done by the following additional step in the
network construction process:

4) At every time , select a random pair of disconnected
nodes , and connect this pair with probability

, repeating until internal
links are created.

With internal links, the average node degree is .
Parameter is an additional parameter specifying the rate at
which internal links appear, versus , the external link rate. We
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call the PSO model that uses both external and internal links
generalized PSO model.
It has been shown that the generalized PSO model can repro-

duce not only the degree distribution and clustering of different
real networks, but also several other important properties [12].
Given the ability of the model to construct growing synthetic
networks that resemble real networks, in this paper we are in-
terested in reversing the synthesis. Given a real network, such
as the AS Internet, we want to map (embed) it into the hyper-
bolic plane, in a way congruent with the generalized PSOmodel.
That is, we want to find the node radial and angular coordi-
nates in the hyperbolic plane that maximize the probability that
the given network is produced by the generalized PSO model.
However, mapping a given network according to the general-
ized PSO model per se is impossible for the following two rea-
sons. The first is that there is no way to distinguish external
from internal links given a single network topology snapshot.
The second problem is that given a network snapshot, there is
no way to learn the exact order of appearance (birth times) of
nodes in the network, so we need a procedure that can estimate
this order.
To tackle the first problem we introduce the E-PSO model

in Section III. The E-PSO model is a model equivalent to the
generalized PSO model, even though E-PSO uses external links
only. As a consequence of this equivalence, E-PSO can also si-
multaneously reproduce the same topological properties of the
AS Internet as the generalized PSO. The second problem is
addressed in Section IV, where we show that given the net-
work topology, we can compute the maximum likelihood es-
timate (MLE) of the node appearance order. Using the MLE
node appearance order, we can then map the AS Internet in a
way congruent with the E-PSO model, treating all links in the
topology as if they were external.

III. E-PSO: GROWING NETWORKS USING EXTERNAL
LINKS ONLY

The E-PSOmodel is exactly the same as the basic PSOmodel
described in Section II, except that different nodes in
E-PSO do not connect to the same expected number
of existing nodes . Instead, the expected number of con-
nections that establishes is

(3)

where parameter , while is the expected number
of internal links between node and existing nodes by
time , in the generalized PSO model.
To compute this number, we start with the probability that a

pair of existing nodes establishes an internal link at time
in the generalized PSO ([12, Supplementary Information,
Sec. VIII])

(4)

where , , is the radial coordinate of node at time ,
and . Using (4), we can compute the

probability that and are connected by an internal link by
time , if

where the approximation uses the fact that for large , .
Therefore, the expected number of internal links between node
and all previous nodes by time is

(5)

Limits and in the above relation are:
if , and if

. As in the PSO models, we can show (see Appendix)
that in E-PSO, the expected degree of node by time , ,
satisfies

(6)

which means that the degree distribution in E-PSO is also a
power law, , with . Furthermore,

. We note that if , then , and the
E-PSO model degenerates to the basic PSO model.
Summarizing, the E-PSO has five input parameters

, and to construct a network up to nodes, one
follows exactly the same procedure as in the basic PSO, except
that in (2) is adjusted to

(7)

with in (3) and in (5).
Validation: Fig. 1 compares several important properties of

simulated networks growing according to E-PSO to the proper-
ties of the AS Internet topology [16] of December 2009, which
is available at [17]. The topology consists of nodes
(ASs) and has a power-law degree distribution with exponent

, average node degree and average clustering
. The connections in the topology are not physical but

logical, representing AS relationships [17]. Using the real data
of the 12-year (1998–2010) evolution of the AS Internet from
[18], we find that the average initial number of connections of
an AS is , which means that .3 The
simulated E-PSO network is grown up to the same number of
nodes as in the real AS Internet and has the same and
. To yield , we set .
Fig. 1 considers the following properties, as in [12]: (a) the

degree distribution ; (b) the average clustering of
-degree nodes; (c) the average degree of neighbors

of -degree nodes; (d) the distance distribution , i.e., the

3The data of [18] are spaced by three-month intervals. We take as initial
number of connections of an AS the number of connections the AS has when it
is first seen in the data.
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Fig. 1. Properties of the AS Internet versus simulated networks grown according to the E-PSO model. (a) Degree distribution . (b) Average clustering .
(c) Average neighbor degree . (d) Distance distribution . (e) Average betweenness . (f) versus node appearance time .

distribution of hop lengths of shortest paths between nodes
in the network; and (e) the average node betweenness of
-degree nodes, which is the average number of shortest paths

passing through a -degree node, normalized by the maximum
possible number of such paths. Properties (a)–(c) are local
statistics reflecting properties of individual nodes and their
one-hop neighborhoods, as opposed to global properties (d) and
(e). From the figure, we observe a remarkable match between
the AS Internet and the simulated E-PSO network across all
five properties. We emphasize that to accurately match all these
properties in [12], the generalized PSO model had to be used,
which uses both external and internal links (see [12, Fig. S11]).
By contrast, here we show that we can accurately match the
same properties with E-PSO that uses external links only
[Fig. 1(a)–(e)].4
Furthermore, for each node in the simulated

E-PSO network, we also measure the number of links
to old nodes and compute its moving average

. We also compute for the AS Internet
after assuming that nodes with higher degrees appear earlier.
(See Section IV for the reason behind this assumption.) We use

as a summary statistic to validate (3) and (5) in the AS In-
ternet by comparing its value to that in the simulated network.
The results are shown in Fig. 1(f), where we again see a remark-
able match between the AS Internet and the E-PSO network.
The figure also reports the results for a simulated network grown
according to the generalized PSO model with the same parame-
ters. In this case, each new node, upon its appearance, connects
to the same average number of existing nodes , i.e.,

.
Finally, in Fig. 2 we use the data from [18] to validate that

(6) indeed describes the trend in the evolution of the average
degree of an AS in the Internet as a function of the time the AS

4Proving that the generalized PSO and E-PSOmodels can reproduce the same
graph properties is beyond the scope of this paper. The proof consists of showing
that the generalized PSO satisfies (10).

Fig. 2. Average degree of ASs as a function of their birth times.

appeared. To draw Fig. 2, we first found from the data in [18]
the time (number of nodes present in the network), when each
AS first appeared in the data. Then, for all ASs that appeared at
time and that are still present at the end of the measurement
period where nodes, we calculated their average
degree as a function of their birth time . In the theoretical
formula in (6), we use the of the AS Internet, i.e.,

.
Given the ability of the E-PSO model to construct growing

synthetic networks that resemble real networks, such as the AS
Internet, we next show that it is possible to reverse the synthesis,
and given the AS Internet, to map (embed) it into the hyperbolic
plane, in a way congruent with the E-PSO model.

