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ABSTRACT

We present the design, implementation, evaluation, and valida-

tion of a system that automatically learns to extract router names

(router identifiers) from hostnames stored by network operators

in different DNS zones, which we represent by regular expressions

(regexes). Our supervised-learning approach evaluates automati-

cally generated candidate regexes against sets of hostnames for IP

addresses that other alias resolution techniques previously inferred

to identify interfaces on the same router. Conceptually, if three

conditions hold: (1) a regex extracts the same value from a set of

hostnames associated with IP addresses on the same router; (2) the

value is unique to that router; and (3) the regex extracts names for

multiple routers in the suffix, then we conclude the regex accurately

represents the naming convention for the suffix.

We train our system using router aliases inferred from active

probing to learn regexes for 2550 different suffixes. We then demon-

strate the utility of this system by using the regexes to find 105%

additional aliases for these suffixes. Regexes inferred in IPv4 per-

fectly predict aliases for ≈85% of suffixes with IPv6 aliases, i.e., IPv4

and IPv6 addresses representing the same underlying router, and

find 9.0 times more routers in IPv6 than found by prior techniques.

CCS CONCEPTS

• Information systems→Clustering and classification; •Net-

works→ Naming and addressing.
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1 INTRODUCTION

Internet (IP) address alias resolution is a critical step in transform-

ing an interface-level graph captured by traceroutes into a router-

level graph that reflects the underlying topology. Alias resolution

techniques that use packet-probing rely on artifacts of router imple-

mentations to infer if a set of interface IP addresses belong to the
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Figure 1: A regex that extracts unique router names for

Savvis routers. Each router name is used consistently among

interfaces on the same router, and is not found in hostnames

on other Savvis routers. §2.1 summarizes regex syntax.

same router. For example, Mercator [8] infers two addresses belong

to the same router if the source address of ICMP port unreachable

responses is the same, and Ally [27], RadarGun [4], MIDAR [12],

and Speedtrap [16] all infer two addresses belong to the same router

if the IP-ID values in response packets appear to be derived from a

central counter. However, because packet-probing techniques de-

pend on specific router behaviors, and on operators not configuring

their network to block or ignore the packets, the set of aliases that

a single technique can infer is limited even inside a single network.

Researchers and network operators have used information en-

coded in the Domain Name System (DNS) to understand properties

of the network for at least 20 years. To aid network management,

operators often use DNS hostname strings to encode information

about the name of the router, location, role, or interconnection

properties of router interfaces – the hardware components that

connect to other routers. However, operators have never developed

consensus on a universal naming convention – each networked

organization independently selects such conventions for their own

suffix (e.g., savvis.net). The resulting diversity in conventions pre-

vents researchers and network operators from systematically using

information encoded in these hostnames.

Researchers have traditionally manually derived regular expres-

sions (regexes) from apparent router naming conventions to extract

network topology information, such as the geographic placement

and roles of routers, link speeds, and router names (e.g., [6, 7, 27]).

In this paper, we consider the challenge of automatically learning

if an operator uses a convention within a suffix that includes a

router name – i.e., a unique router identifier – by evaluating auto-

matically generated regexes. Our system supervises the learning

process using training data comprising a set of router interface IP

https://doi.org/10.1145/3355369.3355589
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addresses inferred to be aliases by another alias resolution tech-
nique. Conceptually, if a regex extracts the same name from a set
of hostnames associated with the same router in our training data,
and a unique name for all routers in the training data within the
same su�x, then we conclude the regex captures the convention
for storing router names in that su�x. Figure 1 provides examples
of hostnames containing router names assigned by operators for
Savvis, and a regex that captures those router names.

There are three key challenges. First, we do not know if host-
names within a given su�x have any convention for embedding
router names to begin with; if there is a convention, we do not know
the speci�c regular expression components required to extract it,
leading to a search space that is infeasible to learn through brute
force. Second, network operators may not keep hostnames in their
su�x current or free of errors [29]; in these cases, even if an oper-
ator has a convention, stale hostnames could lead to an incorrect
regex, or the regex could lead to incorrect inferences. Third, we rely
on imperfect router training data, as alias resolution techniques
are heuristic-based and only feasible for a subset of the Internet
topology, and some aliases are incorrect (false positives), or absent
(false negatives). In light of these challenges, this paper makes the
following four contributions.

(1) We introduce a scalable method for accurately infer-
ring regexes that extract router names from hostnames. Be-
cause it is not feasible to learn conventions with brute force, we
built a method that, over the course of eight stages, �nds general
patterns in hostnames, learns any necessary literals and charac-
ter classes to embed in the regexes, assembles conventions from
regexes, and learns regexes that �lter out hostnames with no router
name component. The method is implemented in C, builds and
evaluates regexes using parallel threads of execution, and uses
compilation extensions in regex libraries that reduce runtime.

(2) We validate our algorithm using ground truth from
10 network operators.We built a public website containing the
regexes that form our inferred conventions, as well as a per-su�x
demonstration showing the outcome of applying those regexes to
router interface hostnames in our training data. We sent a link
to the website to the North American Network Operators’ Group
(NANOG) mailing list in April 2019. We received validation data
covering 11 networks of di�erent classes and scale from 10 oper-
ators, from a Tier-1 network and a large U.S. content provider, to
smaller access networks. The responses show that our inferred con-
ventions capture the operators’ naming intent, though in two cases
the conventions could have been improved with better training
data. All 10 operators manually maintained their hostnames.

(3) We demonstrate the utility of our algorithm by apply-
ing it to 16 sets of training data across 9 years.We used the 16
Internet Topology Data Kit (ITDK [5]) snapshots built by CAIDA
between July 2010 and April 2019, which include routers inferred
using the MIDAR [12] and Mercator techniques [8], and associated
hostname strings, to automatically derive naming conventions for
2550 su�xes. The conventions inferred additional aliases for 19,136
routers in 619 su�xes for the 201904 ITDK, a 105% gain. Conven-
tions we inferred for the IPv4 topology perfectly predicted IPv6
clustering for �85% of overlapping su�xes, implying our conven-
tions infer IPv4 and IPv6 router aliases, a step towards analyzing
router-level congruity of IPv4 and IPv6 paths.

Term De�nition

hostname A string stored in a DNS pointer (PTR)
record for an IP address.

su�x A label sequence at the end of a hostname
identifying an administrative domain.

extractor regex A regex that extracts a possible router name
from a hostname.

�lter regex A regex that matches but does not extract
a router name from a hostname.

training router A router where prior alias resolution
techniques found aliases.

training set A set of training routers belonging to a
su�x we use to infer a naming convention.

application set A set of router interfaces where prior alias
resolution techniques did not �nd aliases.

router name A string common to interfaces of a router,
di�erent from other routers in the su�x.

candidate name The longest common substring across
hostnames for a training router.

extracted name The string extracted from a hostname
by a candidate regex.

naming A set of �lter and extractor regexes that
convention capture the way operators embed router

names in hostnames for a su�x.
Table 1: De�nitions that we use in this work.

