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Abstract—This paper presents a network security laboratory
project for teaching network traffic anomaly detection methods
to electrical engineering students. The project design follows a
research-oriented teaching principle, enabling students to make
their own discoveries in real network traffic, using data captured
from a large IP darkspace monitor operated at the University of
California, San Diego (UCSD). Although darkspace traffic does
not include bidirectional conversations (only attempts to initiate
them), it contains traffic related to or actually perpetrating a
variety of network attacks originating from millions of Internet
addresses around the world. This breadth of coverage makes this
darkspace data an excellent choice for a hands-on study of In-
ternet attack detection techniques. In addition, darkspace data is
less privacy-critical than other network traces, because it contains
only unwanted network traffic and no legitimate communication.
In the lab exercises presented, students learn about network
security challenges, search for suspicious anomalies in network
traffic, and gain experience in presenting and interpreting their
own findings. They acquire not only security-specific technical
skills but also general knowledge in statistical data analysis and
data mining techniques. They are also encouraged to discover new
phenomena in the data, which helps to ignite their general interest
in science and engineering research. The Vienna University of
Technology, Austria, first implemented this laboratory during
the summer semester 2014, with a class of 41 students. With the
help of the Center for Applied Internet Data Analysis (CAIDA) at
UCSD, all exercises and IP darkspace data are publicly available.

Index Terms—Communication system security, data analysis,
engineering education, security.

I. INTRODUCTION

ETWORK SECURITY is one of the most challenging

fields in communication networks research. A well-fo-
cused and forward-looking education is required to generate
scientists able to cope with the ever-changing challenges
and threats in communication networks. Besides the need in
academia, industry and governments also demand well-trained
security experts who can cope with new developments in attack
and defense strategies. Even engineers who are not directly
involved in developing security solutions benefit from a secu-
rity education when designing or deploying new systems. For
a balanced security education, students should not only learn
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principles underlying preventative approaches to prevent or
minimize the likelihood of attacks (e.g., encryption or access
control) but also how to detect attacks in progress or once
they have occurred. This latter objective requires intelligent
observation and interpretation of network traffic in order to find
anomalies and discover new attacks. Working with real traffic
data reveals data analysis challenges that are difficult to convey
otherwise, and this project design reflects the essential benefit
students get from hands-on experience with traffic data.

This paper presents a network security lab experi-
ment for teaching an important class of network security
methods—traffic anomaly detection—to electrical engineering
students (upper undergraduate or Master's level). The lab uses
data from a large IP darkspace monitor at the University of
California San Diego (UCSD), which contains traffic from a
variety of different network attacks originating from millions of
Internet addresses around the world. This breadth of coverage
makes this darkspace data an excellent choice for a hands-on
study of Internet attack detection techniques. Additionally,
darkspace data is less privacy-critical than other network
traces, because it contains only unwanted network traffic and
no legitimate communication.

The Vienna University of Technology (TU Vienna), Austria,
first implemented this laboratory in a Network Security course
(NetSec-1) during the summer semester of 2014, with a class
of 41 students. With the help of the Center for Applied Internet
Data Analysis (CAIDA) at UCSD, all exercises and IP dark-
space data are publicly available in order to encourage adoption
of this class by other instructors of network security in electrical
engineering and computer science [1].

II. RELATED WORK

Increasing demand for security experts has motivated
many universities to include classes in security engineering
in computer science curricula, ideally supplemented by lab
exercises to help students to digest conceptual knowledge.
Early approaches, [2], [3] provided basic recommendations
for designing cyber warfare labs for teaching security auditing
methods. For example, in [2], the instructors split under-
graduates into three groups (attack, defense and forensics)
to carry out experiments in an isolated lab with 50 different
attack/defense tools. Students signed an agreement committing
to appropriate use of the tools and documented their lab work.
The authors recommend a more heterogeneous lab to provide
more exploration opportunities for students. Lee et al. also pre-
sented a competition-based lab experiment [4], where students
set up and defend their own machines and attack machines
set up by other students. Georgia Tech instructors established
an isolated laboratory network to support attack and defense
exercises [5], through its use they learned that for such a lab
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to be successful, it must be “as realistic, large scale, and
interactive as possible” [5].