IV. HYPERMAP: NETWORK MAPPING BY REPLAYING
HYPERBOLIC GROWTH

In this section, we present HyperMap, a method that com-
putes radial and angular coordinates for all nodes

in a given network of size with adjacency ma-
trix — if there is a link between nodes and
, and otherwise.5 Contrary to the previous sec-

5In this paper, notation “{ }” denotes a set. For example,
.
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tions and unless noted otherwise, the numbering of nodes in this
section is arbitrary and unrelated to the order of appearance of
nodes in the network. HyperMap is based on Maximum Like-
lihood Estimation: It finds the node coordinates in the network
by maximizing the probability, or likelihood, that the network is
produced by the E-PSO model. Therefore, the better the E-PSO
model describes a given network, the better the quality of the
mapping. We first give the necessary definitions and derive the
likelihood that HyperMap maximizes.

A. Definitions and Likelihood
1) Joint Probability Density of Node Coordinates: Recall

that in E-PSO, the node angular coordinates are random num-
bers sampled from the uniform distribution on , i.e., their
probability density is . In the Appendix, we also
derive the probability density of the node radial coordinate at
time

(8)

where . We note that the node coordinates in E-PSO
are independent variables. Therefore, given and ,
the joint probability that the node coordinates take the values

is

(9)

2) Global and Local Connection Probabilities: Consider a
network that has grown up to nodes according to E-PSO. The
global connection probability is the probability that two
random nodes at hyperbolic distance are connected. In the
Appendix, we show that

(10)

where , given by (7),
, given by (3), and

. We call global because it is computed over all
node pairs whose hyperbolic distance at time is . On the
other hand, in (1) is called local as it refers to the specific
pair of nodes , whose hyperbolic distance when appears is

.
3) Global Likelihood: Consider a network that has grown up

to nodes according to E-PSO with parameters ,
and let be the resulting network adjacency matrix. We de-
note by the likelihood
that the node coordinates take the particular values
given and . Using Bayes' rule, we can rewrite

as

(11)

where is given by (9);
is the likelihood to have the

network with adjacency matrix if the node coordinates have
the values and the parameters are ; and

, independent of , is the
probability that the E-PSO model with the given parameters
generates the network with . We can compute using (10)

(12)

where the product goes over all node pairs in the network,
and is the hyperbolic distance between pair .6 We note
that according to the model definition, all edges and
non-edges are independent, and exist or nonexist with
different probabilities and , which de-
pend on the hyperbolic distance between nodes. Since all the
(non-)edges are independent, we can multiply the probabilities
in (12) and (14).
4) Local Likelihood: In contrast to the global likelihood

that corresponds to the whole network at the final time ,
the local likelihood is defined on a per-node basis as the
network grows. Specifically, consider new node in a
network that grows according to E-PSO, where nodes are now
numbered according to the order they appear. When node
appears, its radial coordinate is . We denote by

the likelihood
that 's angular coordinate takes value , given its , the
coordinates of the old nodes , , 's connections
to the old nodes in , and the parameters .
Using Bayes' rule, we have

(13)

where is the
likelihood to have the connections , , if the angular co-
ordinate of node has value , conditioned on its radial coordi-
nate, the coordinates of the old nodes, and the network param-
eters. Likelihood ,
independent of , is the probability that has the connections
specified by , , conditioned as shown by notation. We
can compute using (1)

(14)

The product goes over all the old nodes .

B. Likelihood Maximization

We are looking for the values that maximize the
global likelihood in (11), or equivalently, its logarithm

(15)

6For example, in a network with nodes—1, 2, 3—where only nodes
1–2 and 1–3 are connected, i.e., , , would be

.
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where is a constant independent of . Unfortunately,
the maximization of (15) can be performed analytically with re-
spect to only, but not with respect to . Another problem
is that even though there are plenty of methods to numerically
find maximum-likelihood solutions, e.g., Markov Chain Monte
Carlo (MCMC) methods such as the Metropolis-Hastings algo-
rithm [19], these methods do not provide any reasonable perfor-
mance guarantees. They have exponential worst-case running
times and require significant manual intervention and guidance
to lead to any reasonable results in a reasonable amount of com-
pute time [14]. We do not follow this approach here.
Instead, we first use (15) to analytically find the MLE of the

sequence according to which nodes appeared in a given net-
work. From this sequence, we then compute , ,
and replay the growth of the network according to the E-PSO
model, finding for each new node its angle that maximizes
the local likelihood in (13), or equivalently, in (14). Max-
imizing the local likelihood at each time is equivalent to
maximizing the global likelihood at the final time . This ap-
proach leads to HyperMap, which performs remarkably well in
finding and has a guaranteed running time.We pro-
ceed with the MLE of the node appearance times.

C. MLE of Node Appearance Times
The derivative of (15) with respect to gives

(16)
The first sum within the parenthesis is the actual degree of
node , , while the second sum is its expected degree .
The likelihood is maximized when , i.e., when

(17)

Expected degree depends on the angular coordinates of
nodes via in , but its “mean-field” approxima-
tion in (6) does not because it is computed assuming that
the angular coordinates are random variables uniformly dis-
tributed on , and integrating them out. Let denote the
MLE of the appearance time of node . Using the mean-field ap-
proximation and (17) and (6), we have that

(18)

If , (18) implies that the higher the degree of the node,
the earlier its MLE appearance time, justifying the following
procedure for finding the MLE of the node appearance times in
a network with nodes: Sort all nodes in the decreasing order of
their degrees , with ties broken arbitrarily,
and set their MLE appearance times in the same
order. That is, the node with the largest degree is expected to
appear first, , the second largest degree node appeared
second, , and so on.
From the MLE appearance times of nodes, we can compute

the MLE of their initial radial coordinates as ,
and therefore , as ,

. We now have all the ingredients in place to replay

Fig. 3. HyperMap Embedding Algorithm.

the growth of the network according to E-PSO to find the MLE
of the node angular coordinates . We describe this next.

