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ABSTRACT
We present the design, implementation, evaluation, and validation
of a system that learns regular expressions (regexes) to extract Au-
tonomous SystemNumbers (ASNs) from hostnames associated with
router interfaces.We train our systemwithASNs inferred by Router-
ToAsAssignment and bdrmapIT using topological constraints from
traceroute paths, as well as ASNs recorded by operators in Peer-
ingDB, to learn regexes for 206 different suffixes. Because these
methods for inferring router ownership can infer the wrong ASN,
we modify bdrmapIT to integrate this new capability to extract
ASNs from hostnames. Evaluating against ground truth, our modi-
fication correctly distinguished stale from correct hostnames for
92.5% of hostnames with an ASN different from bdrmapIT’s ini-
tial inference. This modification allowed bdrmapIT to increase the
agreement between extracted and inferred ASNs for these routers
in the January 2020 ITDK from 87.4% to 97.1% and reduce the error
rate from 1/7.9 to 1/34.5. This work opens a broader horizon of
opportunity for evidence-based router ownership inference.

CCS CONCEPTS
• Networks → Naming and addressing.
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1 INTRODUCTION
Identifying the Autonomous System (AS) that operates a router is
critical to understand connectivity within and between organiza-
tions. For example, recent work has examined patterns of conges-
tion between ASes [5, 9, 34], connectivity of cloud providers [35, 36],
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as3491.ip4.gtt.net

pccw-ic-319977-ldn-b3.c.telia.net

be2-132.br02.ldn12.pccwbtn.net

77.67.94.154

213.248.68.105

63.218.52.253

3257

1299

3491

Router #2: Inferred AS 3491 (PCCW)

as2914.cr3-lax1.ip4.gtt.net

ae3.er2.lga5.us.zip.zayo.com

216.221.157.90

64.125.14.5

3257

6461

Router #3: Inferred AS 6461 (Zayo)

as15133.cr2-nyc6.ip4.gtt.net

edgecast-ic-317659-nyk-b5.c.telia.net

edgecast.newyork51.new.seabone.net

173.205.63.202

62.115.147.199

195.22.195.27

3257

1299

6762

Router #1: Inferred AS 15133 (Edgecast)

gtt.net regex: ^as(\d+)\..+\.gtt\.net$

Figure 1: Border routers with interface IP addresses routed
and named by their supplying AS. These hostnames allow
researchers and operators to reason about router-level inter-
domain connectivity.

macroscopic impacts of submarine cable deployments [8], and load
balanced paths within and between ASes [27, 29]. Because there
is no database that stores the AS that operates every router, re-
searchers have developed and refined heuristic-based methods to
infer the AS that operates a router using topological constraints
from traceroute and BGP paths [12, 18, 21, 22, 24–26]. However,
router-level Internet connectivity is complex, techniques for infer-
ring router-level connectivity have limited capability, and obtaining
ground truth at scale to inform heuristic development is difficult,
restricting the accuracy of these methods.

To aid network management, some network operators encode
the AS that operates a router in DNS hostname strings. This AS
annotation is important for attribution, as when two ASes inter-
connect, one AS supplies an IP address to its neighbor to facilitate
connectivity. This IP address is registered to the supplying AS
in WHOIS, and typically originated in BGP by the supplying AS,
so naïve interpretations of who operates a router that use these
sources of data can mislead operators and researchers. Figure 1
provides examples of border routers with interface IP addresses
routed and named by their supplying AS, as well as the ASNs that
one heuristic-based method, bdrmapIT [24], inferred for the routers.
The operators supplying IP addresses for these router interfaces
have different conventions for assigning hostnames to these IP
addresses; gtt.net embeds the ASN, while telia.net and seabone.net
embed the AS name. In this paper, we implement a method to au-
tomatically learn regular expressions (regexes) that extract these
ASN annotations. This paper makes four contributions:
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(1)We introduce and validate amethod that infers regexes
that extract AS numbers from hostnames. Our method finds
patterns in hostnames that embed an ASN, including necessary
literals and character classes in regexes that capture these patterns.
We validated our inferred regexes with five operators, who reported
that we captured their naming intent, though in one case our regex
was too specific because of stale hostnames. We implemented our
method in the Hoiho tool [19], and publicly release our source code
implementation as part of scamper [16].

