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ABSTRACT
BGP hijacks remain an acute problem in today’s Internet, with wide-
spread consequences. While hijack detection systems are readily
available, they typically rely on a priori prefix-ownership infor-
mation and are reactive in nature. In this work, we take on a new
perspective on BGP hijacking activity: we introduce and track the
long-term routing behavior of serial hijackers, networks that re-
peatedly hijack address blocks for malicious purposes, often over
the course of many months or even years. Based on a ground truth
dataset that we construct by extracting information from network
operator mailing lists, we illuminate the dominant routing char-
acteristics of serial hijackers, and how they differ from legitimate
networks. We then distill features that can capture these behavioral
differences and train a machine learning model to automatically
identify Autonomous Systems (ASes) that exhibit characteristics
similar to serial hijackers. Our classifier identifies ≈ 900 ASes with
similar behavior in the global IPv4 routing table. We analyze and
categorize these networks, finding a wide range of indicators of
malicious activity, misconfiguration, as well as benign hijacking
activity. Our work presents a solid first step towards identifying
and understanding this important category of networks, which
can aid network operators in taking proactive measures to defend
themselves against prefix hijacking and serve as input for current
and future detection systems.
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1 INTRODUCTION
BGP’s lack of route authentication and validation remains a press-
ing problem in today’s Internet. The lack of deployment of basic
origin validation of route announcements in BGP not only makes
the Internet more susceptible to connectivity issues due to miscon-
figurations, but also opens the door for malicious actors. While
a long-standing problem, its severity becomes clear in numerous
recent reports of widespread connectivity issues due to BGPmiscon-
figuration [14], as well as hijacking events of popular destinations
in the Internet [38]. Episodes range from simpler attacks with the
goal of using blocks to send spam emails [56] to more sophisticated
misuse of BGP to intercept traffic or steal crypto currencies [9].

While the operator and research communities have devoted
substantial resources to improve the state-of-the-art of BGP security
(i.e., the RPKI [12]), little has changed in production environments.
Today, operators can use monitoring services [2] to automatically
detect potential hijacks of their prefix announcements. Current
hijack detection systems typically rely on assumptions of prefix
ownership and track origin changes in the global routing table. If an
event is detected, the victim network can react and attempt to get
in contact with the perpetrator or its upstream networks to solve
the problem. However, many times this contact is not fruitful or not
even possible. At that point, victims of hijacks are only left with the
option of publicly disclosing the event in network operator mailing
lists in the hope that peer pressure and manual interventions by
other networks, such as filtering announcements or refusing to
provide transit, will remediate the situation.

What most BGP hijack detection systems have in common is that
(i) they are reactive in nature, i.e., they identify hijacking events
only after they occurred, and (ii) they are event-based, i.e., they
track individual hijacking events. However, malicious BGP behavior
by an actor is sometimes consistent over time, creating opportu-
nities for methods based on longitudinal analysis, potentially in-
forming proactive approaches (e.g., scoring systems) and providing
situational awareness. We indeed find that many hijacking events
disclosed in operator mailing lists and network security blogs in-
volve malicious Autonomous Systems (ASes) that repeatedly hijack
prefixes, i.e., originate prefixes allocated to and routed by other
networks. In fact, some of these ASes show malicious activity in
the global routing table formultiple years, and we refer to networks
of this type as serial hijackers. Serial hijackers pose an ongoing
threat, yet they have received surprisingly little attention in terms
of empirical assessment.

https://doi.org/10.1145/3355369.3355581
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In this paper, we provide a systematic empirical analysis of the
behavioral characteristics of serial hijacker ASes. We take on a new
perspective on illicit BGP activity: instead of looking at individual
BGP hijacking events, we study the long-term prefix advertisement
dynamics in the global routing table in space and time. Our analysis
leads to a set of key attributes that broadly capture the behavior of
serial hijacker ASes, highlighting several interesting and previously
undocumented cases. Our main contributions are:
• We provide a detailed and longitudinal study of BGP an-
nouncement dynamics of serial hijacker ASes over the course
of 5 years. We develop hypotheses on prefix origination be-
havior (announcement stability, visibility, growth, address
space fragmentation, origin conflicts) and identify dominant
characteristics of serial hijackers and how they differ from
legitimate ASes. We show that some of these behavioral
patterns are clearly visible when studying announcement
dynamics of networks over long time periods.
• Based on these behavioral patterns, we propose a set of met-
rics and we use a machine-learning model to evaluate their
applicability to the problem of automatically identifying
ASes with BGP origination patterns similar to serial hijack-
ers. Our classifier flags≈ 900 ASes that exhibit characteristics
similar to our ground truth serial hijackers. We provide a de-
tailed analysis of these preliminary results, revealing insight
into false positives, actual malicious activity, as well as ASes
appearing as illegitimately originating prefixes because of
third-party misconfigurations.
• We illuminate behavioral patterns of serial hijackers in the
wild with three case studies featuring a known serial hijacker,
and two newly identified ones: a detailed analysis of multiple
years of hijacking activity by AS197426, a glaring case of
a serial hijacker from our ground truth dataset; AS19529, a
hijacker network that was detected by our classifier, where
we found corroborating evidence of hijacks; and AS134190,
the network that, among the ASes we identify, shows the
most recent indications of potential serial hijacker behavior.

This work shows that, through analysis of readily available pub-
lic BGP data—without leveraging blacklists or other indicators—it
is possible to identify dominant patterns of serial hijackers. Our
preliminary results suggest that these patterns can be leveraged in
automated applications, potentially revealing undetected behavior
or generating a novel category of reputation scores. Our findings
have thus relevance for the operator community, since they can aid
network operators to identify suspicious ASes a priori, potentially
allowing for preventive defense. Our findings are also of relevance
to the broader research community, since they provide viable in-
put for new prefix hijacking detection systems, as well as for the
development of AS reputation metrics and scoring systems.

To the best of our knowledge, this is the first work focusing on the
long-term characteristics of this important category of networks,
serial hijacker ASes. We make the feature dataset and the results
of this work publicly available to allow both for reproducibility
and for other works to leverage our list of identified ASes.1 While
the majority of hijacker ASes only target the IPv4 space, we show
metrics both for IPv4 and IPv6.
1Auxiliary material can be found at https://github.com/ctestart/BGP-SerialHijackers.
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(a) Legitimate AS: Prefix origination of AS5400 (British Tele-
com) over the course of 5 years. This AS originates prefixes
consistently over long time periods.
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(b) Serial Hijacker AS: Prefix origination of AS3266 (Bit-
canal) over the course of almost 3 years. This AS announces
a large number of prefixes over short time periods.

Figure 1: Long-termprefix announcement behavior for a reg-
ular AS, and a serial hijacker AS. We visualize each origi-
nated prefix as a row on they-axis and color prefixes by their
normalized visibility in the global routing table.We sort pre-
fixes numerically and show time (3-5 years) on the y-axis.

2 BACKGROUND
To bootstrap our analysis, we first introduce the serial hijacker
network type, and illustrate some of its pertinent characteristics
by example. We review related work in the field of hijack detection
and network profiling, and present a roadmap for this paper.