D. HyperMap

The simple algorithm in Fig. 3 fully specifies the HyperMap
method. On its input, it takes the network adjacency matrix
and the network parameters , and computes radial
and angular coordinates , for all nodes in the net-
work.7 To simplify the notation and the description below, we
henceforth drop the MLE superscript from all variable names.
HyperMap first estimates the MLE appearance (or birth)

times of nodes , as described earlier. We call
the node born at time node . Having a sequence of MLE
node birth times, HyperMap replays the hyperbolic growth of
the network in accordance with the E-PSO model as follows.
When a node is born at time , it is assigned an
initial radial coordinate , and every existing node

moves increasing its radial coordinate according to
. The method assigns to a new node

the angular coordinate that maximizes its local likeli-
hood . This likelihood is a function of since depends
on , depends on , and depends on .
The maximization of can be performed numerically by

sampling the likelihood at different values of in
separated by intervals , and then setting to the value
of that yields the largest value of . Since, to compute
for a given , we need to compute the connection probability
between node and all existing nodes , we need a total of

steps to perform the maximization. If there are nodes in
total, we need running time to map the full network. We
note that due to the mean-field approximation leading to (18),
and the above discrete sampling of the likelihood, HyperMap is
an approximate MLE algorithm.
Specifying Input Parameters: Parameter can be set

to any value, so ˇwe set it to . Parameter can be ob-
tained from historical data of the evolution of the network. If
such data are available, then is the average number of con-
nections that nodes have once they first appear in the data. If
no historical data are available, could be set, as an approxi-
mation, to the minimum observed node degree in the network.
Given the average node degree in the network, and knowing

and , we get . The power-law exponent can be

7The code implementing HyperMap can be found online at [20].
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Fig. 4. Connection probability using the inferred node coordinates versus theoretical prediction given by (10). (a) , . (b) , .
(c) , . (d) , .

obtained from the degree distribution of the network. We have
seen (see Section III) that for the AS Internet , ,
and . Finally, as we show in Section V, parameter
can be found experimentally. For the AS Internet, we estimate

. We note that HyperMap is a deterministic algorithm:
If one fixes in step 3 of Fig. 3 the angular coordinate of node

to a specific value, then the method will produce the same
output in different runs.
Correction Steps: The accuracy of HyperMap can be im-

proved by occasionally running a “correction step” right after
step 7 in Fig. 3. At each time that we run a correction step, we
visit each existing node , and having fixed the coordinates
of the rest of the nodes , we update its angle to the value

that maximizes

(19)

where is the hyperbolic distance between and when the
youngest of the two nodes appeared, and is given by (1),
using in it if or if . For improved accuracy,
each correction step can be repeated a few times. We have ob-
served that these correction steps are beneficial when run at rel-
atively small times , not exceeding a few hundred nodes. Run-
ning them at larger times may not be beneficial, as the accuracy
improvement may not be significant enough to justify the longer
running times.

V. VALIDATING THE HYPERMAP

A. Basic Validation Metrics
To evaluate how well HyperMap maps a given network, we

use two measures: 1) how close the empirical connection prob-
ability, which is the probability that there is a link between a
pair of mapped nodes located at hyperbolic distance , is to
the theoretical prediction, i.e., the global connection probability

in (10); and 2) the Logarithmic Loss, , a standard
metric to evaluate maximum-likelihood inferencemethods [21].
We discuss these two measures next.
After mapping a network with nodes, we have the radial

and angular coordinates , for all nodes . We can
compute the hyperbolic distance between every pair of nodes
( pairs total). Some pairs are connected, some are not.
We then bin the range of hyperbolic distances from zero to the
maximum distance into small bins. For each bin, we find all the
node pairs located at the hyperbolic distances fall within the bin.
The percentage of connected pairs in this set of pairs is the value

of the empirical connection probability at the bin. The closer
this empirical connection probability to the theoretical, the more
successful the HyperMap is in mapping the network.
The logarithmic loss is defined as , where

is the likelihood. Since maximum-likelihood inference methods
operate by maximizing the likelihood, the logarithmic loss is a
natural metric of the quality of the results that these methods
produce. If the results are good, then the logarithmic loss is
small. To quantify how small is “small,” one usually compares

against the one obtained with random parameter assign-
ments. In our case, we use to quantify the quality of the
inference of the node angular coordinates, where is the like-
lihood given by (12). That is, we first compute using the
inferred node coordinates , and then compare the re-
sult to the case where is computed using the inferred 's
and random 's drawn uniformly from . We denote the
former by and the latter by . The smaller the
compared to , the better the quality of the mapping, i.e.,
the better E-PSO describes a given network. In particular, the
ratio is the ratio of
the likelihood with the inferred angular coordinates to the like-
lihood with random angular coordinates. The higher this ratio,
the better the mapping quality.

B. Synthetic Networks
We first validate HyperMap on synthetic networks, and then

apply it to the real AS Internet in Section VI. In particular, we
first grow synthetic networks according to E-PSO up to

nodes, with , , , ,
and . Then, we pass these synthetic networks to HyperMap
using their corresponding values and compute ra-
dial and angular coordinates for all the nodes. HyperMap also
runs four correction steps as described in Section IV-D, right
after all nodes with degrees appear in the net-
work. Using the node coordinates given by HyperMap, we com-
pute the global connection probability and juxtapose it against
the theoretical prediction given by (10). The results are shown
in Fig. 4, where for the -axis in the plots (hyperbolic distance),
we use bins of size 1. From the figure, we observe a very good
match between the computed connection probability and the
theoretical prediction, indicating that HyperMap performs very
well.
Table I reports the logarithmic losses in the considered

networks, as well as the ratio . From
the table, we observe that the logarithmic losses using the
inferred angular coordinates are significantly smaller
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Fig. 5. Insensitivity to input parameter . (a) . (b) .

TABLE I
LOGARITHMIC LOSSES IN SYNTHETIC NETWORKS

than those with random angular coordinates and that
the ratio is very high. In the table, we also report ,
which is the logarithmic loss if we use the real radial and
angular coordinates of nodes. We see that is very close
to . We note that HyperMap also performs well if it is
applied without correction steps. The corresponding ratios
in this case for the networks in Table I (from top to bottom)
are , which are still quite
high. These results show that HyperMap is very accurate at in-
ferring the node coordinates in synthetic networks, suggesting
that it may be also accurate in application to real networks.