(2) We demonstrate the utility of our algorithm by apply-
ing it to 19 sets of training data across 10 years. We used the
17 Internet Topology Data Kit (ITDK [1]) snapshots built by CAIDA
between July 2010 and January 2020 that include routers anno-
tated with AS inferences using the RouterToAsAssignment [12]
(2010–2017) or bdrmapIT [24] (2017–2020) heuristic-based router
ownership inference methods – as well as two PeeringDB snap-
shots – to build regexes for 206 suffixes. We publicly release the
training data and inferred regexes on a website that shows how
these regexes applied to training data [20].

(3)Wemodify bdrmapIT to evaluate extractedASNswhen
inferring router ownership. We consider the possibilities that
the hostname is stale, or the bdrmapIT-inferred AS was wrong (con-
sider the discrepancy for the third router in figure 1). We extend
bdrmapIT to consider the extracted ASNs in the context of the topo-
logical constraints it gathers when inferring the AS that operates a
router. For the January 2020 ITDK, our modification distinguished
stale from correct hostnames for 92.5% of hostnames incongruent
with bdrmapIT’s initial inference, increasing agreement between
the extracted and inferred ASNs from 87.4% to 97.1% and reduce
the error rate from 1/7.9 to 1/34.5 for these routers. We publicly
release our modifications to bdrmapIT [23].

(4)We establish a new source of validation data for router-
level interconnectionmapping. Obtaining ground truth at scale
is fundamentally intractable; prior work (§2.1) validated methods
on at most 7 networks, mostly Tier-1 and R&E networks, triggering
concerns about generalizability of methods. We inferred 90 regexes
from the January 2020 ITDK for networks of diverse geography,
size, and class, offering future methods a promising approach to
validation data that can be shared.

2 BACKGROUND AND RELATED WORK
2.1 Inferring Router Ownership
In 2003, Mao et al. developed heuristics to improve IP-to-AS map-
pings for router interfaces [22], changing IP-to-AS mappings de-
rived from BGP routing so that traceroute-inferred AS paths were
more congruent with BGP AS paths for corresponding prefixes.
They used hostnames to infer the AS for named but unrouted in-
terfaces, assigning the same AS mapping as a neighboring routed
interface with the same suffix. However, this heuristic is unreli-
able because the supplying AS assigns hostnames to the IPs they
provide to their neighbor for interconnection (figure 1). In 2004,
Mao et al. used a dynamic programming technique to change IP-
to-AS mappings at a /24 prefix granularity using co-located BGP
and traceroute views [21]. However, operators typically use /30 or
/31 prefixes (rather than /24s) for private interconnection between
networks to use address space efficiently.

In 2010, Huffaker et al. evaluated router ownership heuristics that
used router alias resolution, AS relationships, and degrees [12]. The
best-performing heuristic they evaluated was to choose the AS that
announced the longest matching prefix for the most interfaces on
the router in BGP (election), breaking ties by choosing the smaller
of the ASes with interfaces on the router (degree). They validated
using data from a Tier-1 network, a Tier-2 network, as well as five
research and education networks, and reported that 80% of the AS
inferences were correct when the inferred routers had interfaces
from multiple ASes, but reduced to 71% when including routers
with interfaces in a single AS, likely because traceroute usually
only observes the provider-supplied (and BGP-announced) address
for border routers of stub ASes. They publicly released their source
code implementation, which they called RouterToAsAssignment.
Twelve ITDKs built between July 2010 and February 2017 used this
technique to infer router ownership.