2.1 Introducing Serial Hijackers
Since as of today, no reliable and widely deployed system to au-
tomatically discard illegitimate BGP route announcements exists,
the network operator community frequently relies on mailing lists
(e.g., NANOG [6]) to exchange information about illegitimate BGP
announcements and to coordinate efforts to limit their propagation
and impact by blocking announcements from networks originating
such prefixes. The key observation that motivates this work came
from studying 5 years of threads from operator mailing lists: many

https://github.com/ctestart/BGP-SerialHijackers
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reported hijacks are not “one-off” events, where a previously un-
known AS number starts to advertise prefixes. Instead, we often
find reports of the very same ASes repeatedly carrying out prefix
hijacks. In fact, some of these networks continue to hijack different
prefixes over the course of multiple years. Figure 1b shows a visual-
ization of the origination activity of AS3266, a network that was
repeatedly reported to hijack address space. We see that, over the
course of 3 years, this AS originated almost 1,200 unique prefixes,
and we observe a highly irregular pattern of short-lived origina-
tion of disparate address blocks. To put this behavior in contrast,
we show the origination activity of AS5400 (British Telecom) in
Figure 1a. This network, a large British residential and mobile ISP,
shows a much more steady pattern, longer prefix announcement
times, and an overall constant, and monotonically increasing num-
ber of advertised prefixes. We note, however, that also legitimate
ASes can exhibit irregular patterns (see the white space between
lines indicating a prefix was not originated at that time), often due
to configuration issues of the network in question or of third-party
ASes. Thus, metrics and systems attempting to isolate ASes with
potentially malicious behavior must be chosen and evaluated care-
fully to allow for robustness. From Figure 1 it becomes clear that
these two networks show wildly different long-term behavior in
the global routing table. The goal of this paper is to identify and
scrutinize the dominant prefix origination characteristics of this
important class of networks: serial hijackers.

2.2 Related Work
BGP vulnerabilities and hijacks have been studied for a long time
[10, 13, 36, 37, 52]. However, proposals to secure BGP have not
gained widespread traction. Even though the Internet Engineering
Task Force (IETF) standardized BGP prefix origin authorization and
validation many years ago [29, 30, 47], deployment in production
networks is still limited [16, 18]. As a result, BGP hijacks are a
prevalent threat and concern for network operators [48]. There have
been many efforts in the research community to characterize BGP
hijacking events [28, 56] and to develop hijack detection systems
using different approaches, metrics, and vantage points [22, 27, 42,
43, 46, 49, 50, 57]. While most systems focus on detecting individual
BGP hijacking events, some attempt to identify the source of the
cause and a few even tackle mitigation and remediation [7].

In contrast to most earlier works on BGP hijacks, our approach
works by profiling the network-wide BGP prefix origination behav-
ior of ASes. Few previous works study network-wide behavior of
malicious actors. In [45], the authors study BGP announcements
dynamics of prefixes found in email spam blacklists. They find
that some spammers use short-lived (a few minutes long) BGP
route announcements of large address blocks to send spam from IP
addresses scattered throughout the advertised prefix. In [51], the
authors study ASes that are over-represented in blacklists of phish-
ing, scam, spam, malware and exploited hosts. Analyzing a month
of BGP data, they find that these ASes are more likely to become
unreachable and that they have more changes in their connectivity
than most ASes in the Internet. Konte et al. [25] developed a system
to identify bulletproof hosting ASes, leveraging features such as
frequent re-wiring of transit interconnections. Our work is comple-
mentary in that we do focus on a specific group of malicious ASes,

serial hijackers. We focus exclusively on behavioral characteristics
related to their BGP origination patterns (i.e., we do not leverage
any data other than BGP for our classification), and specifically
study long-term behavior of networks.

2.3 Roadmap
The rest of the paper is organized as follows: in § 3 we first describe
how we build a ground-truth dataset of serial hijacker ASes, as well
as a control set of legitimate ASes. We also introduce our longitudi-
nal dataset that covers 5 years of BGP activity at a 5-minute gran-
ularity. We introduce necessary data cleaning and preprocessing
steps in § 4. In § 5, we first introduce a set of behavioral character-
istics and pose hypotheses on how the behavior of serial hijacker
ASes might differ from legitimate ASes. For each category, we in-
troduce different metrics to capture AS behavior and study in detail
how serial hijackers’ BGP origination behavior differs from legiti-
mate ASes in our ground-truth dataset and how our metrics capture
these differences. With our metrics in hand, in § 6 we proceed and
train a machine-learning model to identify networks in the global
routing table exhibiting similar behavior to serial hijacker ASes.
In § 7, we present a broad and detailed study of the ≈ 900 networks
flagged by our classifier “in the wild”. Finally, we feature three net-
works in case studies in § 8, and discuss implications and limitations
of our work as well as avenues for future work in § 9.

3 DATASETS
In this section we first describe the datasets we leverage for identi-
fying serial hijackers and a control group of legitimate ASes. We
then introduce our longitudinal BGP dataset.

3.1 Legitimate ASes and Serial Hijackers
Legitimate ASes: We start our selection of legitimate ASes using
the participants to the Mutually Agreed Norms for Routing Secu-
rity (MANRS) initiative [5]. MANRS is a global initiative started by
network operators and supported by the Internet Society, which
proposes a set of actions, such as filtering and global validation of
Internet resources, that network operators can implement to foster
routing security. Since MANRS participants voluntarily agree to im-
plement a set of proactive security measures in BGP, it is unlikely
that they would repeatedly—and willingly—engage in repeated
BGP misbehavior or malicious activities. 272 ASes2 are part of the
MANRS initiative. Additionally, we manually select 35 ASes that
represent the full spectrum of routed ASes: major end-user ISPs, en-
terprise networks, content/cloud providers, and academic networks.
For these ASes, we are reasonably certain that the administrators
do not willingly engage in repeated hostile activity.
Serial Hijacker ASes: Finding ground truth on serial hijacker
ASes is a more difficult task: we process 5 years worth of email
threads on the NANOG [6] mailing list and extract 23 AS numbers
for which network operators repeatedly disclosed hijacking events.
We note that for each of these ASes the email threads included
several address blocks that had recently been (or were being) hi-
jacked. Furthermore, in 4 cases, hijacker ASes were mentioned in
connection to hijacking events spanning multiple years.

2Later in § 6 we only leverage MANRS ASes that have originated at least 10 prefixes
in the 5 years considered in our study.
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Start date Jan 1, 2014 00:00:00 UTC
End date Dec 31, 2018 23:55:00 UTC
Snapshot files 525,888
Unique prefixes 6,044,333
Unique ASNs 76,769
Prefix-origin pairs 7,351,829

Table 1: Dataset properties.

IPv4 IPv6
Snapshot files 524,556 524,290
Unique prefixes 1,907,397 196,136
Unique ASNs 75,261 22,248
Prefix-origin pairs 2,317,168 196,137

Table 2: Dataset properties after removal of incomplete
snapshots and very low visibility prefix-origin pairs.

In the remainder of this paper, we use the set of Legitimate ASes
and Serial Hijacker ASes to first study the dominant characteristics
of serial hijackers in § 5, and to later train a classifier to identify
these characteristics in the larger AS population in § 6.

3.2 Longitudinal BGP Dataset
We base our study on snapshots taken from the global routing table
computed every 5 minutes over a time period of 5 years, leveraging
historical BGP data from all available RIPE and RouteViews collec-
tors. Starting on January 1st, 2014 and ending in December 31, 2018,
we build an individual routing table for each peer (network that
feeds into any of the collectors) of each collector every 5 minutes
using RIB dumps and BGP updates received over the respective
peer-collector BGP sessions. For each of these routing tables, we
extract prefix and origin AS numbers to generate 5 minute snap-
shots listing prefix-origin AS pairs (prefix-origins in the following)
together with the count of peers observing them. Each snapshot
file contains between 560,000 and 1,240,000 prefix-origin pairs. We
obtain 288 files per day, 525,888 snapshot files in total. Across the
entirety of our dataset covering 5 years, we find 7,370,019 unique
prefix-origins to be advertised by at least one peer. We find a to-
tal of 76,769 unique ASes and 6,044,333 unique prefixes. Table 1
summarizes the main properties of the dataset.