C. Insensitivity to Input Temperature
Another important observation contributing to our confidence

in HyperMap's accuracy is that it is not too sensitive to the value
of the input temperature parameter . To show this, we grow
synthetic networks using the same parameters as before and

. We then map these networks using HyperMap
with different input temperatures and
compute for each case the empirical connection probability. The
results are shown in Fig. 5, where we observe that the inferred
connection probability is virtually the same for all values of

, although there are some discrepancies if .
This observation implies that HyperMap is good at inferring the
real value of temperature in a given network. Whatever value of
we specify on its input, HyperMap infers real , instead of

input , which may be wrong or an artifact. Therefore, given
a network with an unknown temperature parameter , we can
infer by mapping the network using different temperature
values until the inferred connection probability converges as in
Fig. 5. Then, given a measured value of the tail slope, we can
use (10) to find the value that best matches the theoretical and
the inferred connection probabilities. We have followed this ap-
proach for the AS Internet yielding .

VI. APPLYING HYPERMAP TO THE AS INTERNET
We now consider the AS Internet topology [16] described

in Section III. We map the topology using HyperMap as in
Section V using the estimated parameters

, and . As before, we compute the

Fig. 6. Connection probability in the AS Internet.

connection probability and LL. From Fig. 6, we observe a re-
markable match between the inferred connection probability
and the theoretical prediction (10), while the logarithmic loss
is , and . That is, the

ratio is very high, , as in
Table I. These results indicate that HyperMap performs remark-
ably well on the AS Internet, too.
In Fig. 7, we also show that the mapping is meaningful, in the

sense that HyperMap infers soft communities of ASs belonging
to the same country, where by soft communities we mean
groups of nodes located close to each other in the space. The
figure shows the angular distribution of ASs belonging to the
same country for 18 different countries. The -axis in the plots
(angular coordinate) uses bins of size 3.6 . The AS-to-country
mapping is taken from the CAIDA AS ranking project [22].
We observe that even though HyperMap is completely geog-
raphy-agnostic, it places ASs belonging to the same country
close to each other in the angular space. The reason for this is
that ASs belonging to the same country tend to connect more
densely to each other than to the rest of the world. Connected
ASs are attracted to each other, while disconnected ASs repel,
and the HyperMap feels these attraction/repulsion forces,
placing groups of densely connected ASs in narrow regions,
close to each other. As expected, due to significant geographic
spread in ASs belonging to the US, these ASs are widespread
in as well. We note that other reasons besides geo-
graphic proximity may affect the connectivity between ASs,
such as economical, political, and performance-related reasons.
HyperMap does not favor any specific reason, but relies only
on the connectivity between ASs in order to place the ASs at
the right angular (and consequently hyperbolic) distances.
Fig. 8(a) shows the average geographic distance between

ASs as a function of their angular distance. We observe that at
angular distances below 60 , the average geographic distance
tends to grow with the angular distance, which complements
Fig. 7 confirming that ASs located at smaller angular distances
tend to be geographically closer. At large angular distances,
there is no correlation between geographic and angular distance
because the probability of connections between ASs depends
only on their hyperbolic distance, which depends weakly on
the angular distance if the latter is large. Fig. 8(b) confirms
that the average geographic distance between ASs tends to
increase with their hyperbolic distance. Since each AS can span
different geographic locations (characterized by their latitudes
and longitudes), to draw Fig. 8, we first find all the IP prefixes
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Fig. 7. Angular distributions of ASs belonging to the same country.

Fig. 8. Average geographic distance (in kilometers) between ASs as a function
of (a) their angular distance and (b) their hyperbolic distance.

allocated to each AS, geo-resolve them using NetAcuity [23],
and then compute their center of mass that we use as the AS's
geographic coordinates.
Having seen that HyperMap produces an accurate embedding

of the AS Internet, in Section VII we show that link prediction
using this embedding is very efficient, outperforming popular
existing link-prediction methods.

VII. APPLICATION TO PREDICTING MISSING LINKS

A. Background
Topology measurements of many real networks, not only

of the Internet [24], may miss some links. The prediction of
missing links is a fundamental problem that attempts to esti-
mate the likelihood of the existence of a missing link between
two nodes in a network, based on the observed links and/or
the attributes of nodes. See [8] for an in-depth recent survey.
Here, we recall some basic facts that we need in the rest of the
section.
A standard way to evaluate a link-prediction technique is to

randomly remove a percentage of links from a given network
topology, and then work with this incomplete data using the
technique to see how well these “missing,” i.e., removed links
can be predicted [8]. Formally, consider a network with nodes
and a set of links between them. Denote by the set con-
taining all possible links. Then, the set of nonexistent
links is the set . Now, the set is randomly divided into
two parts: the training set , which is treated as the known in-
formation, and the probe set , which is used for testing and
no information in this set is allowed to be used for prediction.
Clearly, and . When a random
percentage of links is removed from a network, these missing
links are treated as the probe set , and the remaining links as
the training set .

The standard metric used to quantify the accuracy of a link-
prediction technique is the Area Under the Receiver Operating
Characteristic Curve (AUC) [8]. A link-prediction algorithm
gives to each nonobserved link a score to quantify
its existence likelihood. The better the score of a nonobserved
link, the more likely the link is to exist. The prediction algo-
rithm then orders all the nonobserved links according to their
scores, from the best score to the worst score, with ties broken
arbitrarily. The AUC is the probability that a randomly chosen
missing link (i.e., a link in ) is given a better score (i.e., a
higher existence likelihood) than a randomly chosen nonexis-
tent link (i.e., a link in ). The degree to which the AUC
exceeds 0.5 indicates how much better the algorithm performs
than pure chance. means a perfect classification (or-
dering) of the nonobserved links, where the missing links are
placed in the top of the ordered list.
To get a more detailed characterization of the ability of a tech-

nique to predict missing links, the Receiver Operating Char-
acteristic (ROC) Curve may also be computed. To compute
the ROC Curve, we take the ordered set of the nonobserved
links along with their scores and consider each score to be a
threshold. Then, for each threshold, we calculate the fraction of
themissing links that are above the threshold [i.e., the True Posi-
tive Rate (TPR)] and the fraction of the nonexistent links that are
above the threshold [i.e., the False Positive Rate (FPR)]. Each
point on the ROC curve gives the TPR and FPR for the corre-
sponding threshold. When representing the TPR in front of the
FPR, a totally random guess would result in a straight line along
the diagonal . The degree by which the ROC curve lies
above the diagonal indicates howmuch better the algorithm per-
forms than pure chance. As the name suggests, the AUC is equal
to the total area under the ROC curve.