In 2016, Luckie et al. and Marder et al. built the bdrmap [18]
and MAP-IT [26] techniques, respectively. The bdrmap technique
focused on finding all neighbor routers forming an interdomain link
with an AS hosting a traceroute vantage point (VP), that are observ-
able from that VP. From a single VP, bdrmap conducts traceroute to
every routed prefix, and uses a set of heuristics in conjunction with
AS relationships and BGP routing information to infer ownership
of the neighbor routers. Luckie et al. validated bdrmap’s router
ownership inferences using ground truth provided by a Tier-1 net-
work, one large and one small access network, and a research and
education (R&E) network, reporting that ≈97.1% of inferred ASes
corresponded to the organization operating the router. MAP-IT
used a graph refinement technique to infer owners for all routers
observed in themiddle of a traceroute path, in a collection of tracer-
outes. In validating MAP-IT, Marder et al. focused on IP addresses
they inferred were used for AS interconnection for two Tier-1
networks. They manually interpreted hostnames those operators
assigned, reporting that 95.0% of their interconnection inferences
were correct. They also obtained ground truth from a R&E network,
reporting that all interconnection inferences were correct.

In 2018,Marder et al. built bdrmapIT [24], incorporating bdrmap’s
heuristics, such as those for inferring ownership of routers only
observed at the edge of traceroutes where there are no adjacent
routers from which to reason about ownership, with MAP-IT’s
graph refinement, to extend bdrmap’s router ownership inference
heuristics outside the VP network. They validated using ground
truth from a Tier-1 network, a large access network, and two R&E
networks, reporting that ≈95.3% of their AS interconnection IP
address inferences correctly identified the operating ASes on each
side of the interconnections. Five ITDKs built between August 2017
and January 2020 used bdrmapIT to infer router ownership.

These existing heuristic-based methods are not suitable for in-
ferring ownership of routers observed in one-off or limited sets of
traceroutes, as they rely on accumulating constraints from a large
set of traceroutes for their accuracy. Our method allows researchers
to benefit from these previous methods without requiring a large
set of traceroutes. In addition, our method enables corroboration
and validation of inferences made using these heuristic-based meth-
ods. Importantly, since validation of previous methods has used
proprietary ground truth data, our method yields validation data
(hostname annotations) that can be shared.
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2.2 Topology Information in Hostnames
Researchers and operators use hostnames in DNS pointer (PTR)
records to understand router-level topology. Prior work has used
these hostnames to infer and validate router ownership [12, 22,
26], geolocation [11, 13, 31, 33], physical properties [2, 6, 7, 10],
and which interfaces belong to the same router [14, 17, 19, 32].
Using hostnames to infer router-level properties of networks is
challenging, as each operator independently decides on a naming
convention for their suffix, leading researchers to manually build
regexes to capture structure unique to each suffix [10, 12, 14, 17, 33].
Further, hostnames can have typos and become stale [37].

More recently, researchers have applied machine learning ap-
proaches to automatically infer regexes that extract information
from hostnames. In 2014, Huffaker et al. built DRoP [13] to in-
fer regexes that extract apparent geolocation strings from router
hostnames. In 2019, Luckie et al. built the Holistic Orthography
of Internet Hostname Observations (Hoiho) tool [19] to infer the
portion of a hostname that embeds a router name shared among
interfaces on the same router, but unique across routers in the suffix,
to infer router aliases. That work learned regexes that increased in
specificity and completeness over the course of eight stages, and
showed that it is possible to infer likely aliases using hostnames
and regexes that prior techniques missed [19]. In this work, we
modify Hoiho to learn to infer the portion of a hostname that em-
beds the ASN of the network that operates the router, and introduce
techniques to detect hostnames that contain stale ASN annotations,
so that heuristic-based router ownership inference methods can
automatically evaluate correct ASN annotations. More broadly, the
measurement community will be able to more confidently charac-
terize router-level Internet structure if the community is able to
automatically use information encoded in hostnames.