(4) We publicly release the source code implementation
and a website containing the inferred naming conventions.
We name our tool Hoiho, for Holistic Orthography of Internet Host-
name Observations, after a �ightless native New Zealand bird [22].
To promote further validation and use of Hoiho, we publicly re-
lease our source code implementation as part of scamper [15]. The
website we built for validation containing the regexes and their
application [17] allows researchers to obtain the regexes, under-
stand how they work, and potential limitations given incongruities
between the training data and our conventions.

We provide background in §2, discuss challenges in §3, and
identify principles that address tensions in the algorithm in §4.
§5 describes our algorithm, while §6 presents limitations of the
approach. Finally, §7 shows potential applications of our algorithm,
and §8 outlines future work. Table 1 summarizes the de�nitions we
use in this work.

2 BACKGROUND AND RELATEDWORK
2.1 Regular Expressions: Crash Course
A regex de�nes a pattern that can be applied to a string to check
if the string conforms to the structure expressed in the pattern.
The regex ^[a-z]+\.foo\.com$ applied to bar.foo.com would match,
because bar consists solely of letters between a and z, and the
remainder of the string is .foo.com. This work uses the regex syntax
capabilities provided by the Perl Compatible Regular Expressions
(PCRE) library [9]. This section covers the small portion of PCRE
syntax that we use.
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Patterns within a regex may be expressed as literals (e.g., foo)
or as character classes. .+ matches any sequence of characters.
\d* matches zero or more digits, \d+ matches at least one digit,
\d matches one digit, and \d{4} matches exactly four digits. [a-z]+
matches at least one alphabetic character, [a-z\d]+ matches alphanu-
meric characters, and [a-z]+\d+ matches a sequence of alphabetic
characters followed by a sequence of digits. Patterns may specify
what they cannot contain. [^-]+ matches a sequence of characters
that does not contain a hyphen; foo matches but foo-bar does not.

A regex may be anchored so that the pattern expressed must
begin at the start of a string with ^ and/or end at the last character
of a string with $. All of our regexes use anchors at the end of the
string, as the su�x to which they apply is at the end of the string.
A regex may extract portions of a string by including the portion of
interest in parentheses. The regex ^([a-z]+)\.foo\.com$ extracts bar
from bar.foo.com. Our regexes use parentheses to extract portions
of the hostname that could contain a router name. Some characters
in a regex must be escaped with a backslash (\) to match the char-
acter, rather than be interpreted as a control sequence. Ordinarily,
a dot (.) matches any character; \. matches a dot. Finally, a regex
may contain a logical-or statement that matches one of a series
of possible patterns. The pattern (?:foo\d+|bar\d*|baz) will match
either (1) foo followed by at least one digit, (2) bar followed by
digits, if any are present, or (3) baz.

2.2 Grammar Induction
Learning structure from example text is known as grammar in-
duction in machine learning. Methods in the literature range in
complexity from trial and error approaches like the one we describe
in §5, to genetic algorithms to address more complex examples. We
chose a heuristic-guided trial and error approach, as the implemen-
tation of the algorithm is simple to explain and understand, we can
make use of domain knowledge to constrain the set of candidates,
and the execution time of the algorithm is reasonable because the
set of regexes we evaluate for each su�x is relatively small. Gram-
mar induction methods usually produce a parse tree to represent
valid grammatical constructs, but our method produces practical
regexes that researchers can use to analyze Internet topology.

In 2008, Li et al. built ReLIE to reduce the manual e�ort in build-
ing a regex [14]. The approach relied on a human providing a
starting regex and input data, which their method would then im-
prove. In 2010, Babbar et al. [2] introduced a technique that could
learn regexes even when a human with lower domain expertise
than assumed in [14] provided the starting regex. In 2012, Murthy
et al. [21] presented a technique to improve recall of regexes that
involved human feedback. All techniques were able to improve in-
put regexes for identifying patterns such as software names, phone
numbers, and university course numbers. In 2016, Bartoli et al. built
RegexGenerator, which instead relied on a human to provide exam-
ples of valid extractions from a set of input data, for which their
method would then build a regex [3]. In our work, we do not have
a set of starting regexes or valid extractions for each su�x to learn
from, so we assess the extractions we make through trial-and-error
for correctness against an input set of router aliases.

2.3 Extracting Information from DNS
Researchers have used information encoded in DNS to understand
router-level properties of the Internet for at least 20 years. To iden-
tify the hostnames corresponding to routers, researchers query the
DNS for pointer (PTR) records for router interface IP addresses
observed by traceroute in a path toward a destination.

In 2013, Ferguson et al. studied the interconnection, capacity,
geography, and growth of Cogent’s network. They continuously
resolved the hostnames of address space used by Cogent to num-
ber their routers, and then applied a regex that they manually
constructed to Cogent’s hostnames to extract interface speeds, loca-
tions, and names of Cogent’s routers [7]. They found that Cogent’s
network grew by 11 routers per week between 2012 and 2013.

Rocketfuel’s undns tool [27] released in 2002 contained a list of
manually assembled regexes that extracted geographic locations
from hostnames to reason about POP-level ISP topology. In 2014,
Hu�aker et al. developed the DNS-based Router Positioning (DRoP)
tool [10], which learned geographic components of router host-
names by identifying the position of a geographic label in a host-
name relative to punctuation from the end of the hostname. They
assembled a dictionary of known airport, CLLI, UN, and city names,
which they used to identify candidate locations within hostnames.
Their method learned a geolocation convention if the majority of
inferred router locations for a su�x did not violate delay-based con-
straints given the position of known landmarks, and automatically
built regexes to extract geolocation information from hostnames.

In 2013, Chabarek et al. developed a parser to extract interface
types, speeds, and manufacturer information using information en-
coded in hostnames and a manually-assembled dictionary [6]. They
also conducted a NANOG survey, which received 22 responses;
5 of the operators had automatic name generation, and 2 used a
script to build their zones. Their dictionary contained 5 known IPv4
address format strings, 26 common interface type strings, and 19
common router role strings covering core, peering, and access roles.
They used clustering to group hostnames with similar structures,
and inspected the clusters to extract information, congruent with
their dictionary. Our method does not use a manually-assembled
dictionary to guide regex building, because we cannot assume op-
erators use the common interface types in their hostnames, and a
dictionary will become out of date over time. We instead rely on
the ability of our method to learn the substrings used by operators
and embed them into a regex using available training data.