B. Performance of HyperMap

We now check the performance of HyperMap in predicting
missing links in the AS Internet topology from Section VI. We
consider the topology consisting of all ASs with degree greater
than 2. We do this to reduce the size of the network with which
we work to 8220 nodes. This enables us to compare HyperMap
to existing link-prediction techniques, particularly the HRG
model and the Katz Index, which are memory-intensive; these
techniques require more than 80 GB RAM when applied to the
full AS Internet, which is beyond the RAM we have available.
We note that HyperMap is not memory-intensive and that the
coordinates of nodes with degree do not depend on the
coordinates of nodes with degree .



PAPADOPOULOS et al.: NETWORK MAPPING BY REPLAYING HYPERBOLIC GROWTH 207

Fig. 9. ROC of HyperMap.

To check HyperMap's performance, we first remove a
percentage of links from the topology,
and then embed the resulting topology using HyperMap, as
described in Section VI. After the embedding, the score
between a disconnected pair of nodes , i.e., the score of each
nonobserved link , is the hyperbolic distance between
the nodes and . The smaller this score, i.e., the smaller the
hyperbolic distance between the two nodes, the more likely
it is that a link between these two nodes is missing since the
connection probability [see (10)] is a decreasing function of

.
The AUC of HyperMap for missing

links is respectively 0.963, 0.962, 0.955. That is, the AUC is
quite high for all the considered percentages of missing links, in-
dicating that the method has a strong predictive power. For com-
parison, if we use geographic (instead of hyperbolic) distances
between ASs, the corresponding AUC values are significantly
lower, 0.758, 0.751, 0.741. In Fig. 9, we also report the ROC
curve of HyperMap when 10% of links are missing. From the
figure, we see that the curve lies far above the diagonal, which
indicates a remarkable power in the method for discriminating
missing links from nonexistent links. Similar results hold for the
other percentages of missing links, not shown to avoid clutter.

C. Comparison to Classical Link-Prediction Techniques
To provide a deeper insight on the HyperMap performance

in predicting missing links, we also consider a set of classical
link-prediction methods that have been found to perform well
in practice in different studies [7], [8] and compare their per-
formance to HyperMap's. In particular, we consider the fol-
lowing five techniques: 1) Common-Neighbors (CN); 2) De-
gree-Product (DP); 3) Inverse Shortest Path (ISP); 4) Katz Index
(Katz); and 5) another model-based approach, called the Hier-
archical Random Graph (HRG) model [7].
For each technique, we consider the topology of the AS In-

ternet from Section VII-B with 10% missing links and compute
its AUC. Each technique assigns a score to every nonob-
served link as follows:
• CN: ;
• DP: ;
• ISP: ;
• Katz: ;
• HRG: ;

where denotes the set of neighbors of node and is
the cardinality of set ; denotes the degree of node ; is

TABLE II
AUC OF CLASSICAL LINK-PREDICTION TECHNIQUES AND COMPARISON TO

HYPERMAP

the shortest path between nodes ; is the set of all
length- paths from to while is a free weight parameter; and

is a link existence probability, defined by the hierarchical or-
ganization of the network and computed using a Markov Chain
Monte Carlo method [7].8
In all the above methods, the higher the score , the more

likely a link between nodes and exists. In principle, one
can say that all the methods effectively introduce some mea-
sures of node similarity under the assumption that more similar
nodes connect more likely. In the first four methods (CN, DP,
ISP, Katz), such similarity measures are based on the observable
structural characteristics of the network topology. CN assumes
that the more common neighbors are between the two nodes, the
more likely these nodes are connected; DP models the Preferen-
tial Attachment [2] mechanism; ISP assumes that the closer the
two nodes are in terms of the number of hops between them,
the more likely they are connected; while Katz assumes that
the greater the number of paths between two nodes the more
likely these nodes are connected, and weights the number of
paths exponentially based on their length to give shorter paths
more weight. For the weight parameter, we use an ,
as in [25]. Finally, the last method (HRG) is conceptually closer
to our approach in the sense that the node connection probabili-
ties are not defined by the network topology per se, but by some
“hidden distances” (which are hyperbolic distances in our case)
that lie “beneath” the observable topology.
The results are shown in Table II. From the table, we see that

CN yields a high , which is similar to HyperMap's
. However, CN gives accurate predictions only for

node pairs that have common neighbors—its good AUC per-
formance when measured across all node pairs is not surprising
since 94.6% of the missing links are among nodes with common
neighbors. In contrast, by considering only the node pairs with
no common neighbors, which comprise 82% of node pairs, and
themissing links only among these pairs, CN yields
since it assigns the zero score to all such node pairs. That is, CN
is as good as pure chance in this case, while HyperMap performs
remarkably better yielding . This result is shown
in the hard-links AUC column in Table II. DP also performs
similarly to HyperMap, but DP's performance becomes signif-
icantly worse if we consider only node pairs with low degrees.
For example, if we consider only pairs of nodes with degrees

8The code to compute the 's according to the HRGmodel is made publicly
available by the authors of [7] at tuvalu.santafe.edu/~aaronc/hierarchy/.We used
the code as is without any modifications.
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less than 6, which comprise 42% of node pairs, and the missing
links only among these pairs, DP gives , while Hy-
perMap performs significantly better with . ISP
performs worse than HyperMap, and considering again only
node pairs with no common neighbors, we get a lower AUC,

(versus in HyperMap). Katz per-
forms better compared to the rest of the existing techniques
we consider. Compared to HyperMap, it performs virtually the
same when considering all node pairs—particularly, its AUC is
0.961 versus 0.963 in HyperMap. However, again it performs
worse if we consider only node pairs with no common neigh-
bors, having . Finally, HyperMap performs signif-
icantly better than HRG, while the AUC of HRG for node pairs
with no common neighbors is only 0.53.
Summarizing, HyperMap performs remarkably well in pre-

dicting missing links in the AS Internet compared to popular
existing techniques. Most importantly, while some techniques
(CN, DP, Katz) perform similarly in predicting the “easy-to-
predict” missing links (between high-degree nodes with many
common neighbors), they perform worse when it comes to pre-
dicting the “hard-to-predict” missing links (between low-degree
nodes with no common neighbors). In that sense, one can say
that the measure of similarity (angular distances) between nodes
in the PSO model reflects reality more accurately than these
other approaches do, and that HyperMap is accurate at infer-
ring these similarity distances in the real Internet.
In fact, it has been pointed out that the performance of link-

prediction heuristics such as CN or Katz applied to real net-
works can be explained by the existence of latent spaces under-
lying these networks [26]. These spaces, which we call hidden
metric spaces [27], impose certain bounds on the hidden dis-
tances and connection probabilities between nodes, in partic-
ular between disconnected nodes, explaining why CN or Katz
perform well. HyperMap performs better because it not only
respects the same bounds since it is explicitly based on a la-
tent-space network model (E-PSO), but it also infers accurately
these hidden spatial distances between all nodes in the network.