4 DATA PREPROCESSING
In this section, we describe the necessary steps to de-noise our
dataset, and to convert individual snapshots into aggregated prefix-
origin timelines for further analysis.

4.1 Dataset De-Noising
Variability of BGP peer availability: We leverage the count of
peers that see and propagate an individual prefix-origin pair as
a proxy for the prefix-origin visibility in the global routing table.
Figure 2a shows the maximum visibility of IPv4 and IPv6 prefix-
origin pairs in each snapshot file, i.e., the maximum number of
peers that reported the same prefix-origin pair to any of the RIPE
or RouteViews collectors. Over the course of 5 years, the maximum
visibility increases from the 250-300 range for IPv4 and 160-210
range for IPv6 in 2014 to 400-500 (IPv4) and 300-400 (IPv6) in 2018,

mainly a result of increasing participation of networks in the BGP
collection infrastructure. However, we see constant variability, e.g.,
caused by lost BGP sessions between peers and collectors, or out-
ages of individual collectors. Indeed, we find a number of episodes
of significant reduction in the number of peers with active connec-
tions to collectors. During the 5 year period, the lowest maximum
peer count is 83 for IPv4 and 102 for IPv6. In order to reduce the
impact of significant peer disconnections and other BGP collector
infrastructure problems, for IPv4 and IPv6, we do not consider a
snapshot file if the maximum peer count drops below 20% of the
median maximum peer count of the previous week for the same
protocol. In total, for the 5 year period, we ignore 1332 (for IPv4)
and 1598 (for IPv6) snapshot files, representing 0.25% and 0.30% of
all available files respectively.
Highly localized BGP advertisements: In every snapshot file,
we find prefix-origin pairs with very low visibility. These BGP
advertisements can either be the result of highly localized traffic
engineering efforts or related to misconfigurations and errors of
the collector infrastructure itself or of a single, or a few, of their
connected peers (recall that the total number of peers ranges be-
tween 300 and 500 for IPv4 during our measurement period). We
remove prefix-origin pairs that were seen by 5 or less peers. While
we specifically track both low-visibility and high-visibility prefix
advertisements in this work, these cases of very low visibility are
unlikely to represent actual routing events of interest for this study.
We find that, on average, of all prefix-origin pairs of a snapshot file,
less than 20% of IPv4 and 15% of IPv6 prefix-origin pairs are seen
by 5 or less peers, but point out that they represent only 0.09% of
IPv4 and 0.1% of IPv6 prefix-origins found in the routing tables of
BGP collectors’ peers at the time of the snapshot. Two thirds of the
low-visibility IPv4 prefix-origins are announcements more specific
than /24, and three quarters of IPv6 prefix-origins more specific
than /48. Table 2 summarizes the properties of the cleaned routing
dataset for IPv4 and IPv6. We note that although filtering very low
visibility prefix-origins reduces the overall number of prefix-origin
pairs from some 7.4M to 2.5M, it only represents ≈ 0.1% of all BGP
collectors’ peers routing table data during the time of the study.

4.2 Aggregating Snapshots to Timelines
Our methodology to go from individual snapshot files to a suit-
able data representation for longitudinal analysis of prefix-origin
characteristics consists of 3 steps:
(i) Normalizing visibility: To deal with absolute changes in peer
count when evaluating prefix-origin visibility, we normalize the
raw prefix-origin peer count from each snapshot by dividing the
absolute visibility of a prefix-origin pair by the maximum peer
count seen in each snapshot for the respective protocol (IPv4 or
IPv6). Our normalized visibility thus is in the (0, 1] interval for each
prefix-origin pair.
(ii) Building prefix-origin timelines: We next create timelines
for each prefix-origin aggregating the 5-minutes-apart snapshot
files, requiring (i) constant existence of the prefix-origin pair in
consecutive snapshot files,3 and (ii) a steady level of visibility of
the prefix-origin pair. We find that prefix-origin visibility is overall

3Since some snapshot files are not considered due to low BGP peer availability (see
§ 4.1), consecutive files can be more than 5 minutes apart.
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(a) Variability and growth of the maxi-
mum visibility (max. number of peers) in
RouteViews and RIPE RIS combined.

(b) Distribution of prefix-origin averaged
median visibility. Most prefixes have ei-
ther high (> 0.75) or low (< 0.15) visibility.

(c) Prefix-origin total advertisement time
for different visibility levels for IPv4 and
IPv6.

Figure 2: Visibility of prefix-origin pairs in the global routing table.

relatively stable, but we want to capture significant changes. For
each prefix-origin timeline, we require that the visibility range
(maximum visibility minus minimum visibility) of the prefix-origin
pair in all contained snapshots does not exceed 0.1, that is 10%.4
(iii)Classifying prefix-origin pairs by visibility level:Wenext
tag each prefix-origin pair with its aggregated visibility, i.e., the me-
dian visibility of all contained timelines, weighted by their duration.
Figure 2b shows a histogram of the visibility for all prefix-origin
pairs. Here, we observe a bi-modal behavior: for IPv4, 65.3% of
prefix-origin pairs show visibility greater than 0.75, while 26.1%
show visibility lower than 0.25 (55.9% and 32.6% for IPv6 respec-
tively). To better understand the relationship of prefix-origin visibil-
ity and the total time they are originated by an AS, we leverage this
bi-modal behavior of visibility and classify prefix-origins according
to 3 levels of visibility as follows:

• Low visibility: prefix-origin pairs with an averaged median
visibility of less than 15% of active peers.
• Medium visibility: prefix-origin pairs with an averaged me-
dian visibility of less than 75% but more than 15% of active
peers.
• High visibility: prefix-origin pairs with an averaged median
visibility of 75% of active peers.

Figure 2c shows the total time that prefix-origin pairs are visible
in the global routing table for high, mid and low visibility, for IPv4
and IPv6. We note that, generally, high visibility prefix-origins are
present in the global routing table for longer time periods when
compared to medium visibility prefix-origins, and low visibility
prefix-origins. Note that in Figure 2c, the maximum duration is
naturally constrained by our measurement window of 5 years.

In the next section, we leverage our generated prefix-origin
timelines from step (ii) and the visibility and total advertisement
distribution from step (iii) to compute features at the prefix-origin

4We note that for a single snapshot file, visibility of prefix-origins is strictly bi-modal,
i.e., visibility is either close to 1 or close to 0. Our threshold of 0.1 thus works well to
capture significant changes.

and AS level to scrutinize the prefix origination behavior of serial
hijackers in the global routing table.

5 DOMINANT ORIGIN AS
CHARACTERISTICS

Since little is known about BGP behavior of serial hijacker ASes
other than the anecdotal evidence that these networks are repeat-
edly involved in BGP hijacks, we start with a mental exercise of
describing how origination behavior of a network dedicated to ma-
licious activity might look like in our BGP data. We identify five
main characteristics:
• Intermittent AS presence: BGP activity of hijackers might
be intermittent. We expect some serial hijackers to have offline
periods, during which they do not originate any prefix and are
thus not present in the global routing table.
• Volatile prefix origination behavior: We expect hijackers
to show higher variability in terms of the number of originated
prefixes over time than legitimate ASes. Further, we expect se-
rial hijackers to change prefixes more frequently, resulting in a
higher number of unique prefixes originated by serial hijackers
when compared to the average number of originated prefixes.
• Short prefix origination duration: We expect that serial hi-
jackers originate prefixes for shorter time periods than legiti-
mate ASes. However, we also expect to see short-term origina-
tion of prefixes from legitimate ASes due to misconfigurations
(cf. Figure 1a). We expect that different visibility levels of such
events might help to disambiguate hijacks from misconfigura-
tion events.
• Fragmentation of originated address space:We expect that
serial hijackers originate prefixes allocated to different RIRs
(Regional Internet Registries), whereas most legitimate ASes
originate prefixes allocated to a single RIR, reflecting geographic
boundaries of ASes. Further, we expect that some serial hijack-
ers originate unassigned address space.
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• Multi-Origin conflicts (MOAS) of originated prefixes: Since
hijackers originate address space routed by other ASes, we ex-
pect to see a significantly higher share of MOAS conflicts for
prefixes originated by hijackers, when compared to legitimate
ASes. We note, however, that there are also benign cases of
MOAS conflicts that are not indicative of hijacks. We take the
behavioral characteristics, i.e., duration and frequency, ofMOAS
conflicts into account to disambiguate such cases.
In the remainder of this section, we elaborate and test each

of these assumptions, introduce metrics that can capture these
behavioral patterns, and contrast the behavior of our ground truth
serial hijackers against our manually selected 35 legitimate ASes (cf.
§ 3.1). We test the relevance of our metrics using the broader set of
ground truth ASes in § 6 using a machine-learning classification
algorithm. The features used to train the algorithm are based on
the properties described in this section.5