Others have developed security labs using virtual machines
[6], [7], recognizing that students are more motivated to take
a security class that includes a lab than they are with a pure
conceptual class. Othmane et al. [7] found that sometimes the
answers students provided were unexpected but not wrong; in
these cases they let students demonstrate their work to deter-
mine its correctness. Marsa-Maestre et al. [8] presented a tool
that generates different security scenarios for Internet security
education and found that student grades improved with the ad-
dition of a laboratory component.

The TU Vienna NetSec-I lab teaches network anomaly de-
tection methods using real IP darkspace traffic from millions of
actual Internet sources. It provides a real, large-scale and het-
erogeneous setting as recommended in [2] and [5]. Following
further suggestions from [2] and [7], students are required to
sign a lab agreement, continuously document their findings and
demonstrate new skills in a review session. They also individu-
ally explore assigned parts of the data.

III. APPROACH AND INTENDED OUTCOME

The TU Vienna network security class combines lectures
about security concepts with the NetSec-I lab that complements
that conceptual knowledge with hands-on experiments. The
target group consists of Master's students in electrical engi-
neering, who have already passed a communication networks
class.

The NetSec-I lab concentrates on traffic anomaly detection
techniques for three reasons. First, designing and implementing
anomaly detection techniques requires data analysis experience,
which is best acquired through practical training. Second, cov-
ering a few methods in depth is more rewarding for students
than shallow experience with several different concepts. Third,
expertise with data analysis techniques is a valuable skill for any
future scientific career.

The educational objectives of the lab are to meet the fol-
lowing.

1) Familiarize students with network data analysis methods.
After completing the lab, students should be able to un-
derstand network data traces and apply statistical analysis
techniques to network trace data.

2) Deepen students' network security knowledge: Students
should gain knowledge about a variety of attacks and at-
tack preparation techniques and insight into network pro-
tocols (TCP, UDP and ICMP). The lab should also improve
students' general security awareness.

3) Enable students' general scientific work skills: Students
should learn to solve scientific problems autonomously and
in small (potentially heterogeneous) teams. They should
gain skills in presenting and interpreting results and re-
sponsibly handling critical data.

4) Awaken the scientist in each student: The lab should teach
students the fun in discovering new phenomena and should
generate interest in scientific work. It should motivate stu-
dents to take further classes or a Master's thesis in the area
of network security, or to apply the acquired general data
analysis skills in other fields.
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In addition to student learning objectives, the design incorpo-
rates five teaching objectives, as follows:

* implement research-oriented teaching;

» ensure equal treatment of students;

» prevent cheating;

* use objective criteria for evaluating students;

* limit the effort required for evaluation.

Research-oriented teaching is the concept of bringing
teaching and research closer together [9]. TU Vienna subscribes
to this concept and the laboratory exercises are designed to
implement research-oriented teaching.

While many existing security labs run isolated testbeds or
work with artificial traffic, the TU Vienna NetSec-I Lab uses real
network traffic from a large IP darkspace monitor at UCSD [10],
operated by CAIDA [11]. The darkspace monitor uses an IP net-
work address range that is announced to the Internet but has
nearly no actual hosts attached. The resulting darkspace traffic
data is heterogeneous, since it originates from millions of dif-
ferent sources, with different operating systems and access net-
work technologies located all over the world. So it offers many
exploration opportunities, which helps to hold students' inter-
ested, as described in [2].

The darkspace traffic is collected at UCSD using an entire
/8 network with 224 darkspace addresses, which corresponds to
1/256 part of the whole IPv4 Internet. Access to such a large IP
darkspace is rare, because IPv4 addresses are a scarce resource
nowadays.

IV. KEY DESIGN DECISIONS

The NetSec-I lab teaches hands-on skills on network anomaly
detection methods to complement conceptual knowledge ac-
quired in lectures.

A. Prerequisites for Students

Basic knowledge about IP networks, as well as experience
with MATLAB and shell scripting, are expected of students en-
rolled in the NetSec-I lab. However, TU Vienna initially did not
mandate formal prerequisites, allowing participation of students
from other master programs, e.g., computer technology or tech-
nical computer science.