VIII. APPLICATION TO NETWORK NAVIGATION

Finally, we show that the HyperMap-inferred map of the In-
ternet is highly navigable. A network embedded in a geometric
space is considered navigable [13] if one can perform efficient
greedy routing (GR) on the network using the node coordinates
in the underlying geometric space. In GR, a node's address is
its coordinates in the space, and each node knows only its own
address, the addresses of its neighbors, and the destination ad-
dress written in the packet. In its simplest form, GR forwards a
packet at each hop to the neighbor closest to the destination in
the geometric space, and drops the packet if the current hop is
a local minimum, meaning that it does not have any neighbor
closer to the destination than itself. In a slightly modified form,
which yields better results, GR excludes the current hop from
any distance comparisons and finds the neighbor closest to the
destination. The packet is dropped only if this neighbor is the
same as the packet's previous hop.
In our case, the underlying geometric space is hyperbolic, and

a node's address is its hyperbolic coordinates . Here, we
evaluate the efficiency of GR in synthetic networks constructed

TABLE III
SUCCESS RATIO AND AVERAGE HOP-LENGTH OF GREEDY PATHS USING
THE HYPERMAP-INFERRED NODE COORDINATES. NUMBERS IN PARENTHESES

SHOW THE RESULTS USING THE REAL COORDINATES

according to the E-PSO model, using both the HyperMap-in-
ferred and the real node coordinates. We also report its effi-
ciency in the AS Internet using the HyperMap-inferred coor-
dinates. We use the modified version of the GR algorithm.
To evaluate the efficiency of GR, one usually uses two met-

rics [13]: 1) the percentage of successful paths, , which is the
proportion of paths that reach their destinations; and 2) the av-
erage hop-length of the successful paths. Table III shows the
results for the synthetic networks considered in Section V-B and
for the AS Internet of Section VI. From the table, we make
several interesting observations. First, from the numbers in
parentheses, which correspond to GR's performance in syn-
thetic networks using the real node coordinates, we observe that
the E-PSO networks are remarkably navigable, yielding high
's and low 's. This efficiency is very similar to the one of the

nongrowing synthetic networks considered in [9], and it is due
to the congruency between scale-free network topology and
hyperbolic geometry [9]. Second, from the table we see that in
both the synthetic networks and in the real AS Internet, GR's
performance using the HyperMap-inferred node coordinates is
remarkably high, yielding in all cases success ratios ,
while maintaining low path lengths, i.e., low stretch defined
as the average ratio of path length to the shortest-path length.
Finally, in the synthetic networks, we observe that GR with
the HyperMap-inferred node coordinates yields better 's
compared to GR with the actual node coordinates (numbers
in parentheses), especially for the higher temperatures . The
reason for this is that HyperMap always estimates the node
coordinates that best fit a given network. Due to randomness
in the network construction process, some nodes might have
coordinates that deviate from their best-fit values. Such devi-
ations are minimized at , in which case the connection
probability in (1) becomes the step-function if

, and if . We note that the results
in Table III correspond to applying HyperMap with correction
steps, as described in Section V-B. HyperMap without correc-
tion steps still yields good results. In the synthetic networks,
ranges from 0.87 to 0.90, and ranges from 3.5 to 4.85, while
in the Internet, and .

IX. DISCUSSION AND CONCLUSION
Even though we have seen that HyperMap is overall remark-

ably accurate and efficient, there are aspects of the method that
are open for improvement. One such aspect is the exact esti-
mation of the angular coordinates of the first few nodes ap-
pearing at early MLE times. Specifically, from (3), all nodes
for which are all connected to each other with
high probability, cf. Fig. 1(f), making it difficult for the method
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Fig. 10. Local likelihood landscapes for different nodes in a synthetic network
and the Internet. (a)–(c) Log-likelihood in (14) as a function of the angular
coordinate (in radians) of a given node. The plots correspond to nodes with
degrees appearing at MLE times , respec-
tively. The vertical line in each plot shows the real angle of each node in a syn-
thetic network, while the cross shows the angle inferred by HyperMap. By the
HyperMap definition, this angle always corresponds to the global maximum of

. (d) Likelihood for the node appearing at MLE time in the In-
ternet embedding. The likelihood is shown for the range of , where
it achieves its maximum value. The maximum with the -space sampling in-
terval is achieved at , respectively.

to accurately estimate the exact angular coordinates of such
nodes since large zones of different angular coordinates are all
quite likely; see Fig. 10(a). However, the number of nodes that
have this property is very small, and this effect does not sig-
nificantly influence the overall efficiency of HyperMap. For in-
stance, in the synthetic networks considered in Section V-B, re-
lation holds only for the first 33 nodes when

and for the first 21 nodes when , while
for the AS Internet (Section VI), it holds only for the first 38
nodes. To illustrate, we consider the syn-
thetic network from Section V-B, and show in Fig. 10(a)–(c) the
log-likelihood in (14) for nodes appearing at MLE times

, having degrees . In each case,
the angular coordinates of the old nodes are fixed to their
real values. From the figures, we observe that when , the
inference is not exact [Fig. 10(a)], while it becomes extremely
precise as increases [Fig. 10(b) and (c)]. Similar results hold
for the rest of the networks we considered and for other net-
work parameter values. An interesting open question is whether
the method could be improved to infer the angular coordinates
of the first few nodes exactly, and whether this improvement
would have any significant effects on the overall performance of
HyperMap. The correction steps discussed in Section IV-D are
aiming at this direction by trying to recompute improved angles
for the first nodes, considering not only the connections to their
previous nodes, but also connections to nodes that appear later.
However, they still cannot guarantee that the inference of these
angles will be exact.
Another aspect that is open for improvement is the way the

maximization of is performed. As explained in Section IV-D,
HyperMap samples the likelihood of every new node to find

the angle that maximizes . Since the sampling of is done
at discrete intervals , there might be cases that the true
global maximum of is missed. For example, Fig. 10(d) shows

for thenodeappearing atMLE time in theASInternet
embedding, when this is sampled with different intervals.
Weseethateventhoughthethreesamplingintervalsyieldapprox-
imately thesameangularcoordinate, the likelihood isoneorderof
magnitude larger at ,which is discoveredonlywhen