5.1 Inconsistency and Volatility of AS Activity
To exemplify differences in AS activity, Figures 3a and 3b show
the number of originated IPv4 and IPv6 prefixes over time for a
legitimate AS (AS7922, top), and a serial hijacker AS (AS133955,
bottom). Here, we see a strong contrast: while the legitimate AS is
present in the global routing table 100% of the time, we see that the
serial hijacker AS showed activity in 2015, no activity in 2016, and
then again higher levels of activity starting in mid-2017. Although
the number of prefixes originated by both ASes varies over time,
the legitimate AS shows an overall much more stable origination
pattern. We note, however, that also legitimate ASes can show high
levels of short-term variability, as evidenced in Figure 3a. This peak
is the result of AS7922 de-aggregating large prefixes for localized
traffic engineering purposes to handle an infrastructure problem in
2015.6
Intermittency of AS presence: To investigate the length and fre-
quency of AS offline periods, we compute two metrics: the number
of times an AS stops originating prefixes (offline drop count), and
the percentage of time an AS originates prefixes during its entire
lifetime (active time), where the active time is the range between
the first and the last visible prefix origination of an AS. Figure 4a
shows the distribution of these two metrics for legitimate and hi-
jacker ASes. We find that all legitimate ASes cluster in the lower
right corner, i.e., once they start originating prefixes they are almost
always seen originating prefixes, being active close to 100% of the
time. In contrast, a large share of the serial hijacker ASes have
lower overall activity times and we see multiple offline drops, i.e.,
instances where an AS ceased to originate any prefix.

We also compute these metric for ASes originating IPv6 and
obtain similar results (not shown). However, we find a few legiti-
mate ASes that show a low activity-time percentage and high count
of offline drops. Possible explanations include the fact that some
networks may have originated IPv6 prefixes for testing purposes
(recall that we cover a period of 5 years) before starting to steadily
announce IPv6 prefixes and thus have experienced offline periods
in IPv6.

5The full feature list can be found at https://github.com/ctestart/BGP-SerialHijackers.
6A contact in AS7922 confirmed this incident.

(a) Prefixes originated over time by a legitimate AS (AS7922).

(b) Prefixes originated over time by a hijacker AS (AS133955).

Figure 3: Example of changes in prefix origination over time.

Volatility in the number of originated prefixes: To quantify
volatility in the number of originated prefixes over time (e.g., as
shown in Figure 3b), we partition our dataset into different time
bins: one day, one week and one month. Then, for each AS and bin
we compute statistics over the number of originated prefixes: range,
median, and the absolute number of prefix changes. We normalize
both the range and the number of prefix changes by the median
number of advertised prefixes. This is to allow for more variability
for large ASes, as compared to small ones. Figure 4b shows the dis-
tribution of the normalized range of originated prefixes for monthly
bins for a legitimate AS (AS174) and a serial hijacker (AS57129). In
a legitimate AS (AS174 in Figure 4b), we see that their normalized
range is small for most time bins, since the number of prefixes
originated during a typical month does not vary much. AS57129, a
serial hijacker, on the other hand, shows a higher number of bins
with higher normalized ranges.
Volatility in the set of originated prefixes: So far, we developed
metrics that can capture volatility in the number of originated
prefixes over time. Next, we are interested in the stability of the set
of originated prefixes. In particular, we want to capture if an AS
typically advertises a fixed set of prefixes (the legitimate case) or if
it “hops” through a large number of unique prefixes. To this end,
we compute the median number of originated prefixes per AS, and
we divide this median by the total number of unique prefixes this
AS ever announced over the course of 5 years. The distribution of
this ratio for legitimate and hijacker ASes (Figure 4c) suggests that
serial hijackers tend to show a lower ratio compared to legitimate
ASes, which indicates that they have a higher turnover of prefixes.
Note however, that some legitimate ASes also show a low ratio,

 https://github.com/ctestart/BGP-SerialHijackers
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(a) Fraction of active time and offline drop
count per AS.Many hijacker ASes are only
intermittently visible in the global rout-
ing table, resulting in an active time < 1
and multiple instances of offline drops.

(b) Example ASes: Monthly prefix count
range normalized by median prefix count.
The hijacker AS shows higher volatility in
the number of advertised prefixes result-
ing in larger prefix count range values.

(c) Median prefix count divided by life-
time prefix count per AS. Hijacker ASes
originate a smaller share of their lifetime
prefixes at a given time, i.e., they have a
higher turnover rate of prefixes.

Figure 4: Volatility metrics of prefix origination behavior for serial hijackers and legitimate ASes.

if, e.g., a network had a route leak or misconfiguration problem
that significantly increased the number of prefixes it advertised
for a short period of time. Nonetheless, these types of events do
not occur frequently in our set of legitimate ASes and our metric
separates our two classes well.

5.2 Prefix-origin Longevity and Visibility
In this section, we study the dynamics of individual prefixes origi-
nated by ASes, in particular how hijackers’ prefix total duration and
visibility in the global routing table differ from prefixes originated
by legitimate ASes.
Longevity of prefix announcements: Our hypothesis is that hi-
jackers originate prefixes for a shorter period of time than legitimate
ASes.While we find this clear distinction when looking at aggregate
data, i.e., hijackers’ median prefix-origin duration is 27.25 days v.s.
264.17 days for legitimate ASes, we found it challenging to identify
a threshold that separates short-term and long-term prefixes and
hence separates our two categories of ASes well. To sharpen the
picture, we next take the visibility of announcements into account.
Longevity vs. visibility level: Figures 5a and 5b show the distri-
butions of the total advertisement time of prefix-origin pairs, for
different levels of visibility, for a legitimate AS and a serial hijacker
AS. AS7922, a legitimate AS, has a large fraction of long-term origi-
nated prefixes, i.e., more than 50% of high visibility IPv4 prefixes it
originates are advertised for over 1,000 days. On the other hand, the
lower the visibility the larger the share of short-term prefixes. We
notice that most of the low visibility prefixes that AS7922 originates
have a very short total advertisement time. Indeed, a large share of
the prefixes advertised by AS7922 for only a short period of time
come from highly localized traffic engineering efforts used to han-
dle infrastructure problems and hence have very limited visibility
in the global routing table (cf. § 5.1). AS57129, a serial hijacker, how-
ever, shows vastly different behavior: some 50% of high visibility
IPv4 prefixes originated by AS57129 have less than 50 days of total

advertisement time, and the share of short and long-term prefixes
it originates is very similar for all levels of visibility.