The first six lectures (90 min each) provide conceptual back-
ground. In these lectures students learn security basics and net-
work traffic analysis techniques. The lectures cover different
analysis techniques, such as analyzing time series and feature
distributions, finding periodicities in the frequency spectrum
and using entropy as a condensed metric to assess feature dis-
persion or concentration. The lectures also cover specific char-
acteristics of IP darkspace traffic. A written test allows evalua-
tion of student understanding of the conceptual background.

Students are not required to have passed the test before par-
ticipating in the lab, although it is recommended. Before lab
appointments, students take a lab introduction session to review
concepts learned in the first part of the course, finalize group as-
signments, learn lab rules and receive exercise sheets.

B. Dataset

To design a lab that is “realistic, large scale, and interac-
tive” [5], the TU Vienna NetSec-I lab uses real network traffic
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captured from a large IP darkspace monitor. The traffic mainly
consists of real network attacks, attack preparation activities or
victims responding to attacks and is used to study new attack
patterns [12], [13] and other global Internet phenomena [14].
Raw IP packets are captured in the commonly used pcap format
[15] and then processed to extract the most important packet
header fields for analysis (FlowTuple format [16]).

C. Data Protection

Although darkspace traffic is less privacy-critical than stan-
dard network traffic, some filtering helps to protect potentially
sensitive information.

1) The first byte of the destination IP addresses denotes the
darkspace network address; this is always set to zero to
prevent potential attackers from knowing the exact address
range of the darkspace.

2) Source IP addresses are anonymized with Crypto-PAn [17]
to protect victims against further attacks.

3) IP packet payload, not needed for the exercises, is removed
to reduce file size.

4) Students must sign an agreement (similar to that in [2]) not
to copy any data or attempt to de-anonymize IP addresses.
The CAIDA Acceptable Use Agreement [18] serves as the
basis for this, and it is extended with the general IT rules
of the Vienna University of Technology and some specific
lab rules.

D. Lab Sessions Setup

Students perform the exercises in three separate three-hour
sessions, but they may request extra time. Students work in
pairs, which enables them to exchange ideas and learn team-
work, but still allows the instructor to verify that both students
contributed to the exercise. Students are encouraged to team
with someone with complementary skills, e.g., a student with
MATLAB experience might pair with one with shell scripting
skills.

All students receive the same exercises to promote equal
treatment and to reduce evaluation effort (see the teaching
objectives in Section III), yet each team is assigned a different
part of the data set to reduce the possibility of cheating. This
also increases student interest, since teams can then discover
different phenomena from each other.

E. Required Software and Tools

The exercises require the following software tools.
1) tepdump [15], a standard tool for capturing and filtering
pcap packet traces.
2) corsaro [16], a specialized tool to convert and aggregate IP
darkspace data (provided by CAIDA, UCSD).
3) MATLAB [19], a tool for numerical computation and math-
ematical analysis. Exercises are also fully compliant with
the open source alternative Octave [20].
4) RapidMiner [21], for machine learning and data mining.
Both MATLAB and RapidMiner can show students the
strengths of different tools and the advantages of their com-
bined deployment. Additional files and scripts required for the
exercises are available at [1].

F. Exercise Description

Table I summarizes the exercises; the full exercise sheet is
available at [1].

1) Students first get familiar with pcap and FlowTuple data
formats. They learn to use corsaro to transform pcap data
into FlowTuple files, which summarize the most relevant
traffic features. Students are required to:

a) list and explore pcap files;

b) transform pcap files into FlowTuple files;

c¢) list and explore FlowTuple files.

2) Since Flowtuple traces contain some categorical informa-
tion not amenable to statistical analysis, students aggregate
information to obtain numerical time series. They are re-
quired to:

a) obtain aggregated values of packets and unique IP
sources for different time rates (hour, minute);

b) extract descriptive statistics of aggregated data and
compare outcomes;

c) generate time series in Comma Separated Values
(CSV) files.