. We thus see that the maximization of is not a trivial
issue. In general, decreasing the sampling interval may increase
the accuracy of themethod butwill also increase its running time.
We have found that is sufficient to yield good results in
practice, as also illustrated in Fig. 10(b) and (c). Furthermore, no-
tice fromFig. 10(a)–(c) that the likelihood profile becomes abun-
dantwithdeep localmaximaas increases, justifying theneed for
the increasingly smaller sampling interval. The correction steps
discussed in Section IV-D are also beneficial in this aspect since
theyresample the likelihoodofanode(19)at future times ,where

is smaller.More sophisticated techniques [28] that nu-
merically find the global maximum of a function may yield im-
proved performance. Finding the most efficient option, yielding
an adequate balance between computational complexity and em-
beddingaccuracy is anotheropen researchproblem.
In [14], we have focused on greedy routing and showed how

the AS Internet topology can be embedded into the hyperbolic
plane bymaximizing the likelihood that the topology is produced
by the model of static complex networks from [9]. To do so, a
localized Metropolis-Hastings algorithm was used, in conjunc-
tion with some sophisticated heuristics to guide the algorithm to
produce good results in a reasonable amount of compute time.
The procedure required manual intervention, such as manually
determining good degree thresholds that define layers of nested
subgraphs [14]. In this paper, we have followed a different ap-
proach. We have shown how to embed the AS Internet (and in
general, a scale-freenetwork)by replaying itshyperbolicgrowth.
Themethodwepresent in this paper (HyperMap) doesnot use the
Metropolis-Hastings algorithm or any heuristics to guide it, re-
quires nomanual intervention, is simple, and is based on a recent
model of growing complex networks that has been shown to de-
scribe theevolutionofdifferent realnetworkswell [12].
A different mapping of the AS Internet to the hyperbolic

plane was performed in [29]. The authors found that the hop
lengths of the shortest AS paths in the Internet can be embedded
into the hyperbolic plane with low distortion, and that the re-
sulting embedding can be used for efficient overlay network
construction and accurate path distance estimation. Our work is
different from [29] in that hyperbolic distances between ASs in
our case are not directly defined by their “observable” AS path
lengths. Instead, they are defined by “hidden” popularity and
similarity node coordinates that manifest themselves indirectly
via the nodes' connections and disconnections. Section VIII in-
dicates that short paths follow well the underlying hyperbolic
geodesics in our mapping. However, nodes at short AS path dis-
tances are not always hyperbolically closer than nodes separated
by longer paths, and as we have seen in Section VII-C, Hy-
perMap performed quite differently from the Inverse Shortest
Path (ISP) method.
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While in this paper we have focused on the AS Internet, Hy-
perMap may be applicable to other real networks (e.g., social
networks) and to other interesting problems, such as the chal-
lenging problem of predicting future links in different evolving
networks [8]. From a theoretical perspective, our results ad-
vance our understanding of mapping real growing networks to
their hyperbolic spaces, a problem that so far has been solved
only for static networks [14].

APPENDIX

Here, we consider a network that has grown up to nodes
according to the E-PSO model and derive the expressions for:
1) the expected degree of node by time , (6); 2) the
probability density of the node radial coordinate (8); and
3) the global connection probability (10).
Expected Degree of Node by Time , : In both the basic

and the generalized PSO models, the expected degree of node
by time satisfies , , which means
that the degree distribution is a power law ,

[12].We show that the same result holds in the E-PSO
model.
First, recall from [12] that in the basic PSO model, the prob-

ability that an existing node attracts a link from a new node
is , where ,

, . In E-PSO, since new node brings in
new links (3) instead of , this probability becomes

(20)

For the approximation above, we used that for large ,
. Using (20) and

the fact that node brings in on average links when it first
appears (3), we can write: , where

Since , we have that .
As in the PSOmodels, this means [12] that in E-PSO, the degree
distribution is power law with .
Finally, the resulting average node degree in E-PSO is

(21)
The approximations above hold for large .

Probability Density of the Node Radial Coordinate, :
Let be a random variable denoting the radial coordinate of
a node at time . We can write

(22)

The first equality in (22) is the percentage of nodes whose radial
coordinate is less than (or equal to) , and the second equality
uses the fact that . To ease analysis,
we treat as a continuous random variable, in which case
its probability density function is found by differentiating
(22) with respect to : .
Global Connection Probability, : Recall from

Section II that is the
approximate relation for the hyperbolic distance between two
nodes at time . Given that the youngest of the two nodes is
node , and using the fact that , ,
the hyperbolic distance between the two nodes when appeared
is . Since this relation
holds for any pair and depends only on the index , we can
drop the subscript and write

(23)

where when .
Recall that , where

and given by (3). Using
(23), we can write: , where

. Now, given the hyperbolic
distance between two nodes at time , , and knowing that
the youngest of the two nodes appeared at time , the probability
that these two nodes are connected is the probability that they
were connected at time

(24)
Removing the condition on the index from the above relation,
we get the global connection probability

(25)

Since time is discrete, and a connection can occur only when
, in (25) we use .

Finally, using that for large , , we can approxi-
mate in (24) by ,

where . By performing now the Taylor
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series expansion of (24) around , one can check that
can be well approximated by the first term of the expansion, i.e.,
the term , for a wide range of parameter values

and . This means that in
(25) can be well approximated by .
As terms other than the first in the Taylor series are multiplied
by powers of , this approximation holds best when

, i.e., when and ,

which hold in the AS Internet.

ACKNOWLEDGMENT

The authors thank M. Boguñá, M. Kitsak, and M. Á. Serrano
for many useful discussions, and B. Huffaker for help with the
AS geographic data.

REFERENCES

[1] F. Papadopoulos, C. Psomas, and D. Krioukov, “Replaying the geo-
metric growth of complex networks and application to the AS Internet,”
Perform. Eval. Rev., vol. 40, no. 3, pp. 104–106, Dec. 2012.

[2] S. N. Dorogovtsev, Lectures on Complex Networks. Oxford, U.K.:
Oxford Univ. Press, 2010.