3 BUILDING CONVENTIONS
Our algorithm learns if an operator uses a naming convention (NC)
that embeds an ASN in a hostname, by evaluating automatically
generated candidate regexes against sets of router hostnames with
the same suffix. We determine suffixes using the Mozilla public
suffix list [28], which lists effective top-level domains (e.g. .com,
.org.nz) under which operators can register their own domain suf-
fixes (e.g. example.com, luckie.org.nz). We annotate each router
with a training ASN inferred heuristically (§2.1) or recorded by
an operator in PeeringDB. If a regex extracts different ASNs for
different hostnames in the same suffix, and the extracted ASNs
are congruent with training ASNs, we infer that each hostname
embeds the ASN that operates the router, as we do for the example
in figure 1. A regex must extract multiple different ASNs congruent
with training data, because some operators embed the ASN that
supplies the address, even for addresses they supply to neighbor
routers, illustrated by the example in figure 2.

3.1 Evaluating and Ranking Regexes
A hostname contains an apparent ASN if it contains a numeric
string (number) congruent with the training ASN for the router
with that hostname. Hoiho evaluates regexes using the following
per-hostname classifications. Hoiho assigns a true positive (TP)
when a regex extracts a number congruent with the training ASN

as(\d+)\.nts\.ch$

15576

15576

15576

44879

51768

206616

ge0-2.01.p.ost.ch.as15576.nts.ch

lo1000.01.lns.czh.ch.as15576.nts.ch

te0-0-24.01.p.bre.ch.as15576.nts.ch

01.r.cba.ch.bl.cust.as15576.nts.ch

02.r.czh.ch.sda.cust.as15576.nts.ch

01.r.cbs.ch.wwc.cust.as15576.nts.ch

training

ASN

hostname

(PTR record)

Figure 2: Example suffix that labels the AS that supplies the
address, not the AS that operates the router.

701

855

6057

20940

205073

207032

201.atm2-0.vr1.tor2.alter.net 

 te-4-0-0-85.53w.ba07.mctn.nb.aliant.net

mlg4bras1-be127-605.antel.net.uy

as24940.akl-ix.nz

as202073.swissix.ch

gw-as20732.init7.net

training

ASN

hostname

(PTR record)

(a) Apparent ASNs can have an edit distance of one from their train-
ing ASN, by coincidence or typo.

122

209

209

50-236-216-122-static.hfc.comcastbusiness.net

209-201-58-109.dia.stat.centurylink.net

209-206-252-105.stat.centurytel.net

(b) Hostnames can embed an IP address, with portions the same as
the training ASN, by coincidence.

Figure 3: Example hostnames with apparent ASNs, which
differ from the training ASN by a single digit (a), or were
derived from an IP address (b).

for that hostname. Some hostnames contain an apparent ASN that
differs from the training ASN with a Damerau-Levenshtein edit
distance of one [4, 15] possibly suggesting a typo. Figure 3a shows
sample hostnames with apparent ASNs that have an edit distance
of one from the training ASNs, some of which are typos, and others
by coincidence. Hoiho therefore also assigns a TP when the first
and last characters of the training ASN and extracted number are
the same, and both numbers are at least three digits in length, to
avoid inferring a TP where the training ASN and extracted number
have an edit distance of one by coincidence; Hoiho found seven
hostnames with typos in the January 2020 ITDK. Hoiho otherwise
assigns a false positive (FP) when a regex extracts a different number
than the training ASN, or when the extracted number is part of
an IP address embedded in the hostname, illustrated in figure 3b.
Finally, Hoiho assigns a false negative (FN) when a regex does not
extract a number from a hostname and there is an apparent ASN
in the hostname congruent with the training ASN.