2.4 Building Router Graphs
Researchers have put considerable e�ort into alias resolution tech-
niques that can infer if two IP addresses are assigned to the same
router, a critical part of building a router-level graph [28], because
traceroute returns a sequence of interface IP addresses, rather than a
unique identi�er for each router. There are two common approaches
to alias resolution: probe-based active methods that reveal signa-
tures that imply two IP addresses are aliases, and passive approaches
that infer router aliases using graph analysis techniques.

In 2000, Govindan et al. developed Mercator [8], which sends
active probes to an unused port to solicit port unreachable responses
for each candidate alias, and infers two probed addresses are aliases
when the same source address is in the responses. In 2002, Spring et
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al. developed Ally as part of the Rocketfuel ISPmapping system [27].
Ally infers two addresses are aliases if IP-ID values in responses to
interleaved probes it sent to each candidate appear to be assigned
from a single counter. Because probes are sent to pairs of interfaces,
resolving a graph of N interfaces requires O¹N 2º probes.

In 2004, Spring et al. discussed additional heuristics for resolving
aliases [26], including the �rst passive approaches based on graph
analysis: interface addresses immediately preceding a common suc-
cessor are likely aliases when routers interconnect with point-to-
point links, and interface addresses observed in a single traceroute
cannot be aliases if there are no forwarding loops. They also ex-
tended Rocketfuel’s undns tool [27], which previously focused on
extracting geolocation information from hostnames (§2.3), to also
extract fragments of hostnames that uniquely identify a router us-
ing regexes. They built 16 conventions by hand through observing
patterns in interface hostnames they clustered using aliases inferred
with active probing from Mercator [8] and Ally [27]. In this work,
we build an algorithm to automatically derive conventions for 2550
su�xes in 16 sets of training data across 9 years.

In 2008, Sherwood et al. developed Discarte [25], which used
the IP Record Route option in traceroute probes, as well as graph
analysis, to resolve IP aliases and identify hops where routers do
not respond to traceroute probes. Both Sherry et al. (2010) and
Marchetta et al. (2013) developed techniques that use the IP pre-
speci�ed timestamp option to infer aliases using timestamp patterns
in packets. Because only 40 bytes of IP options can be contained in
a single packet, these techniques can only test pairs or small (up to
4) sets of IP addresses at a time [19, 24].

Recent work has focused on improving the scaling of alias reso-
lution, in order to build more accurate and complete router-level
maps. In 2008, Bender et al. showed it was possible to solicit IP-
ID values from multiple candidate aliases in parallel, and evaluate
candidate alias pairs o�ine, using the RadarGun [4] tool. They
demonstrated RadarGun on 9,056 candidate aliases. In 2013, Keys
et al. [12] and Luckie et al. [16] built on the RadarGun approach
to build techniques capable of scalably probing millions of candi-
date addresses for aliases in parallel – MIDAR for resolving IPv4
aliases [12], and Speedtrap for resolving IPv6 aliases [16].

Both Keys et al. [12] and Luckie et al. [16] used regexes that
they manually constructed to extract router names, which they
con�rmed with network operators, and then used those regexes to
validate their alias resolution techniques. While both papers noted
some apparent errors in the ISP’s hostnames, the operator-validated
regexes validated the aliases they inferred. In this work, we learn
the router name component of hostnames by evaluating candidate
regexes against previously inferred alias sets.

2.5 CAIDA’s Internet Topology Data Kit
In this work, we use CAIDA’s Internet Topology Data Kit (ITDK [5])
as training data to learn router naming conventions. We use the
16 ITDKs CAIDA built between July 2010 and April 2019, all of
which collected IP paths using scamper’s implementation [15] of
Paris traceroute [1], and performed alias resolution using Merca-
tor [8] and MIDAR [12]. Each ITDK contains an inferred router
level graph constructed using traceroutes collected towards every
routed IPv4/24 pre�x from a globally distributed team of 45 – 153

vantage points (VPs) over the course of two weeks. Most ITDKs
also contain a �le recording the hostnames associated with each
interface IP address; we obtained the hostnames for the 5 ITDKs
that did not include this �le from archives of CAIDA’s ongoing DNS
lookups that correspond to when CAIDA constructed the graph.

The number of router interfaces varied with the number of VPs
that CAIDA used to collect traceroute paths, from 1.52M interfaces
in 2010 to 2.75M in 2019. A consistent fraction (55.9% – 60.4%) of
these interfaces had a hostname recorded. Due to visibility limita-
tions in traceroute [13] and coverage limitations in alias resolution
techniques [11], only 4.9% – 10.2% of routers in the ITDKs have
more than one interface recorded. Our technique relies on routers
with more than one recorded interface to evaluate the consistency
and uniqueness of names inferred within a given su�x.

3 INTUITION AND CHALLENGES
Our algorithm learns if a network uses a naming convention that
includes a router name by evaluating automatically generated can-
didate regexes using a set of routers that other alias resolution
techniques previously inferred. Conceptually, we infer the regex is
extracting a router name if three conditions hold: (1) if the regex
extracts the same value from a set of hostnames associated with
each IP address on the router, (2) the value is unique to that router,
and (3) the regex behaves this way for all of the ISP’s routers. This
inference algorithm is challenging for three key reasons.

1. Heterogeneous Naming Conventions. We do not know,
a priori, if a given su�x uses a convention that embeds router
names in hostnames. Neither do we know what sequence of regex
components is required to capture the naming convention, leading
to a search space that is infeasible to learn through brute force.
Instead, we must use heuristics to narrow the search space. When
a single network uses a convention, it may use multiple di�erent
formats depending on their internal needs and the roles of their
routers; a single su�x may require multiple regexes to capture the
diversity of formats within the su�x and minimize false inferences.

2. Imperfect Naming TrainingData.Network operators have
complete control over the information they store in their zones.
Some network operators maintain their zones automatically, using
information stored in well-maintained centralized databases [6].
Other operators maintain their zones manually, or the centralized
database might not be kept up to date. These artifacts hamper our
ability to learn naming conventions, as the interfaces may appear
as if they do not belong to a particular router (false negatives) or
belong to a di�erent router (false positives).

3. Imperfect Router Training Data. Alias resolution tech-
niques (§2.4) are only feasible for a subset of the Internet topology.
The most feasible IPv4 technique, MIDAR, was applicable on up
to �80% of �2.3M interfaces probed in 2013 work [12], and the
most feasible IPv6 technique, Speedtrap, was applicable on up to
�30% of �53K interfaces probed in 2013 work [16]. Because these
techniques actively probe routers, through probe scheduling, router
rate-limiting, router implementations, and packet loss, it is possible
for these techniques to miss aliases (false negatives). Further, these
techniques may associate interfaces that are not aliases through
coincidence of returned values (false positives).
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Figure 2: Specificity of naming conventions for the routers

in figure 1 on a continuum. To avoid over-fitting to training

data, we choose themost specific conventionwith the fewest

regexes when choosing between conventions with similar

clustering (NC #2).