When plotting ASes by median prefix visibility and total adver-
tisement time (3rd quartile shown, Figure 5c), a large portion of
serial hijacker ASes cluster in the high visibility, low advertisement
time corner (upper left). In contrast, legitimate ASes are spread out
and high visibility is correlated with longer advertisement time for
these networks. Thus, we find that the longevity of prefix origina-
tion can only be meaningfully leveraged to separate our two classes
of ASes when qualified by their visibility level.

5.3 Address Space Properties
In this section, we study different properties of the IP addresses
that ASes originate. We take into account the Regional Internet
Registry (RIR) that assigned originated IP addresses, whether ASes
originate bogon or unassigned IP space, and if originated prefixes
were originated by other ASes at the same time (MOAS conflicts).
Address space fragmentation: Our hypothesis is that legitimate
ASes only originate address blocks that were allocated to them
by a respective Regional Internet Registry (RIR). Since most net-
works are limited in geographic scope, and individual RIRs cover
individual geographic regions, we expect most legitimate ASes to
either originate addresses from a single RIR, or, if they originate
prefixes from different RIRs, they would still be concentrated in
one of them. Since we do not expect serial hijackers to originate
address space allocated to them, nor respect RIR boundaries, we
expect them to originate prefixes from multiple RIRs, and show
much less concentration on any particular RIR. To express concen-
tration of originated address space across RIRs, we compute the
Gini coefficient of ASes’ RIR distribution using the percentage of
prefixes ASes originate from each of the five RIRs. A Gini of 0.8
means all IP resources come from one RIR, whereas a Gini index
closer to 0 means resources are uniformly distributed across the
5 RIRs. Figure 6a depicts the distribution of serial hijackers and
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(a) Legitimate AS example: Total prefix ad-
vertisement time. Over 50% of prefixes are
originated for more than 1,000 days.

(b) Hijacker AS example: Total prefix ad-
vertisement time. Over 50% of prefixes are
originated for less than 50 days total.

(c) Advertisement time and visibility per
AS. Hijacker ASes show shorter, high-
visibility announcements.

Figure 5: Advertisement longevity and visibility of prefixes originated by legitimate and serial hijacker ASes.

(a) Gini coefficient of originated prefixRIR concentration per
AS. Serial hijackers’ prefixes are more spread out over differ-
ent RIRs when compared to legitimate ASes.

(b) Fraction of prefixes with MOAS conflicts and range of
MOAS duration per AS. Some hijacker ASes show a higher
fraction of prefixes with MOAS conflicts with a low duration
range of MOAS conflicts.

Figure 6: Specific address space characteristics example for
legitimate and serial hijacker ASes.

legitimate ASes with respect to the Gini coefficient over the RIR
distribution. We observe that many serial hijackers show a lower
Gini coefficient compared to legitimate ASes, meaning that the
prefixes they originate are comparably more uniformly distributed
among RIRs. This is in contrast to legitimate ASes, which typically
show high RIR concentration.

Multiple Origin AS prefixes:We compute the number of prefixes
and the share of address space an AS originates that is also origi-
nated by another AS at the same time, i.e., the prefix has Multiple
Origin ASes (MOAS) in the global routing table. Figure 6b shows
per AS the fraction of advertised prefixes with MOAS conflicts
(x-axis) and the range of the duration of the MOAS announcements
(y-axis). We chose to show the range of the MOAS duration, since
we found that serial hijackers have almost exclusively short-term
MOAS announcements, resulting in a small MOAS duration range,
whereas legitimate ASes show variable MOAS durations, with many
short-term and long-term prefix originations with MOAS conflicts,
resulting in a large MOAS duration range. Many serial hijacker
ASes have a very short range of MOAS duration and a significant
share of the address space they originate are MOAS prefixes, which
is what wewould expect for illegitimateMOAS events (e.g., replaced
by new ones as they are detected). We note that, as expected, some
legitimate ASes show MOAS conflicts, but that these MOAS events
typically last much longer than those of serial hijackers.

6 TOWARDS SCALABLE CLASSIFICATION OF
BGP MISBEHAVIOR

Next, we describe how we build a classifier to identify more ASes
in the global routing table that exhibit a prefix origination behavior
similar to serial hijackers. We start by explaining the main chal-
lenges faced when training a model with our dataset, and elaborate
on our resulting choices for our model and its main parameters. We
then discuss the features we use, their importance, and present the
final ensemble classifier and its accuracy metrics. We present the
results of the classification based on our trained classifier in § 7.

6.1 Challenges Faced
We face three main challenges when applying machine learning
algorithms to classify whether ASes show behavioral patterns of
serial hijackers: (i) heavy-tailed and skewed data, (ii) limited ground
truth, and (iii) class imbalance.
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Heavy-tailed and skewed data: The routing data on which our
analysis is based is extremely heterogeneous. In almost all dimen-
sions, individual prefixes and ASes are heavily concentrated at
some level but then there is a long tail of outliers, making the data
difficult to normalize. In addition, some of our features range from
zero to one (e.g., the Gini coefficient expressing concentration of
address space across RIRs described in § 5.3), while other features,
such as the total advertisement duration (described in § 5.2) ranges
from 5 minutes to 5 years.
Small ground truth:As discussed in § 3.1, building a ground truth
dataset including serial hijackers and legitimate ASes is challenging.
In total, our ground truth dataset consists of 230 labeled ASes. We
only select ASes originating at least 10 prefixes in the 5-year dataset.
This includes all hijackers but only 217 ASes from our legitimate
AS group described in § 3.1. Therefore, we must carefully select a
model to avoid overfitting.
Class imbalance: We do not expect that a large share of routed
ASes exhibiting serial hijackers’ behavior. The true share of such
ASes is unknown, and if we were to make an educated guess, we
would only expect to find this behavior for a small number of ASes,
i.e., less than 1% of routed ASes (over 75,000 ASes are routed in our
dataset in the 5-year period). Class imbalance is also present in our
ground truth dataset: we only have 23 serial hijacker ASes vs. 217
ASes in the legitimate group of our labeled ground truth.

6.2 Our Classifier
Choice of Classifier:We choose a tree-based classifier since deci-
sion trees do not require normalized data and work well with large
dimensions and heavy-tailed data such as the features we built to
capture different aspect of BGP origination behavior. More specifi-
cally, we use Extremely Randomized Trees (Extra-Trees) classifiers
[17]. An Extra-Trees classifier is an ensemble (forest) of decision
trees that picks feature thresholds to split nodes at random, instead
of fitting the threshold to the training data like in a common random
forest classifier. This added randomness greatly reduces overfitting,
another of our main challenges as discussed in § 6.1.
Model accuracy for parameter selection: To properly select
model parameters (sampling methods, forest size, feature selec-
tion) without reducing the training data by doing an n-fold cross-
validation, we use bootstrapping samples (subset samples) in the
training phase of the individual trees and compute the classifier
Out-Of-Bag (OOB) error estimate. OOB error estimation is a method
to measure the prediction error of random forests, where a lower
OOB error indicates higher accuracy of the model. The OOB error
estimate is the average error for each data point p in the train-
ing sample computed averaging the prediction of trees trained
on a bootstrapping sample (bag) not including p [11]. The OOB
score has been shown to converge almost identically as the n-fold
cross-validation test error and is an established method to validate
random forest classifiers [21].
Sampling techniques: To address class imbalance, we try differ-
ent under- and over-sampling methods to create balanced training
sets for our classifier, by either under-sampling the majority class
(selecting only a few legitimate ASes) or over-sampling the minor-
ity class (artificially expanding the set of serial hijackers) in our
original ground truth. Figure 7 shows the mean OOB scores (and

Figure 7: Mean Out-of-bag accuracy scores and error bars
of sets of 100 Extra-Trees classifiers trained using different
sampling techniques for increasing forest sizes.

error bars) of sets of 100 Extra-Trees classifiers trained using 6 dif-
ferent sampling technique for different forest sizes. We observe that
techniques that are purely based on under-sampling perform worse
than techniques that include an over-sampling step. In addition,
over-sampling techniques use different rules and randomness to ex-
pand the serial hijacker set and thus no two synthetic training sets
are equal. We therefore decide to use a mixture of over-sampling
techniques for the training of our classifier, so that it leverages
the different distributions of misclassified points to improve its
generalization ability [54].
Feature selection and importance: Based on the extensive man-
ual analysis described in § 5, we select 52 features that capture BGP
behavior according to 8 categories: ASN presence in the global rout-
ing table, prefix origination behavior, longevity of individual prefix
advertisements, prefix visibility, longevity vs. visibility level, prefix
set stability, address space fragmentation, and MOAS statistics. The
features capture different characteristics and statistical behavior of
the properties discussed in § 5, such as the median origination time
of high visibility prefixes and 90th percentile of the distribution of
daily changes in prefix origination.