3) Using univariate analysis of aggregated traffic, students in-
vestigate the evolution of different time series, e.g., amount
of packets or unique IP sources, Fig. 1, and analyses net-
work protocol and destination port distributions, which
often reveal abnormal phenomena. Students are required
to:

a) plottime series of aggregated data (packets, unique IP
sources; per minute, per hour);

b) infer traffic phenomena from the obtained plots;

c) aggregate data for analyzing protocol distributions
and TCP destination port distributions;

d) extract descriptive statistics and histograms;

e) reason about the significance of the outcomes.

4) Students study the frequency spectrum of the aggregated
signals using fast Fourier transformation (FFT). Here they
can apply signal processing knowledge acquired in other
classes to find temporal patterns in network data. Students
are required to:

a) apply FFT on time series (packets, unique IP sources);

b) plot FFT results and detect periodicities;

c) obtain average-day plots with error bars of both sig-
nals and compare with the results of descriptive sta-
tistics;

d) study the correlation between packets and unique 1P
sources time series.

5) Students use RapidMiner to perform additional univariate
analysis, and create histograms and metadata of Flowtuple
traces. RapidMiner handles datasets that mix categorical
and numerical data, and allows filtering to isolate unusual
phenomena, e.g., a source attempting to connect many
times to a specific destination port. Students are required
to:

a) import data for analysis considering scale-types;

b) analyze traffic feature by feature (FlowTuple format)
by using meta-data statistics and histograms; detect
anomalies and explain observed phenomena;

c) filter and analyze the specific case of the most com-
monly recurring source IP.
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TABLE 1
NETWORK SECURITY LAB EXERCISES

Exercise set Tools Result Teaching Objectives
Data Pre- tcpdump, corsaro | Data in FlowTuple format Students become familiar with data formats (pcap, FlowTuple), traffic
processing characteristics, and analysis tools: tcpdump, corsaro.
Data corsaro Time series of number of packets, Students familiarize themselves with corsaro tool aggregation
Aggregation number of active sources. capabilities and learn how to treat numeric and categorical data.
Univariate MATLAB Basic statistics, plots of packets and Students learn to abstract knowledge from aggregated signals, basic
analysis, time active sources time series; protocol MATLAB commands, preparation of graphics to present results.
series plotting and destination port histograms Students discover Patch Tuesday effects and Conficker worm tracks.
Analysis of MATLAB Frequency spectrum of time series, Students learn how to apply signal processing methods (e.g., FFT) to
temporal daily average curves discover periodic behaviors (e.g. diurnal patterns). They explore the
patterns evolution and correlation of traffic aggregated signals.
Univariate RapidMiner Metadata and histograms of Students get familiar with RapidMiner, reasoning based on feature value
analysis of FlowTuple features distribution, application of feature filters, and detection of anomalous
FlowTuples and recurrent traffic phenomena.
Bivariate RapidMiner Metadata and scatter plots of Students discover suspicious phenomena and try to characterize the
analysis FlowTuple features involved hosts, boosting their curiosity with the prospect of discovery.
4.5 . . .
a) perform bivariate analysis on different features
4 (FlowTuple format) by using scatter plots; detect
35 anomalies and explain observed phenomena,;
g b) filter and analyze the specific case of the source IP
= 3 . . .
E sending packets to the maximum number of different
8 25 destination ports;
3 ) ¢) filter and analyze the specific case of the destination
& port getting more packets from different [P sources.
s
2 G. Initial Trial Session

)
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days in April 2012

Fig. 1. IP sources per hour observed in the darkspace for April 2012. The peak
on April 11 shows the effect of Microsoft's Patch Tuesday release [13].
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Fig. 2. Vertical and horizontal lines of dots on this RapidMiner capture scatter
plot (showing IP sources, destination ports and flags) suggest suspicious traffic
behaviors, such as ports attacked by many sources or individual sources scan-
ning multiple ports.