4 PRINCIPLES

Before discussing our method, we first outline tensions and princi-

ples we arrived at for addressing them. The key issue facing our

work is that it is impossible to know the intent an operator had

when assigning a hostname to a router interface, or whether or not

the training data for a suffix reflects their intent. That is, it is not

possible for anyone other than an operator with ground truth to

distinguish between an operator using multiple conventions for

different routers in their suffix, and errors in the training data that

follow a pattern. This section describes our approach to establishing

a sound basis for naming convention (NC) inference.

4.1 Specificity

Because we use a machine learning approach to infer a naming con-

vention, it is possible that we could derive a convention that overfits

to the training data so that there is perfect alignment between the

clustering in the training data and the clustering of interfaces by

the naming convention. We know, however, that the training data

is not perfect (§3).

Naming conventions should be as specific as possible so that

they capture patterns in the training set, but no more specific than

necessary. Figure 2 shows a specificity continuum for candidate

naming conventions for savvis.net routers in figure 1. If a naming

convention with fewer regexes achieves similar clustering against

training data compared to a convention with more regexes, then

we prefer the convention with fewer regexes, i.e., we prefer NCs #1

and #2 over #3 and #4 in figure 2. We do this to avoid overfitting

to the training data, as our method will otherwise infer naming

conventions with many regexes, each of which apply to a small

fraction of hostnames, including those with errors following a

pattern in them, and not representing the operator’s intent.

Regex component Example Sum

Anything .+ 0

(score: 0 per component)

Exclude specified punctuation [^-]+ 1

(score: 1 per component) [^\.]+ 1

[^\.]+\.[^\.]+ 2

[^-]+-[^\.]+\.[^-]+ 3

Specified classes [a-z\d]+ 2

(score: 2 per [a-z\d]+, [a-z]+ 3

3 per [a-z]+ or \d+) [a-z]+\d+ 6

IPv4 address \d+\.\d+ 6

(score: 3 per \d+) \d+-\d+-\d+-\d+ 12

IPv6 address [a-f\d]+ 3

(score: 3 per [a-f\d]+) [a-f\d]+-[a-f\d]+ 6

Literal foo 12

(score: 4 per character) infra\.cdn 36

Table 2: Scores of individual regex components sum to give

a specificity score. The more specific a component is, the

larger the contribution to the specificity score. If two regexes

evaluate the same, we break ties using the specificity score.

Figure 3: Examples of IP addresses embedded in hostnames.

Operators do not always embed all of the IP address in the

corresponding hostname.

When we build a regex, we assign each regex component a score

according to how specific the component is, which we sum to obtain

a specificity score. Table 2 lists the specificity scores per component,

where more specific components have higher component scores.

We chose the component scores so that we would choose the regex

with the highest (most specific) score when breaking ties between

regexes that perform the same clustering, i.e., we would prefer

NC #2 over #1 in figure 2. Table 2 shows that we can include a

variable number of components to cover IP addresses embedded

in hostnames, because operators do not always embed all of the IP

address in a corresponding hostname, as illustrated in figure 3.

We also prefer regexes that contain fewer extraction elements.

The first regex in NC #4 in figure 2 contains three extraction ele-

ments, selecting the middle digit (i.e., 0) for savvis.net routers 1-3

in figure 1. Extracting this digit is a symptom of over-fitting, as

the middle digit refers to the interface card and is not part of the

router name. Further, extracting this digit provides no additional

clustering benefit over the first regex in NC #2 in figure 2, which

contains two extraction elements.
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Figure 4: Evaluating two naming conventions (NCs) on Level3 training data. Table 3 defines the per-interface classifications

we assign. NC #1 splits 1d + 1e from router 1 (FNE), clusters 5a + 5b with 6a + 6b (FP), and includes an IPv4 literal in the name

for router 9 (FIP). NC #2 correctly clusters all hostnames where clustering is possible.

Class Relationship to training data

TP True positive: clustered to same training router.

FP False positive: clustered to different training

router.

FIP False IP: extraction includes portion of IP

address embedded in hostname.

FNE False negative extraction: interfaces of training

router clustered to separate routers.

FNU False negative unmatched: regex does not match.

SP Single positive: assigned to own cluster, no other

hostnames in same suffix on training router.

SN Single negative: regex does not match, no other

hostnames in same suffix on training router.

Table 3: Per-interface classifications of clustering according

to training data, guiding refinement of regexes.

4.2 Fidelity to Training Data

We evaluate naming conventions according to their ability to cluster

hostnames congruent with corresponding routers in the training

data. We chose an evaluation approach that guides refinement of

regexes that form a naming convention.We illustrate our evaluation

approach using the Level3 routers shown in figure 4; NC #2 is better

than NC #1 by this principle. Table 3 summarizes the definitions

for per-interface classifications we assign during evaluation.

We assign a true positive (TP) to an interface when a NC clus-

ters at least two interfaces congruently with the clustering on the

corresponding training router in ITDK. We assign a false positive

(FP) to an interface when a NC clusters the interface incongruently

with the clustering on the corresponding training routers.

We distinguish two classes of false negative. A false negative

extraction (FNE) occurs when a NC separates interfaces of a training

router into distinct clusters, for example interfaces 1d and 1e in

NC #1 in figure 4. A false negative unmatched (FNU) occurs when a

NC does not extract a name from a hostname on a training router

that has more than one hostname in the same suffix, for example

interfaces 7c and 8b in NC #1 in figure 4. We use FNE and FNU

classifications to guide refinement. A FNE can indicate that a regex

contains an unnecessary extraction; the first extraction element in

regex in NC #1 separates interfaces from the same router, but the

logical-or statement in the first regex of NC #2 retains the cluster.

A FNU can indicate that a naming convention does not cluster

interfaces that it should; NC #1 does not cluster 7c and 8b with

their training routers, but the second regex in NC #2 does.

We assign a false IP (FIP) when the extraction includes a portion

of an IP address that an operator embedded in a hostname – for

example, for interface 9a in NC #1 in figure 4 – as a router name

does not include a portion of an IP address. We detect this class of

error by noting the position in the hostname of sequences of at least

two IPv4 address byte values or four contiguous IPv6 hexadecimal

digits that match the IP address of the interface, and determining if

they overlap with the extracted name. This class of hostname often

follows a pattern because operators can automatically populate

these hostnames using macros provided by DNS server software.

We learn filter regexes to ignore these hostnames when necessary.