To assess feature importance, we compute the drop column fea-
ture importance for each feature.7 The drop column importance
captures how the classifier accuracy actually varies when a feature
is not considered in the training phase [39]. We learn that all cate-
gories have positive median drop column importance, i.e., they all
add to the accuracy of the model. We thus proceed to feed all 52
features to train our final classifier.
The trained classifier:Our final ensemble classifier is based on the
vote of 34 Extra-Trees classifiers of 500 extremely randomized trees
each, and each trained on a different balanced synthetic training
set computed using one of the 3 over-sampling algorithms we
selected. The model OOB error estimate is 2.5%. We program our
classifier using the sklearn and imblearn libraries [40] in Python,

7Given most of our features are computed from the same raw BGP data, selecting
features by usual random forest feature importance ranking or information gain is not
adequate [8, 19, 53].
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which have the Extra-Trees classifiers and sampling algorithms
pre-programmed.
False positives from the training set:Using theOOB predictions
for the training set, the ensemble classifier precision and recall are
79.3% and 100% respectively. Although our serial hijacker set is
small, the high recall rate supports our hypothesis that our small
group of serial hijacker have distinctive characteristics in their BGP
prefix origination behavior. We note however that the classifier
precision is only about 80% — a strong reminder that the behavior
of ASes selected by the classifier is not necessarily illegitimate. Even
in our legitimate group, there are a few ASes that present similar
characteristics to serial hijackers. Indeed, throughout all the differ-
ent classifiers we tested, there are 6 ASes in our legitimate group
that get consistently misclassified. Looking in more detail at these
ASes, we find that two of them are from Verisign, an organization
that offers DDoS protection, and are hence benign cases of serial
hijackers, which we discuss in § 7.3. Two other ASes have only
originated prefixes for a short period of time and are not currently
being routed, which could have adversely affected our metrics and
classification. The last two ASes are hosting organizations showing
irregular BGP behavior of which the cause is unclear to us.

7 INVESTIGATING BGP MISBEHAVIOR IN
THE WILD

In this section, we describe the output from our ensemble classifier.
We feed the classifier with features based on IPv4 prefix-origin
routing data of ASes that originate at least 10 prefixes in the 5 years
of our dataset. Of the 19,103 ASes in our prediction set, our ensemble
classifier finds 934 ASes having similar behavior to serial hijackers,
we refer to them asflagged ASes. We note that the group of flagged
ASes is fairly consistent across classifiers trained using different
combinations of sampling methods and forest sizes. For models
with an OOB error score of 4% at most, at least 95% of the ASes
flagged by that classifier where also flagged by the final classifier.
In the next sections, we first describe general characteristics of
flagged ASes and compare them to non-flagged ASes. Then, we
further scrutinize flagged ASes, breaking them into sub-categories.

7.1 Behaviors Captured by the Classifier
Table 3 provides summary statistics of some representative metrics
for the two classes of ASes identified by the ensemble classifier:
ASes flagged as having similar BGP origination behavior to serial
hijackers and non-flagged ASes. For each metric, its distribution
in flagged ASes is considerably different from its distribution in
non-flagged ASes.
Volatile overall BGP behavior: The ASes flagged as having sim-
ilar behavior to serial hijackers show more sporadic and volatile
BGP activity: the 1st quartile of ASN active time is 65.9%, com-
pared to 99.9% for non-flagged ASes. Most prefixes originated by
flagged ASes are shorter-lived than those of non-flagged ASes—50%
of flagged ASes have a median prefix-origin duration of less than
48.2 days vs. only 17.9% of non-flagged ASes.
Large ASes: On average, ASes flagged by our classifier originate
more prefixes than the rest—with a median prefix count of 41 com-
pared to 23 for non-flagged ASes. Furthermore, 34 flagged ASes
have originated over a thousand prefixes, representing 3.64% in

the group, compared to only 1.37% of networks in the Internet
announcing more than a thousand prefixes.
Diverse IP sources: ASes flagged by our classifier use IP space
spread out across the RIRs—with a median RIR Gini index of 0.675
compared to 0.8 for non-flagged ASes (an RIR Gini index of 0.8
means all prefixes originated by that AS come from only one of
the five RIRs). Flagged ASes also exhibit a larger share of MOAS
address space than non-flagged ASes, resulting in a median MOAS
prefix share of 22.9% vs. 6.9%, respectively.

7.2 Indications of Misconfiguration
We find that some ASes were likely flagged as a result of miscon-
figuration issues in BGP.
Private AS numbers: Per RFC 6996 [35], ASNs [64512, 65534] are
reserved for private use. In the group of flagged ASes, we found 114
private ASNs that appear to have very volatile prefix origination
behavior with relatively low visibility. A possible explanation is that
due to router misconfiguration, these AS numbers appear at the
origin of BGP AS-paths. As many ASes filter out prefixes originated
by known reserved AS numbers, the spread and visibility of these
misconfigurations is often limited. Some of the serial hijackers in
our ground truth dataset exhibit lower visibility too, which is likely
why these behavior got captured by the classifier.
Fat finger errors: Our classifier flagged all of the single-digit AS
numbers. Indeed, the origination behavior of these ASes appears
to be extremely volatile using the longitudinal routing data. We
note however, that apparent origination of prefixes by theses ASes
does not necessarily reflect actual routing decisions by the owner
or network with given AS number. The prefix originations by these
single digit ASes are likely mere results of misconfigurations, where
an origin network accidentally adds an additional AS number (be-
hind its own) to its BGP advertisements. These so-called “fat finger
errors” [15] commonly occur when configuring a router to perform
AS path prepending, a traffic engineering technique that artificially
lengthens the AS path in order to make the advertised path less
desirable in the BGP decision process [44]. A notable example of an
AS flagged by our classifier is AS5, an AS whose registered company
went out of business 20 years ago, periodically revived through
router misconfiguration.

Removing private and single digit ASes from our group of flagged
ASes, 811 remain.

7.3 Benign Serial Hijackers
In our dataset, we find prefixes originated by 29 DDoS protection
networks (e.g., DDoSGuard).8 18 of these ASes are flagged by our
classifier. We find that a significant share of the address space origi-
nated by these networks has MOAS conflicts, representing over 30%
of the prefixes they originate in most cases. The DDoS mitigation
they perform includes originating prefixes of their customers when
a DDoS attack is detected, in order to attract all the traffic destined
to the network under attack, “scrub” it (to remove DDoS traffic),
and tunnel it to the intended final destination [23]. Thus, DDoS
protection networks present a case of “legitimate”, or benign, serial
hijacking behavior.