6) Finally, Rapidminer can perform bivariate analysis to de-
tect anomalies by plotting different traffic features against
each other, see Fig. 2. Students are encouraged to find
traffic sources that show outlying behaviors and try to in-
terpret which kind of attack or traffic phenomenon they de-
tected. Since each group works on a different dataset their
discoveries vary. Students are required to:

A trial run of the laboratory experiment with two students
several weeks before the semester started provided an oppor-
tunity to test lab operations, validate assumptions about the re-
quired time per exercise, and detect any technical issues. This
trial session was extremely valuable and led to changes in the
final design of the project, including improvements in the de-
scription of the exercises, adjustment of timing, and resolution
of some system administration issues. The trial session also ver-
ified that students were captivated by the data and wanted to
learn about findings from other students. The final version of
the laboratory course thus included a general discussion session
after the lab to allow students to exchange findings and lessons
learned.

H. Correction and Assessment of Student Results

Each team prepares a written lab report with their results,
which are evaluated with prefixed correction criteria and solver
scripts, both available at [1]. Since unexpected outcomes are
possible by design, the evaluation process includes a short lab
review, similar to [7]. Reviews took approximately 30 minutes
per team and consisted of asking students three to five ques-
tions, at least one of which was addressed to each student alone
to evaluate the individual performance of both team members.
Students can obtain up to 30 points for the report, plus up to ten
points based on their individual performance during the review.
Passing the lab requires 21 points total. The final grade is com-
bined from the earlier exam testing conceptual knowledge and
the lab exercise.

V. EVALUATION OF THE LAB

During the registration period for the first offering of the new
class, in summer semester 2014, 62 students registered in order
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TABLE II

RELATIONSHIP BETWEEN EDUCATIONAL OBJECTIVES AND TESTS

Enable students’ general scientific
work skills

Awaken the scientist in
each student

Students develop skills on: correct
plot design; presentation of
results; suitable scientific writing
style (A1); data parsing and
transformation (A2); descriptive
statistics (A3); basic time series
analysis (A4); univariate and
bivariate analysis (AS and A6).

Students are
encouraged to suggest
hypothesis based on
statistics (A4), and to
carry out anomaly
searching, reasoning
on meta-data and
forensic exploration
(AS and A6).

Objectives Familiarize students with network | Deepen students’ network
data analysis methods security knowledge

Report Students learn how to use tools Students acquire a deeper
for the preprocessing and understanding of IP feature
aggregation of traffic data (A2), scale-types (A2), common
the extraction of descriptive traffic-types and expected feature
traffic values (A3), the calculation | entropies (A3), temporal patterns
of trends and periodicities (A4), in darkspace traffic (A4),
and the detection and filtering of expected IP feature values (AS)
traffic anomalies (AS and A6). and identification of traffic-types

(A6).

Oral exam | Students are required to use lab Students’ consolidation of
tools to solve analogous problems | fundamental concepts and
(04) and to propose how to solve | relationships is tested (O1).
specific traffic analysis situations
(02).

Students are required to show
their expertise with data mining
tools (O4) and to propose how to
solve problems by means of data
analysis (02).

Students are provided
with clues (obtained
from analysis) to
interpret what is
happening in the

network (O3).

to get access to slides and material.! Of these, 30—40 students
regularly attended the lectures and 34 students took the theoret-
ical exam before the lab started. A total of 41 students attended
the lab. The lab reports generated by the students and a final oral
exam per group (review session) were used to evaluate if the
learning objectives were achieved. In addition, students could
provide feedback about the class.

A. Methods for Evaluation of Acquired Knowledge

In order to assess the acquired network data analysis skills,
the reports generated by students were evaluated according to
the accomplishment of six different skill Areas (A):

Al: plotting and presentation of results;

A2: data preprocessing and aggregation;

A3: univariate analysis of aggregated data (basic);
A4: analysis of temporal patterns;

AS5: univariate analysis of flow features (advanced);
A6: bivariate analysis of flow features.

The oral reviews completed the evaluation of students' se-
curity and data analysis knowledge in addition to the reports.
Questions were selected from the fields at the report evaluation
indicated presented the most difficulties to the specific group
of students under review. Questions were also intended to as-
sess individual consolidation of the knowledge presented. Every
team was asked at least three questions (and each individual stu-
dent was asked at least two). Oral review questions (O) covered
three of the following four fields:

O1: consolidation of network security knowledge, e.g., Ex-
plain why there are so many TCP SYN-ACK packets;

02: understanding of network security analysis methods,
e.g., Give an example of a network anomaly that is best
detected using bivariate analysis of network flow features,
O3: interpretation of statistical analysis, e.g., Why does the
histogram of the TTL show three isolated regions?;

04: application of lab tools, e.g., Given a pcap file, write a
command that gets a list of used protocols every ten min-
utes with the number of distinct IPs they are addressed to.