Our metric for ranking regexes, which we call Absolute True
Positives (ATP), is TP-(FP+FN). Our ATP metric includes FNs be-
cause our goal is to find a regex that matches as many hostnames
as possible, rather than find a regex that has high positive predic-
tive value (PPV, TP/(TP+FP)) for a subset of interfaces. Hoiho used
a different definition of ATP when it evaluated regexes to infer
router names [19], penalizing regexes that separated hostnames
from routers (one class of FN), but did not penalize regexes that did
not match routers with aliases (a second class of FN) because not
all operators embed a router name in their hostnames.
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109

714

714

714

714

24115

24115

22282

24482

54827

55247

2906

19324 

8075

8075 

55923

training

ASN

hostname

(PTR record)

109.sgw.equinix.com

714.os.equinix.com

714.me1.equinix.com

p714.sgw.equinix.com

s714.sgw.equinix.com

p24115.mel.equinix.com

s24115.tyo.equinix.com

22822-2.tyo.equinix.com

24482-fr5-ix.equinix.com

54827-dc5-ix2.equinix.com

55247-ch3-ix.equinix.com

netflix.zh2.corp.eu.equinix.com

ipv4.dosarrest.eqix.equinix.com

8069.tyo.equinix.com

8074.hkg.equinix.com

45437-sy1-ix.equinix.com

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

(p)

TP FP FN ATP

^(\d+)\.[^\.]+\.equinix\.com$

^p(\d+)\.[^\.]+\.equinix\.com$

^s(\d+)\.[^\.]+\.equinix\.com$

^(\d+)-.+\.equinix\.com$

a, b, c

d, f

e, g

h, i, j, k

n, o

p

-7

-7

-7

-4

Phase 1: Generate Base Regexes

Phase 4: Build Regex Sets
a, b, c,

d, e, f, g, 

h, i, j, k

^(?:p|s)?(\d+)\.[a-z\d]+\.equinix\.com$

^(\d+)-.+\.equinix\.com$
n, o, p 8

^(?:p|s)?(\d+)\.[a-z\d]+\.equinix\.com$
a, b, c, 

d, e, f, g
n, o h, i, j, k 1

n, o h, i, j, k 1^(?:p|s)?(\d+)\.[^\.]+\.equinix\.com$
a, b, c, 

d, e, f, g

Phase 3: Embed Character Classes

Phase 2: Merge Regexes

d, e, f, g, h, i, j, k

a, b, c, e, g, h, i, j, k

a, b, c, d, f, h, i, j, k

a, b, c, d, e, f, g

#1

#2

#3

#4

#5

#6

#7

(§3.2)

(§3.3)

(§3.4)

(§3.5)

Figure 4: Inferring a naming convention (NC) for the Equinix suffix (equinix.com) across four phases. The regexes that form
the NC increase in specificity and coverage through each phase.
3.2 Generate Base Regexes
Our algorithm consists of four stages, illustrated in figure 4, which
increase specificity and coverage as the algorithm proceeds. In
the first phase, Hoiho builds base regular expressions that extract
ASNs focusing on structure encoded in the hostname using punc-
tuation characters. This phase recursively builds base regexes that
capture the apparent ASN with (\d+) and use regex components
that exclude specific punctuation depending on the punctuation
at the beginning and end of each portion (e.g., [^\.]+ and [^-]+
match sequences of characters that do not contain a dot or hy-
phen, respectively), or match anything (i.e., .+) at most once per
regex, similar to prior work [19]. For example, Hoiho builds ^(\d+)-
[^-]+-[^\.]+\.equinix\.com$, ^(\d+)-[^-]+-[^-]+\.equinix\.com$, and
^(\d+)-.+\.equinix\.com$ for hostname i in figure 4. For the por-
tion that contains the apparent ASN, we extended Hoiho to embed
sequences of alphanumeric characters around the ASN delimited
by punctuation, in accordance with common operational practice,
in the base regexes. For example, regex #2 in figure 4 Hoiho em-
beds “p” in ^p(\d+)\.[^\.]+\.equinix\.com$ as “p” appears in the same
punctuation-delimited portion as the ASN in hostnames d and f.