8Our list of AS numbers of DDoS protection services is manually compiled and hence
not necessarily complete.
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Flagged ASes Non-flagged ASes
1st quartile median 3st quartile 1st quartile median 3st quartile

Count 934 18,169
Prefix count 18 41 101 14.0 23.0 53.0
Active time 65.9% 99.2% 100% 99.9% 100% 100%
Prefix origination median time (days) 1.8 48.2 176.9 144.6 598.0 1,217.9
Prefix-origin median visibility (%) 51.1% 80.8% 84.2% 79.7% 82.9% 85.3%
Median origination time of high visibility prefixes (days) 3.4 79.4 227.2 289.7 754.2 1,386.0
Originated/unique prefixes 0.017 0.089 0.222 0.213 0.435 0.684
RIR Gini index from address concentration 0.575 0.675 0.743 0.80 0.80 0.80
MOAS prefix share 6.7% 22.9% 52.7% 0.00% 6.9% 24.0%

Table 3: Summary statistics of selected metrics for ASes flagged as having similar BGP origination behavior to serial hijackers
ASes and non-flagged ASes. Only ASes originating 10 or more prefixes in our dataset (N=19,103) are fed into our classifier. For
each metric, we show the median value across ASes in each group, as well as the 1st and 3rd quartile.

7.4 Indications of Malicious Behavior
After removing private AS numbers, single digit ASes, and DDoS
protection ones, a total of 793 publicly routable ASes flagged by
our classifier remain. Next, we assess if our identified ASes show
indications of malicious behavior, e.g., spam or probing activity.
Flagged ASes in Spamhaus DROP list: First, we leverage snap-
shots of the Spamhaus Don’t Route Or Peer (DROP) ASN list [41],
a list of ASes controlled by “spammers, cyber criminals, and hi-
jackers”. We have access to 6 snapshots taken between January 1st
2017 until early 2019, containing a total of 451 unique ASes, and we
note that 266 of these ASes appear in all snapshots. We compared
the ASes flagged by our classifier with those listed in any of the 6
snapshots of the Spamhaus DROP list we have available, finding
that 84 (10.6%) of our flagged ASes are present in the Spamhaus
DROP list. For comparison, we find only 206 (1.1%) ASes from the
non-flagged group are present in at least one snapshot of the black-
list. Thus, flagged ASes are almost 10 times more likely to be in this
list of spammers, hijackers and cyber criminals. Of the 266 ASes
that are blacklisted in all snapshots of the Spamhaus DROP list, 133
originate more than 10 prefixes during our measurement window,
and are thus in the set of ASes we classified. Our classifier flags
50 of them as exhibiting serial hijacker characteristics. In other
words, based on our feature set, our classifier detects some 38% of
all the ASes with enough BGP activity that repeatedly appear on
this blacklist, an indicator of persistent malicious activity in this
group of ASes.
Spam activity of flagged ASes: We also check for indications
of spam activity in our group of flagged ASes. To this end, we
leverage 2.5 years of snapshots taken 4 times a day from the UCE-
PROTECT [55] Level 2 spam blacklist. Attributing prefix ranges
from the UCEPROTECT blacklist to ASes is challenging in our case,
since our identified ASes are by definition highly volatile and might
only temporarily originate prefixes that are otherwise routed by
different ASes. We first load all prefixes and their origination time
ranges into a prefix trie. We then process the blacklist snapshots,
where we (i) perform a lookup in our trie to see if the particular
blacklisted address block was ever originated by one (or multiple)
flagged AS(es), and (ii) tag a given prefix-origin as blacklisted, if the

prefix was originated by the respective AS at the time it appeared
in the blacklist.9

We find indication of spam activity for more than a third of ASes
flagged by our classifier. Specifically, for 38.3% of our flagged ASes,
we find at least one address block originated and simultaneously
blacklisted. Note that while ASes that are victims of hijacking for
spamming purposes might also appear in spam blacklists, we do
not expect them to consistently appear in multiple blacklist snap-
shots. Indeed, We find that when blacklisted, prefixes originated
by flagged ASes tend to be blacklisted for a larger share of their
advertisement time, i.e., 27% are blacklisted during more than 50%
of their advertisement time, compared to 12% for prefixes originated
by ASes not flagged by our classifier.

7.5 Big Players
To find possible false positives, we inspect large ASes flagged by
our classifier. Using data from CAIDA AS-Rank [4, 31], we find that
4 flagged ASes are in the top 500 ASes by customer cone size, and 21
ASes are in the top 1000. Since it is unlikely that a large prominent
transit provider performs serial hijacking, these are probably false
positives. Nonetheless, the BGP origination behavior of these large
ASes appears to be highly volatile, similar to false positives from
the training sample (cf. § 6). As an example, the median of these
ASes’ median prefix-origin duration is only 69 days compared to
411 for large non-flagged ASes, and they show higher levels of
prefix changes—the rate of normalized monthly prefix changes is
1.0 for large flagged ASes vs. only 0.35 for large non-flagged ASes.

8 CASE STUDIES
In this section, we illustrate three cases of ASes actually misbe-
having, two of which are not in our ground truth dataset but are
instead in the group of ASes identified by our classifier. We picked:
AS197426, a serial hijacker from our ground truth dataset that was
essentially “kicked off the Internet” in July 2018 because of their
repeated malicious behavior [26]; AS19529, an AS flagged by our
classifier for which we subsequently found hijacking complaints in
a RIPE forum; AS134190, another flagged AS, which only recently
started to show characteristics of a potential serial hijacker.

9We allow for 24 hours leeway before and after prefix origination.
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(a) AS197426, a known serial hijacker, part
of our ground truth dataset.
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(b) AS19529, a hijacker identified by our
classifier for which found corroborating
evidence of hijacking activity.
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(c) AS134190, the most recent detected
case of a potential serial hijacker.

Figure 8: Prefix origination behavior for our selected case studies.

8.1 The Quintessential Serial Hijacker
Bitcanal, the “hijack factory”, a Portuguese Web hosting firm, has
been featured in several blog posts [32–34], since it represents a
glaring case of serial hijacking, and one of the few cases in which
prolonged coordinated action among network operators, ISPs, and
IXPs, finally resulted in complete disconnection of the company’s
ASes. Bitcanal leveraged several ASNs: in this case study we fo-
cus on AS197426, the most active ASN used by Bitcanal.10 While
multiple incidents of hijacks carried out by Bitcanal were featured
in numerous blog posts [32–34], we provide a first comprehensive
data-driven assessment of their long-term behavior in the global
routing table, revealing the full extent of persistent hijacking ac-
tivity of this network, i.e., an upwards of 1,500 originated prefixes
over the course of 4 years.

Figure 8a provides a graphical representation of their prefix origi-
nation activity, each row represents a different prefix that AS197426
has originated. In the first snapshot file of our dataset in January
2014, AS197426 originates only 4 prefixes, but its origination activ-
ity soon ramps up. Already in February 2014, the same AS starts
originating 15 prefixes and by October 2014 it originates almost
50 prefixes. The first post about hijacking activity by AS197426
appeared as early as September 2014 stating that it originated un-
routed IP addresses that were allocated to a diverse set of organiza-
tions [32]. And yet, this was only the start of their serial hijacking
spree. Starting in early 2015, we see AS197426 progressively in-
creasing the number of prefixes it originates, and in January 2015,
another blog post described recent hijacks by AS197426. Origina-
tion activity peaks at ≈ 300 prefixes in the second trimester of
2016, see vertical structures in late 2016 in Figure 8a. During this
time, this AS makes an average of 2.5 changes per day in the set of
prefixes they originate. Sometime in 2017, AS197426 was expelled
from the German IXP DE-CIX because of their bad behavior. DE-
CIX collected and analyzed evidence before contacting the AS and
finally suspending their services [3, 24]. On June 25, 2018, a detailed
email thread on the NANOG mailing list described multiple hijacks
carried out by AS197426 and explicitly called out Cogent, GTT, and

10Figure 1b features another Bitcanal AS.