The methodology presented (report and oral review) was de-
vised not only to check if the education objectives introduced in

IRegistration is required to get access to material but has no other obligations.

TABLE III
DISTRIBUTION OF LEVEL OF DIFFICULTY ENCOUNTERED BY STUDENTS:
0-NO DIFFICULTY, 1-MINOR DIFFICULTIES, 2-CONSIDERABLE DIFFICULTIES,
3-MAJOR DIFFICULTIES (KEY: S.DEV.: STANDARD DEVIATION, C.INT.:
CONFIDENCE INTERVAL 95%, STS.: STUDENTS)

mean | s.dev. | C.int 0 1 2 3 | sts.
Al 0.6 0.8 0.2 | 55% | 30% | 18% 0% 41
A2 0.5 0.5 0.2 | 58% | 43% 3% 0% 41
A3 1.3 1 03 | 25% | 40% | 23% | 15% 41
A4 1.3 1.3 03 | 28% | 25% | 38% | 13% 41
AS 1 1.1 03 | 45% | 20% | 25% | 13% 41
A6 1 1.1 03 | 45% | 25% | 20% | 13% 41
O] 0.9 0.9 03 | 47% | 30% | 17% 7% 30
02 0.8 0.8 03 | 47% | 38% | 15% 3% 34
03 0.9 0.9 03 | 35% | 41% | 18% 9% 34
04 1 1 05 | 41% | 36% | 14% | 14% 22

Section III were reached, but also to make them more achiev-
able. Table II relates the educational objectives to the skill areas
and oral questions introduced previously.

B. Evaluation Results

Table III gives a statistical analysis of the level of difficulty
(on a scale of 0 to 3) experienced by students in answering
the report and the oral evaluation questions. Since oral ques-
tions were tailored for every specific team, students were not
required to answer a question from each of the expertise fields
(which explains that the total number of students—in the far
right-hand column—is less than 41). The left-hand column
gives the mean of the level of difficulty encountered by students
in demonstrating they had acquired that particular knowledge.

0: no problems or negligible issues that were not penalized;
1: minor difficulties or a few oversights that do not imply
an inadequate understanding of the subject matter;

2: considerable problems that indicate that students did not
understand part of the issues under study;

3: major problems indicating that students did not under-
stand the basis of the exercise or did not do the exercise (or
part of it).

Table III shows, based on the sample of 41 students, that an
average grade of 0.64+0.2 would be expected from a group of
students with similar technical background when facing Al re-
quirements. In general, for all report areas (A) and oral questions



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

(0), average performance levels were around the acceptable de-
scriptor of minor difficulties.

ANOVA tests revealed that there are statistical differences
between the various parts of report (Al to A6),2 but not be-
tween the results for the questions (O1 to O4).3 Students have
more problems in the exercises on the analysis of temporal pat-
terns (A4) and the univariate analysis of the aggregated data
(A3). The exercises for A3 and A4 demand abstract reasoning
and establishing analogies not previously introduced in class, a
more demanding task for students without experience in statis-
tics. Exercises in data preprocessing and aggregation (A2) show
a minor rate of difficulties. This may be due to the repetitive na-
ture of this section, where students can check the outcomes, and
results are either right or wrong, and not too open to interpreta-
tion.

Finally, the high values of standard deviations in
Table III (similar to or higher than the mean) reveal that there
is a strong variation performance between groups, which
coincides with the observations of the instructors. Motivated
students who attended the lectures and familiarized themselves
with the exercise sheet prior to the first lab class had no problem
in passing the lab.