We also distinguish two classes of inference when the training

router has a single interface in a suffix. A single positive (SP) occurs

when the extracted name does not cluster the interface with any

other interface belonging to a training router. A single negative (SN)

occurs when the regex does not extract a name from the hostname.
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Figure 5: Method for inferring naming conventions across eight phases, and an illustration of progress through these phases

for two suffixes. Not all phases may contribute to the final naming convention, but all phases are required to overcome het-

erogeneity in operator naming conventions. Each symbol identifies an evolving regex as our method refines it.

4.3 Ranking Regexes

Our metric for ranking regexes, which we call Absolute True Posi-

tives (ATP), is the number of true positives (TP)minus false positives

(FP), false negative extractions (FNE), and false IP extractions (FIP).

We do not include false negative unmatched (FNU) in our metric, as

some interfaces could never be correctly clustered using their host-

name. For example, when an operator names an address assigned

to a neighbor for interconnection (e.g., hostnames on routers 5 and

6 in figure 4) they are not naming the neighbor’s router. Neither

do we include either single negatives (SN) or single positives (SP)

in our metric, for the same reason. In addition, extracting router

names for routers with a single interface in a suffix at best would

not cluster them with any other interface; at worst, they could be

incorrectly clustered with interfaces on other routers.

We considered two other approaches to ranking regexes. First,

we considered using the Positive Predictive Value (PPV) – TP /

(TP + FP), which is the primary statistic reported by prior work

evaluating packet-probing alias resolution techniques, including

MIDAR [12], Speedtrap [16], and PSTS [24]. However, a PPV rank-

ing would prefer conventions that congruently cluster a small set of

interfaces within a suffix over conventions that cluster a larger set

of interfaces with a small number of errors. Second, we considered

using the Rand Index [23], which is a pairwise measure of clustering

accuracy [18] – (TP + TN) / (TP + FP + FN + TN). However, in large

training sets this metric is dominated by true negatives – whether

or not two hostnames matched by a convention belong to different

routers, such that a convention with pervasive false positives can

have a high Rand Index.

4.4 Refinement Conditions

Figure 5 provides a roadmap of our method, showing the evolu-

tion of regexes and candidate naming conventions for two suffixes,

which we discuss in detail in §5. The first five phases build extractor

regexes that obtain extracted names from the hostnames. The first

phase (§5.1) builds base regexes which consist solely of compo-

nents that do not contain the punctuation character specified in

the component. The next three phases add specificity. The second

and third phases (§5.2, §5.3) embed literal strings in these regexes,

and the fourth phase (§5.4) embeds specific character classes. The

fifth phase (§5.5) builds regexes that could be paired with existing

regexes in the set to increase coverage, and the sixth phase (§5.6)

builds sets of regexes that increase coverage using the set of regexes

built in the first five phases. The seventh phase (§5.7) builds filter

regexes to filter out hostnames that extractor regexes should not

match because they assign interfaces to wrong routers, or extract a

portion of an IP address embedded in the hostname, and add these

filter regexes to applicable sets. A naming convention is therefore a

set of filter and extractor regexes; the eighth phase (§5.8) selects

the best naming convention among the conventions for each suffix.

We define two refinement conditions that a new regex building

on an existing regex must meet, in order for the new regex to be

included in the working set. First, the PPV of the new regex must

not be more than 0.5% worse than the PPV of the existing regex; a

more specific regex matching fewer hostnames with a lower PPV

is worse than the existing regex. Second, the regex must infer TPs

for at least three training routers for us to have confidence that the

regex is capturing a component of the naming scheme.
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Figure 6: Example he.net routers we use to explain stages §5.1-§5.6, with the base regexes (§5.1) built for interfaces 1a and 1b.

4.5 Removing Redundant Regexes

At the end of each phase 1-5, we remove regexes to reduce unpro-

ductive exploration. We first remove regexes that do not correctly

cluster hostnames for at least one training router. We then rank

regexes in descending ATP (§4.3), and remove regexes whose TPs

are contained in a higher-ranked regex with no additional FPs. If

two regexes have the same ATP, we choose the regex with fewer

extraction components, or higher specificity, and remove the other.

5 METHOD

Our method uses three data sources: router aliases inferred with

MIDAR and Mercator, hostnames of those interfaces, and a list of

public DNS suffixes. CAIDA’s ITDK (§2.5) provides the first two,

and Mozilla’s public suffix list [20] provides the third. Each ITDK

contains all IP addresses that available Ark vantage points observed

using traceroute over a ≈2 week period. Because alias resolution

techniques are only feasible for a subset of the addresses (§3) our

training set consists only of ITDK routers with multiple aliases;

these routers are training routers. The application set consists of the

remaining ITDK routers with no inferred aliases.

5.1 Build Base Regexes

For each training router, we build regexes that extract candidate

names, based on common substrings (CSs) between hostname pairs.

We use punctuation (non-alphanumeric) characters to build struc-

ture in regexes, in line with how operators use punctuation in prac-

tice. For each hostname pair on each training router, we identify

CSs in the hostnames using a variation of the dynamic program-

ming solution to the longest common substring (LCS) problem.

The conventional LCS solution extracts a single substring, but a

router name can be assembled from multiple substrings within a

hostname, as is the case for savvis.net in figure 1, so we greedily

select non-overlapping substrings to identify CSs. Because not all

substrings may be needed to uniquely identify a router (the middle

digit in savvis.net routers 1-3 in figure 1 is not part of the name)

we build regexes that extract all combinations of substrings.

Figure 6 shows the base regexes our method builds for a sin-

gle he.net router that extract 100ge4|core3.fmt2 and core3.fmt2

when processing the hostname pair (1a, 1b); our method also builds

regexes that extract 100ge4, but we do not show these regexes for

brevity. Using the CSs, we divide a hostname into portions that we

do and do not extract, and recursively build regexes using all com-

binations of regex components that match hostname components

delimited by punctuation. This phase builds regexes using only

regex components that exclude specific punctuation (e.g., [^-]+),
or match anything (.+) at most once per regex (table 2). We do not

include literals or character classes in this phase, as a full expansion

using all combinations of regex components is intractable. Finally,

we remove redundant regexes using the method in §4.5.

5.2 Refine True Positives

This phase refines the set of regexes by identifying common literals

in correctly clustered hostnames, i.e., those that were true positives,

and then refines regexes to embed those literals in the regexes.

Because these literals are in common across matched hostnames,

they are found in the candidate names. We illustrate this phase

using routers 1-3 in figure 6, where ^[^\.]+\.([^\.]+\.[^\.]+)\.he\.net$
extracts core3.fmt2, core1.atl1, and core1.ash1 as candidate names.