Level3 to act, since they provided transit to AS197426 [20]. Report-
edly, GTT and Cogent quickly suspended their services to Bitcanal.
Then, early in July 2018, Bitcanal appeared using other European
transit providers (see sporadic activity in 2018 in Figure 8a), who
terminated their relationship with Bitcanal only a few days later.
Bitcanal was also present in other European IXPs, including the
large LINX and AMS-IX, who terminated services with Bitcanal
shortly after. The last transit provider disconnected Bitcanal on July
9, 2018. AS197426 has not been visible in the global routing table
since that day.

From 2014 until its disconnection in 2018, our data showsAS197426
originating a total of 1,495 different prefixes. While hijacking activ-
ity was reported as early as September 2014, coordinated measures
only showed effect and resulted in eventual disconnection in 2018.

8.2 A Recent Hijacker
AS19529, originates about a dozen prefixes in our first snapshot in
2014. As Figure 8b shows, 7 of these prefixes were steadily origi-
nated for over a year. In April 2016, we see AS19529 withdrawing
these prefixes and disappearing from (our proxy for) the global
routing table (white gap in Figure 8b). Although the ARIN WHOIS
record [1] for AS19529 has not been updated since 2012, our dataset
shows it returns originating prefixes (31 this time) in November
2017. Then, AS19529 quickly increases the number of prefixes it
originates, reaching almost 60 prefixes by the end of 2017. This
spike in activity is clearly visible in Figure 8b. During these months,
new RIPE RIR entries appeared, listing AS19529 as origin of IPv4
blocks owned by a different institution and registered in the ARIN
region. At the same time, the legitimate owner of these prefixes
raised complaints in a RIPE forum, stating that such RIPE RIR
records were incorrect and that the respective address blocks were
hijacked [20]. The complaints continued until April 2018 and the
result, as of today, is unclear. In our data, we see AS19529 stopping
to originate prefixes in July 2018: in its last 9 months of activity, it
originates a total of 63 different prefixes, 20 of which are MOAS.
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8.3 An Ongoing Potential Hijacker
We see AS134190, for the first time in our data on July 14, 2016,
originating only a single prefix for about a month, after which it
disappears from the global routing table. In early 2017, AS134190
starts repeatedly originating different prefixes for very short time
periods (about a day). Starting in July 2017, AS134190 originates
a few prefixes on and off—the small dots in Figure 8c—with some
burst of activity reaching over 30 prefixes being simultaneously
originated. In this period, AS134190 averages almost 10 changes per
day in terms of originated prefixes. In November 2018, BGPmon, a
widely known BGP hijack detection system [2], detected a potential
hijack from AS134190 and 10 additional potential hijacks in early
2019. As of today, we have not found further evidence in the form of
public complaints about potential hijacks carried out by AS134190.

9 DISCUSSION
Our study was motivated by repeated complaints in the operational
community about reiterated, even persistent, prefix hijacking activi-
ties carried out by certain ASes. On the one hand, BGP’s native lack
of validation mechanisms exposes it not just to one-off or stealthy
attacks but also to routinely executed, in-the-open, forms of abuse.
On the other hand, BGP’s inherent transparency, combined with
the availability of pervasive and “public” BGP measurement infras-
tructure (e.g., RouteViews, RIPE RIS) provides the opportunity to
uncover systematic malicious behavior, also through the application
of automated methods.

In this work, we analyzed the origination behavior of a small set
of manually identified serial hijacker ASes, finding that they show
distinct origination patterns, separating them from most benign
ASes. We further showed that, in spite of limited ground truth and
severe class imbalance, it is possible to train a machine-learning
classifier that effectively narrows our focus to a set of networks
exhibiting similar behavior to serial hijackers: this set accounts for
5.5% (≈ 900) of the examined ASes, 1.4% of all ASes visible in IPv4
BGP. Our analysis also reveals clear potential and specific directions
to further reduce this set, to the point that fully automated detection
approaches and scoring systems can be envisioned in the future.
Practical relevance: To the best of our knowledge, this is the first
work that examines the BGP origination behavior of serial hijackers,
a category of networks that has received surprisingly little attention
in terms of broad and detailed empirical assessment. We argue that
serial hijacking behavior needs attention from both operators and
the broader research community to allow for faster mitigation or
even prevention of hijacking events.

While, as expected, not all ASes flagged by our classifier are
serial hijackers, we note that all such networks do show a highly
distinctive origination pattern. Scrutinizing these networks, we
found widespread indications of malicious behavior, with flagged
ASes being more likely to be in blacklists associated with malicious
behavior, as well as different indicators of misconfiguration. Since
our system is orthogonal to commonly deployed reputation systems
(e.g., event-based hijack detection), and works out-of-the-box using
readily available public BGP data, we believe that, after refinement,
the output of our classifier might be used to provide additional
scoring data, e.g., in scoring-based reputation systems.

Even after disclosure, hijack reports and discussions on mailing
lists typically focus on isolated incidents (i.e., usually the prefixes
of the network operator issuing the complaint), and the case of Bit-
canal shows that it took years to effectively cap hijacking activity
and disconnect Bitcanal. Our metrics can compactly, and yet com-
prehensively, capture the dominant origination characteristics of
misbehaving networks. Thus, even after initial disclosure on mail-
ing lists, our metrics and analysis provide an instant picture of the
Internet-wide “state-of-affairs” of the networks in question, which
can help operators to readily assess the full extent of hijacking
activity, and thus inform the process of coordinated mitigation.
Limitations:We note that our classifier is solely based on the rout-
ing activity of ASes. We focus on identifying routing characteristics
of serial hijackers, which present one particular case of hijacking
activity. Our detection mechanism does, naturally, not cover the
space of hijacking activity exhaustively. While we find that serial
hijackers do show distinct announcement patterns, our classifier
does falsely tag some legitimate ASes as having BGP behavior sim-
ilar to serial hijackers, as reflected in the precision of our classifier
of ≈ 80%. We hence want to stress that our classifier, while effective
in narrowing down the set of flagged ASes to ≈ 900 ASes, can and
should not be deployed, as is, to generate, e.g., filtering rules. Fur-
thermore, if deployed at any point in the future, there is a potential
risk that hijackers could craft their BGP announcements to not
exhibit the characteristics captured by our classifier and thus evade
detection. Another limitation of our work is that we focus solely
on distinct features of the BGP origination patterns of networks
and therefore on BGP origin hijacks. Hijacks which modify the AS
path leaving the legitimate origin AS unaltered are therefore not
captured in our data. Our work constitutes an initial view into the
properties of serial hijackers with much future work to be done.
Futurework: In the future, we plan to extend the features we lever-
age for classification. Potential additional features include more
BGP-derived properties, such as AS-path characteristics of hijacked
prefixes, as well as sub- and super-MOAS events. We believe that
such features could not only further improve separation of ASes,
but also shed light on topological properties of hijackers, e.g., up-
stream networks and peering facilities leveraged by serial hijackers.
We further plan to cross-evaluate our findings with other external
datasets. In a first step, we correlated our identified ASes against
blacklists, finding indications of persistent malicious behavior.

Our work is based on 5 years of historic BGP routing data, and
we point out that some of the dominant characteristics of serial
hijackers only become visible when studying routing data at longer
timescales. We note, however, that our features to capture advertise-
ment volatility are in fact computed over much shorter timescales
i.e., bins of weeks and months, and our address space features might
well yield distinctive results when applied to shorter timescales.
This suggests that early detection of systematic misbehavior might
be indeed possible. We plan to further study the time-sensitivity of
our approach to assess closer-to-real-time detection possibilities.
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