In terms of the objective of acquiring general scientific
skills, the last part of the lab, where students searched for
suspicious sources themselves, was helpful. Although not all
of their attempts at interpretation in their reports were cor-
rect, most demonstrated not only data analysis skills but also
a reasonable understanding of the use and misuse of network
protocols. Students searched additional sources of information
to help interpret their findings and were eager to discuss their
results, indicating an increased interest in scientific work in
the field.

Most students showed encouraging development and were
successful in the course. Seven students, however, did not pass
the lab due to incomplete or poor quality reports, or poor perfor-
mance in the lab review. Three of these did not even attempt to
take the written test of understanding of the theory; three who
did barely passed the test. This suggests that passing the written
test should become a prerequisite for attending the lab.

C. Student Feedback

At the end of the semester (in a discussion session) students
filled out the anonymous standard TU Vienna evaluation sheet
for lectures with labs [22]. For this laboratory class, 14 students
returned an evaluation form, so the results as follows only reflect
the opinions of these 14 and are not necessarily representative
of the whole group of 41 students.

Students were asked to respond to 18 questions, on a scale of
1 (strongly agree) to 5 (strongly disagree). For all 18 statements
the average ratings were between 1.07—1.54, indicating that stu-
dents were quite satisfied with the class.

2ANOVA test (single factor, fixed effects) of Al...A6 (using mean, s.dev.
and sts. from Table III): p — value = 6.3 x 10~® < 0.05 — null hypothesis
discarded (o = 0.05).

3ANOVA test (single factor, fixed effects) of Ol...04 (using mean, s.dev.
and sts. from Table III): p—value = 0.61 > 0.05 null hypothesis not discarded
(a = 0.05).
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In addition to questions about instructor behavior and class
coordination, the evaluation sheet included four questions about
the usefulness of the class. Responses included:
1) “The course raised interest in exploring the topic further”
(average: 1.36);

2) “Information was provided during the course about how I
will be able to use the contents in the future.” (1.54);

3) “The course increased my knowledge” (1.36);

4) “I am capable of using the knowledge I gained from the
course.” (1.50).

In addition, students “enjoyed attending the course” (1.29)
and were “overall satisfied with the course”(1.43). Students
also stated what they “particularly enjoyed”. They explicitly
mentioned the lab part (“practical part”, “lab quality”, “lab
topic”, etc.) and enjoyed “working with real data”. Asked about
possible improvements, students suggested more lab time, a per-
manently open lab, less data preparation, and more emphasis on
the free exploration exercises.

VI. LESSONS LEARNED

This section describes lessons learned and planned future im-
provements.

1) Hold a Trial Session: The lack of major technical prob-
lems during the lab can be clearly attributed to the initial trial
run, which allowed refinements to be made to the lab settings
before actual instruction began.

2) Enforce Prerequisites: In future it will be mandatory to
have taken the introductory communication networks course
and achieved a passing grade on the network security theory test
before registering for the lab. In addition, the lab will include
a short TCP exercise to familiarize students with TCP usage,
using Wireshark [23] to analyze public pcap files [24].

3) Encourage Free Exploration of Data: Student feedback
suggests that students respond well to the research-oriented
teaching approach. Future versions of the course will expand
the opportunities for free exploration tasks.

4) Profit From Student Diversity: Student diversity turned
out to be an opportunity rather than a challenge. Computer sci-
ence students with less experience in signal processing paired
with electrical engineering students who had less experience in
programming. Such complementary pairs performed quite well
in the lab.

5) Offer Flexible Lab Times: Several students asked for addi-
tional lab time to finalize reports or further explore data. Future
offerings of this course will include more free lab time, remote
access to the laboratory, and a booking system to allow students
to check on-line if computers are available.

VII. CONCLUSION

The NetSec-I lab teaches network traffic anomaly detection
security methods to electrical engineering students. The lab fol-
lows a research-oriented teaching approach and uses real net-
work traffic from a large IP darkspace monitor to evoke student
interest in data exploration techniques. The first implementation
of the lab was successful in enabling students to gain both the
technical and general problem-solving skills required. Students
particularly enjoyed the free data exploration exercises, which
demonstrated the power of research-oriented teaching concepts.
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All exercises, data and supplementary material (scripts, etc.) are
available at [1], for use by other instructors.
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