We recursively extract CSs from pairs of extractions, breaking on

changes in character class: alphabet, digits, and punctuation – i.e.,

core1 from core1.atl1 and core1.ash1, and core from core3.fmt2

and core1.ash1. We then build new extraction components for the

regexes, embedding the CSs, and then replace the extraction compo-

nent in a copy of the base regex. We evaluate the new regexes using

the method in §4.2, and add each new regex to our working set pro-

vided the two refinement conditions in §4.4 hold. At the end of this

phase, we have built ^[^\.]+\.(core[^\.]+\.[^\.]+)\.he\.net$ and ^([^-
]+)-[^\.]+\.(core[^\.]+\.[^\.]+)\.he\.net$. Finally, we remove redun-

dant regexes; because the base regex ^[^\.]+\.([^\.]+\.[^\.]+)\.he\.net$
is less specific than ^[^\.]+\.(core[^\.]+\.[^\.]+)\.he\.net$, but per-
forms the same clustering, we remove the base regex from our

working set, using the method in §4.5.
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Figure 7: Refinement of he.net regexes: §5.3 – §5.6.

5.3 Refine False Negative Extractions

This phase identifies literals in the hostnames that are in common

in pairs of matched hostnames, but do not form part of the router

name. Regexes that extract more than the router name can sepa-

rate interfaces of a training router into different clusters (FNE). For

router #2 in figure 6, ^([^-]+)-[^\.]+\.(core[^\.]+\.[^\.]+)\.he\.net$
clusters interfaces 2a and 2b into ge2|core1.atl1 and ge6|core1.atl1,

as shown in figure 7a. We therefore find the extraction component

that is separating the hostnames, ([^-]+) in this case, and assemble

all the literals obtained by that extraction component. We recur-

sively extract CSs from these extractions, breaking on changes in

character class: alphabet, digits, and punctuation as before, but

also replacing digits in the CSs with regex components that match

digits. For the routers in figure 6, we obtain \d+ge\d+, ge\d+, and

esnet\.\d+gigabitethernet\d+.

Figure 7b shows how we build an intermediate regex set, where

we replace the extraction in the regex with these patterns. We

evaluate each regex in the intermediate set using the method in

§4.2 and rank the regexes using the ATP method in §4.3. We add the

highest ranked regex from the intermediate set to a working set, and

then iteratively add other regexes from the intermediate set to the

working set. In each iteration, we choose the regex that increases

the ATP the most, provided the two refinement conditions in §4.4

hold. Finally, we condense the patterns into a logical-or statement

– (?:\d+ge\d+|ge\d+) – and embed the statement in the extraction

component that separated the hostnames in the original regex.

5.4 Embed Character Classes

This phase identifies character class sequences in common across

correctly clustered hostnames, and replaces less specific regex com-

ponents with components that specify character classes. Figure 7c

shows that of the three [^\.]+ components in ^(?:\d+ge\d+|ge\d+)-
[^\.]+\.(core[^\.]+\.[^\.]+)\.he\.net$, the first two obtain digits from

the hostname, and the third obtains alphanumeric characters. For

the first two components, we substitute \d+. For the third, we build

[a-z\d]+ to match alphanumeric characters, and the more specific

[a-z]+\d+ to match the sequence of alphabet characters followed by

digits as observed in individual hostnames. We add these derived

regexes to the working set provided the two refinement conditions

in §4.4 hold, and then remove redundant regexes with less specific

patterns using the method in §4.5 to arrive at ^(?:\d+ge\d+|ge\d+)-
\d+\.(core\d+\.[a-z]+\d+)\.he\.net$.

5.5 Refine False Negative Unmatched

This phase identifies hostnames that an existing regex did notmatch,

but that contain the same string as the extracted name from the

same training router, and then builds additional regexes that match

these unmatched hostnames to extract the candidate name. These

hostnames were assigned FNU during evaluation (§4.2). Figure 7d

shows that the regex has two FNU assignments, for interfaces 1c

and 1d in figure 6. We assemble the literals from each hostname that

were not part of the regex extraction (v1119 in 1c, and v1832 in 1d)

and recursively extract CSs from these literals, breaking on changes

in character class: alphabet, digits, punctuation, and replacing digits

in the CSs with regex components that match digits – ^v\d+. We

build additional regexes, embedding the CSs in the non-extraction

portion of the regex – ^v\d+\.(core\d+\.[a-z]+\d+)\.he\.net$. We eval-

uate these regexes alongside the existing regex, and include these

additional regexes in the working set provided the two refinement

conditions in §4.4 hold.

5.6 Build Regex Sets

This phase increases coverage of suffixes where the operator has

multiple conventions. We rank regexes by ATP (descending), and

then evaluate the outcome of pairing a regex with each of the

regexes below it in the rank order. We include an expanded regex in

our working set provided that the two conditions in §4.4 hold, and

that the ATP of the expanded regex is at least 4%more than the regex

we began with. This final condition is to avoid building a naming

convention that has overfitted to the training data by including

many regexes, each of which apply to a small fraction of hostnames,

including those with errors following a pattern, as discussed in §4.1.

We execute this phase in rounds, considering additional pairings

until we find no expansion that is better. Figure 7e shows that we

built a set of two regexes that cluster more interfaces than the

individual regexes alone.
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Figure 8: Refinement of comcast.net regexes in phase §5.7. NC #1 incorrectly clusters hostnames assigned to client interfaces

together, and extracts portions of IP address literals, so we build filter regexes to exclude these hostnames in NC #2.

5.7 Build Filter Regexes

A regex may cluster hostnames together that are not clustered

in training data, and the operator might use a convention that

allows them to be distinguished. A regex may also infer candidate

names for hostnames that embed a portion of a literal IP address.

This phase identifies filter regexes that match incorrectly clustered

hostnames (FP or FIP), so we do not use an extractor regex on those

hostnames. In figure 8, ([^-]+)\.comcast\.net$ incorrectly clusters

hostnames 4a, 5b, and 6a into c.ashburn.va.ibone, and interfaces

4b and 5a into c.chicago.il.ibone. Similarly, this regex incorrectly

extracts 230.hsd1.md and 77.hsd1.ut, which contain a component

of a literal IP address embedded in the hostname.

We assemble the hostnames with false assignments (i.e., FP and

FIP) and recursively extract CSs from these components. For the

FPs we extract as13385|c-ashburn.va.ibone, as7272-1-c|ibone, and

as|c|ibone, and for the FIPs we extract c|hsd1. We then build filter

regexes, embedding CSs in the regexes, and rank the regexes by

the number of false assignments filtered (descending), then by the

number of true positives filtered (ascending).We expand a candidate

regex with the best filter regex, provided the following conditions

hold. First, the regex must correctly filter false assignments from

at least three routers for us to have confidence that the regex is

capturing a component of the naming scheme. Second, the regex

must filter more false assignments than true positives, i.e., must

improve the PPV of the naming convention. Finally, for the FP case,

the regex must reduce the inferred FPs by at least 10%, to avoid

overfitting to the training data. We embed additional filter regexes

until we find no additional filter that meets these conditions.