[3] T. G. Lewis, Network Science: Theory and Practice. Hoboken, NJ,
USA: Wiley, 2009.

[4] S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Networks: From
Biological Nets to the Internet and WWW. Oxford, U.K.: Oxford
Univ. Press, 2003.

[5] S. Bornholdt, Handbook of Graphs and Networks: From the Genome
to the Internet, H. G. Schuster, Ed. Berlin, Germany: Wiley-VCH,
2002.

[6] A. K. Menon and C. Elkan, “Link prediction via matrix factorization,”
in Proc. ECML, LNCS 6912, 2011, pp. 437–452.

[7] A. Clauset, C. Moore, and M. E. J. Newman, “Hierarchical structure
and the prediction of missing links in networks,” Nature, vol. 453, pp.
98–101, 2008.

[8] L. Lu and T. Zhou, “Link prediction in complex networks: A survey,”
Physica A, Statist. Mech. Appl., vol. 390, pp. 1150–1170, 2011.

[9] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguñá,
“Hyperbolic geometry of complex networks,” Phys. Rev. E, vol. 82, p.
36106, 2010.

[10] M. Penrose, Random Geometric Graphs. Oxford, U.K.: Oxford
Univ. Press, 2003.

[11] M. Gromov, Metric Structures for Riemannian and Non-Riemannian
Spaces. Boston, MA, USA: Birkhäuser, 2007.

[12] F. Papadopoulos, M. Kitsak, M. A. Serrano, M. Boguñá, and D. Kri-
oukov, “Popularity versus similarity in growing networks,” Nature,
vol. 489, no. 7417, Sep. 2012.

[13] M. Boguñá, D. Krioukov, and K. claffy, “Navigability of complex net-
works,” Nature Phys., vol. 5, pp. 74–80, 2009.

[14] M. Boguñá, F. Papadopoulos, and D. Krioukov, “Sustaining the In-
ternet with hyperbolic mapping,” Nature Commun., vol. 1, p. 62, 2010.

[15] F. Bonahon, Low-Dimensional Geometry. Providence, RI, USA:
AMS, 2009.

[16] K. Claffy, Y. Hyun, K. Keys, M. Fomenkov, and D. Krioukov, “In-
ternet mapping: From art to science,” in Proc. CATCH, 2009 [Online].
Available: http://www.caida.org/projects/ark/

[17] CAIDA, La Jolla, CA, USA, “IPv4 routed /24 AS links dataset,”
2013 [Online]. Available: http://www.caida.org/data/active/
ipv4_routed_topology_aslinks_dataset.xml

[18] A. Dhamdhere and C. Dovrolis, “Twelve years in the evolution of
the Internet ecosystem,” IEEE/ACM Trans. Netw., vol. 19, no. 5, pp.
1420–1433, Oct. 2011.

[19] M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statis-
tical Physics. Oxford, U.K.: Clarendon, 1999.

[20] F. Papadopoulos, “HyperMap Embedding Code,” 2013 [Online].
Available: https://www.cut.ac.cy/eecei/staff/f.papadopoulos

[21] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games.
Cambridge, U.K.: Cambridge Univ. Press, 2006.

[22] X. Dimitropoulos, D. Krioukov, M. Fomenkov, B. Huffaker, Y. Hyun,
K. claffy, and G. Riley, “AS relationships: Inference and validation,”
Comput. Commun. Rev., vol. 37, no. 1, pp. 29–40, 2007.

[23] Digital Envoy, Norcross, GA, USA, “NetAcuity and NetAcuity edge IP
location technology,” [Online]. Available: http://www.digital-element.
net/ip_intelligence/ip_intelligence.html

[24] A. Lakhina, J. Byers, M. Crovella, and P. Xie, “Sampling biases in
IP topology measurements,” in Proc. IEEE INFOCOM, 2003, pp.
332–341.

[25] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” J. Amer. Soc. Inf. Sci. Technol., vol. 58, no. 7, pp.
1019–1031, 2007.

[26] P. Sarkar, D. Chakrabarti, and A. W. Moore, “Theoretical justification
of popular link prediction heuristics,” in Proc. 22nd Int. Joint Conf.
Artif. Intell., 2011, pp. 2722–2727.

[27] M. A. Serrano, D. Krioukov, and M. Boguñá, “Self-similarity of com-
plex networks and hidden metric spaces,” Phys. Rev. Lett., vol. 100, p.
78701, 2008.

[28] J. Nocedal and S. Wright, Numerical Optimization. New York, NY,
USA: Springer, 2000.

[29] Y. Shavitt and T. Tankel, “Hyperbolic embedding of Internet graph
for distance estimation and overlay construction,” IEEE/ACM Trans.
Netw., vol. 16, no. 1, pp. 25–36, Feb. 2008.

Fragkiskos Papadopoulos received the Diploma
in electrical and computer engineering from the
National Technical University of Athens, Athens,
Greece, in 2002, and the M.Sc. and Ph.D. degrees
in electrical engineering from the University of
Southern California, Los Angeles, CA, USA, in
2004 and 2007, respectively.
He is a Lecturer (US equivalent: Assistant

Professor) with the Department of Electrical En-
gineering, Computer Engineering and Informatics,
Cyprus University of Technology, Limassol, Cyprus.

Constantinos Psomas received the B.Sc. degree
in computer science and mathematics from Royal
Holloway, University of London, London, U.K., in
2007, the M.Sc. degree in applicable mathematics
from the London School of Economics, London,
U.K., in 2008, and the Ph.D. degree in mathematics
from the Open University, Milton Keynes, U.K., in
2011.
He is a Postdoctoral Research Fellow with the De-

partment of Electrical Engineering, Computer Engi-
neering and Informatics, Cyprus University of Tech-

nology, Limassol, Cyprus.

Dmitri Krioukov received the Diploma in physics
from Saint Petersburg State University, St. Pe-
tersburg, Russia, in 1993, and the Ph.D. degree in
physics from Old Dominion University, Norfolk,
VA, USA, in 1998.
He moved to the networking industry as a Network

Architect with Dimension Enterprises, Herndon,
VA, USA. Upon its acquisition by Nortel Networks
in 2000, he accepted a Research Scientist position
with Nortel. Since 2004, he has returned to academia
as a Senior Research Scientist with the Cooperative

Association for Internet Data Analysis (CAIDA), University of California, San
Diego, La Jolla, CA, USA.