Figure 9: The best naming convention for he.net given the

training set in figure 6. This convention is simpler than the

one in figure 7 and results in a single FP.

5.8 Select Best Convention

It is possible to assemble a naming convention that contains mul-

tiple regexes, each covering a small portion of a suffix’s routers.

However, complex naming conventions may overfit to the training

data, which can contain errors, and miss operator intent. We there-

fore penalize model complexity when selecting a best convention,

with the following approach.

We rank naming conventions by ATP (§4.3) and select the high-

est ranked convention. Then, we consider conventions with a lower

ATP value. If a lower ranked convention has an ATP value within

4% of the higher ranked convention, i.e., the higher ranked conven-

tion is not significantly better than the lower ranked convention,

then we select the lower ranked convention if either of the follow-

ing conditions hold. First, if the PPV of inferences unique to the

higher ranked convention is at least 10% lower than the PPV of the

lower ranked convention – that is, the delta of the higher ranked

convention is poor, then we choose the lower ranked convention.
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Figure 10: Routers with names not delimited by punctuation. NC #1 separates hostnames belonging to the same training router.

NC #2, which we do not currently build, retains the clustering by building a regex that separates on change in character class.

Otherwise, if the lower ranked convention consists of fewer regexes

and yields nomore than one additional FP, thenwe choose the lower

ranked convention according to the principle outlined in §4.1 to

avoid overfitting to the training data.

We illustrate this by comparing the clustering by a more complex

convention with a higher ATP (9) in figure 7 with the clustering

by a less complex convention with a lower ATP (8) in figure 9. The

less complex convention has only a single additional FP (caused by

a stale hostname) but captures the operator intent, so we choose

the less complex convention.

6 LIMITATIONS

Zhang et al. established in 2006 that because operators do not

necessarily maintain hostnames in DNS, Internet topology mapping

efforts using hostnames can be distorted [29]. Errors in hostnames

can impact the accuracy of alias inferences using our regexes.

Our method currently builds regexes that extract names delim-

ited by punctuation from hostnames, but operators do not always

delimit names with punctuation. Figure 10 illustrates the problem,

where NC #1 separates interfaces belonging to the same training

routers in odn.ad.jp, because it extracts part of the hostname, de-

limited by punctuation, it should not. This limitation could be fixed

by including additional heuristics in our method to build NC #2.

A fundamental limitation is that our technique cannot always

cluster hostnames in different suffixes. Figure 11 illustrates the prob-

lem, where yahoo.net operators assigned addresses belonging to

other networks on two of their routers, in order to connect to those

networks. Because the operators of these different networks control

the assignment of hostnames to their addresses, and operators can

choose their own naming convention, there is no opportunity to

cluster these interfaces using hostnames. In the April 2019 ITDK,

18.9% of training routers had hostnames in more than one suffix.

7 RESULTS

We evaluated our algorithm by applying it across 16 ITDKs assem-

bled by CAIDA between July 2010 and April 2019; all ITDKs contain

IPv4 topology data, and two ITDKs contain IPv6 topology data. We

classify a naming convention as poor if it clusters interfaces on

fewer than three routers (because we cannot have confidence we

Figure 11: There is usually no way to cluster interfaces for

routers with hostnames in more than one suffix because in-

dividual networks have their own naming conventions.

have found a convention), or has a PPV on the training data of less

than 80% (because it did not perform well). We classify a naming

convention as promising if it clusters interfaces on at least three

but fewer than seven routers with a PPV of at least 80% (because a

single FP in a small network has a significant impact on the PPV),

or has a PPV of less than 90% (because the convention has pre-

dictive power but does not evaluate well). Finally, we classify the

remaining naming conventions with a PPV at least 90% on more

than three routers as good.

Figure 12 shows that we classified≈33.5% of conventions for each

IPv4 ITDK as good, covering ≈1K suffixes in each ITDK; promising

conventions covered ≈3.8% of suffixes. Good conventions covered

≈60 suffixes (≈31.6%) for the two IPv6 ITDKs. We inferred at least

one good convention for 2550 different suffixes across the 16 IPv4

ITDKs. However, the fraction of suffixes we inferred good conven-

tions for IPv4 ITDKs has reduced over time: for July 2010, 35.7%

of suffixes had a good convention; by April 2019, the fraction was

30.6%. This drop may reflect a reduction in coverage of active alias

resolution techniques, as some operators configure their routers to

ignore probes or do not announce routes for their infrastructure,

and some routers do not respond to probes with a signature that is

useful to active alias resolution techniques (§2.4).
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Figure 12: Summary statistics for 16 IPv4 ITDKs across nine
years, and two IPv6 ITDKs. We classi�ed �33.5% of conven-
tions inferred for each IPv4 ITDK (�1K) as good, and �31.6%
conventions inferred for each IPv6 ITDK (�60) as good.

7.1 Validation
We created webpages showing the naming conventions inferred
over time for each su�x across the 16 ITDKs we used, and sent the
webpage to NANOG in April 2019. We asked operators for each
su�x whether the regexes we learned re�ected their intent. We re-
ceived private feedback for 11 su�xes from 10 operators. We asked
each operator about discrepancies between the training data and
the inferred naming convention, and about how they maintained
their zones. These operators maintained zones either manually, or
semi-automatically, with di�erent approaches to automation. We
summarize the validation data in table 4, identifying su�xes where
the operators consented to their su�x being shared.

Of the 11, all but two naming conventions were reported as
correct. Operator B con�rmed that most of our inferred names
were correct, but that our convention failed to extract a portion of
the router name for some of their routers. Some of their routers
also had incorrect hostnames; we inferred a second convention that
clustered these incorrect hostnames congruently with the training
data. Operator F reported that our inferred convention was not
precise because it clustered some customer interfaces; the training
data had incorrectly clustered them (FPs in the ITDK), and our
algorithm had no opportunity to learn the correct convention.

Finally, operator C replied that our convention was correct, but
supplied a second regex that �ltered hostnames assigned to cus-
tomer interfaces. Our training data contained 299 customer inter-
face hostnames, 298 of which were correctly not matched by our
naming convention. The �lter regex would have �ltered the single
stale hostname that we classi�ed as a FP; however, we require a
regex to �lter at least three FPs from di�erent routers for a �lter
regex to be included in a convention.

A Large North American content provider.
117 TR, 99.7% PPV, 301 TP, 1 FP, 4 FNE.
Correct. Semi-automated, PTR record auto-derived
from manually entered A record.

B European Tier-1 transit provider, eurorings.net.
37 TR, 100% PPV, 110 TP, 3 FNE.
Semi-correct. Manual. Two regexes, one over�tted.

C Large European transit provider.
70 TR, 99.4% PPV, 174 TP, 1 FP, 2 FNE.
Correct. Semi-automated, once per month.

D Medium North American access network.
26 TR, 100% PPV, 52 TP.
4 TR, 100% PPV, 8 TP.
Correct. Manual.

E Medium North American access network.
8 TR, 100% PPV, 20 TP.
Correct. No DNS maintenance followup.

F Medium North American access network, ebox.ca.
5 TR, 92.8% PPV, 64 TP, 5 FP, 7 FNU.
Semi-correct. Errors in training data.

G Small North American access network, clearrate.com.
4 TR, 100% PPV, 9 TP, 11 FNU.
Correct. Script periodically manually run against
RANCID database. FNU are customer interfaces.

H Small U.K. hosting provider.
3 TR, 100% PPV, 6 TP.
Correct. Small, relatively static network.
Manual, automation not a priority.

I North American university.
6 TR, 100% PPV, 14 TP.
Correct. No DNS maintenance followup.

J European university, bme.hu.
2 TR, 100% PPV, 4 TP.
Correct. Semi-automated from router con�gs.

Table 4: Summary of validation data received, with the num-
ber of training routers (TR) in each su�x.

7.2 Incongruity with the ITDK
We investigated two classes of incongruity between the April 2019
ITDK and the outcome of applying the IPv4 naming conventions
we classed as good or promising. The incongruity could be because
the hostnames are stale, or because the ITDK contained false nega-
tives. The �rst class of incongruity is where the naming convention
clustered interfaces from di�erent training routers together. The
second class of incongruity is where the naming convention clus-
tered interfaces in the application set with interfaces on training
routers; we would expect these interfaces from the application set
to be on training routers in the ITDK because the training routers
were responsive to alias resolution techniques used in the ITDK.

We conducted additional alias resolution probing in May 2019
to estimate the lower bound of false negatives in the April 2019
ITDK. Because we were investigating if pairs of interfaces were
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FNs in TNs in Unresp.
training training

Training Set
Good 98 (27.7%) 256 112 (24.0%)
Promising 28 (17.3%) 134 85 (34.4%)

Application Set
Good 6281 (75.1%) 2086 6866 (45.1%)
Promising 429 (69.8%) 186 1217 (66.4%)

Table 5: Results of followup probing investigating incon-
gruity with the ITDK. FNs in training data manifest as FPs
in evaluation, which are actually TPs.
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Figure 13: CCDF of the alias resolution gain of the 800 nam-
ing conventions we classi�ed as good for su�xes in the
April 2019 ITDK. While the 10 best conventions obtained
41.7% of the alias resolution bene�t, a further 609 are re-
quired for the remaining 58.3%. 181 (22.6%) provided no gain.

aliases, we used Ally [27] with ICMP, UDP, and TCP probes, and
Mercator [8]. Table 5 shows the results for both classes of error,
for naming conventions we classed as good or promising. For the
interfaces in the good class that were responsive to alias resolution
at the time of our probing in May 2019, 27.7% of apparent FPs in
the training set and 75.1% of interfaces in the application set were
actually FNs in the ITDK.

The fraction of FNs we found in the promising class was fewer,
and dominated by FNs for ntt.net routers. The FNs for ntt.net in
the training data were due to MIDAR using a single probe type
for each address, because MIDAR assumed that all probe types
observed the same counter when multiple probe types observed a
counter for an address [12]. However, TCP and UDP probes were
deriving responses from di�erent counters, yielding an inference
that two interfaces were not aliases when they were. This limitation
likely applies beyond ntt.net. Other FNs may derive from the fact
that MIDAR’s sliding window can schedule aliases into di�erent
windows, so that they have no opportunity to be resolved as aliases.
Increasing the number of probe types per IP address to compensate
for routers that use di�erent counters for di�erent probe types could
result in fewer IP addresses per sliding window. Importantly, our
naming conventions can guide followup alias resolution probing,
increasing the accuracy and coverage of future ITDKs.

7.3 Alias Resolution Gain
We applied the 800 naming conventions we classi�ed as good to the
April 2019 ITDK. There were 18,208 routers with hostnames across
these 800 su�xes; when we applied the conventions to other router
interfaces in the application set, we inferred another 19,136 routers,
a gain of 105%. Figure 13 shows a CCDF of the alias resolution
gain per additional naming convention. Of the 800 conventions,
619 (77.4%) inferred additional aliases, and 181 (22.6%) provided no
alias resolution gain. While 10 su�xes provided 41.7% of the gain,
we required an additional 90 conventions to obtain an additional
43.6% gain. Finally, the remaining 14.7% gain required applying
519 additional conventions. These results show the bene�t of our
automated approach; building regexes by hand is labor intensive,
and provides diminishing returns in the long tail.

7.4 Evaluation of IPv4 regexes against IPv6
Two ITDK datasets (August 2017 and January 2019) contain router-
level graphs inferred using Speedtrap [16]. We applied the con-
ventions that we classi�ed as good for the IPv4 graph to the IPv6
graph. For August 2017, there were 107 su�xes in IPv6 with at least
one training router; our conventions predicted the clustering of
hostnames for 86.3% of these su�xes with no FPs. For January 2019,
there were only 60 su�xes in IPv6 with at least one training router;
our conventions predicted the clustering of hostnames for 84.5% of
these su�xes with no FPs.

Operator B (§7.1) assigned hostnames to IPv6-addressed router
interfaces. Our training set for this network in IPv6 consisted of
a single router. However, when we applied our IPv4 naming con-
vention to their IPv6 router interface hostnames, we found 147
hostnames on 40 routers. The operator con�rmed that they used a
consistent naming convention across address types, and that IPv4
and IPv6 hostnames with the same extracted name belonged to the
same router.

Taking these �ndings to their logical conclusion, we applied
the IPv4-inferred naming conventions to the IPv6 topology. For
the January 2019 ITDK, there were 192 su�xes where our naming
conventions applied, 124 had no routers in the training set, and
there were only 416 routers in the set that did. After we applied
our naming conventions to the router interfaces in the application
set, we had inferred 3757 routers, a 9.0 multiplier, and nearly an
order of magnitude more routers than we began with.

8 CONCLUSION
We designed, implemented, evaluated, and validated our system
that automatically learned to extract router names. Our algorithm
scalably builds naming conventions in phases, learning to build
speci�city into regexes. We publicly release our source code im-
plementation as part of scamper [15] as well as our inferred con-
ventions [17], allowing researchers to investigate IPv4 and IPv6
router-level congruity in the Internet. Using our system, we �nd
9.0 times more IPv6 routers and 105% more IPv4 routers than we
started with, in applicable su�xes. Further, our conventions can
guide follow-up probing to improve the accuracy of current Internet-
scale alias resolution techniques, and provide a sound basis for new
learning systems that use hostnames to infer router ownership, link
speeds, and roles of routers in the Internet ecosystem.
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