3.3 Merge Regexes
In the second phase, Hoiho examines the set of regexes for each
suffix that are very similar, i.e., they differ by a single simple string.
For example, the first three regexes in figure 4 all have ^ and
(\d+)\.[^\.]+\.equinix\.com$ in common, but regexes #2 and #3 addi-
tionally contain the strings “p” and “s”. Hoiho merges these three
regexes by embedding an or statement into the portion of the regex
that differs – (?:p|s), so that a single regex will match hostnames
with a “p” or “s” prior to the ASN. In this case, regex #1 does not em-
bed any characters between the portion of the regex that is in com-
mon, indicating these characters are optional. Hoiho represents this
optionality by appending a question mark at the end of the or state-
ment – (?:p|s)? – to compose ^(?:p|s)?(\d+)\.[^\.]+\.equinix\.com$.
Prior work in Hoiho [19] did not merge similar regexes. This im-
provement generalizes when building regexes for alias resolution.

3.4 Embed Character Classes
In the third phase, Hoiho identifies character class sequences in
common for matched hostnames, replacing the components that
exclude specific punctuation built in §3.2 (e.g., [^\.]+ and [^-]+)
with components that specify character classes. For example, the
component [^\.]+ for regex #5 in figure 4 matches alphabetical
characters for hostnames a-g, although hostname c also contains a
digit. Therefore, Hoiho replaces [^\.]+ with [a-z\d]+, which matches
a sequence of alphanumeric characters, to build regex #6. This phase
is the same as the approach in prior work [19].

3.5 Build Regex Sets
In the final phase, Hoiho builds sets of regexes to form a NC in
order to increase coverage where the operator uses multiple for-
mats. Hoiho ranks regexes by ATP (descending) and evaluates the
outcome of combining a regex with each of the regexes below it in
the rank order. Hoiho includes an expanded regex in its working
set if the ATP is greater than the regex it started with. For example,
Hoiho combines regexes #4 and #6 to build NC #7 in figure 4 because
regexes #4 and #6 match different hostname formats. Unlike prior
work [19] Hoiho does not require the PPV of the new inferences to
be similar or better than the PPV of the regex it started with, as our
goal is to identify discrepancies between training and embedded
ASNs, where the training ASN might be wrong. Appendix A dis-
cusses the distinction between merging regexes (§3.3) and building
regex sets (§3.5).

3.6 Select Best Convention
Hoiho ranks NCs by ATP, and initially select the highest ranked NC
as the best, even if a regex below had a higher PPV. Then, Hoiho
considers NCs with a lower ATP but expressed in fewer regexes.
Hoiho selects a lower-ranked NC if it matches at least as many
hostnames as the current best NC, has at least as many TPs, and
no more than one additional FP. Because these NCs are made of
fewer regexes, there is less opportunity to choose a regex that is
the result of over-fitting to the training data.
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PeeringDB
202001

201104

201904

201110

201901

201207

201803

201304

201708

201307

bdrmapIT

201404

201702

201412

201609

201508
201603

200

19     55

55     90

16     61

36     48

13     55

41     80

19     61

0

22     46

44     69

15     46

50

12     42

42     77

14     31

100

17     40

42     74

16     38

150

12     33

Number of Suffixes with Embedded ASNs

17     60

202002

RTAA

201709

201007

55     74

Good Promising Poor Single

Good
Use−
able

Figure 5: Classification of NCs. The number of NCs embed-
ding ASNs is growing over time.

4 EVALUATING CONVENTIONS
We applied our method to 17 ITDKs assembled by CAIDA between
July 2010 and January 2020 that contain IPv4 routers annotated with
an ASN inferred with RouterToAsAssignment (RTAA) or bdrmapIT
(§2). We also applied our method to two sets of training data that
used ASNs recorded by operators in PeeringDB. Hoiho classified
a NC as good if it extracted at least three unique ASNs congruent
with training ASNs with a PPV ≥ 80%, and a NC as promising if it
extracted at least two unique congruent ASNs with a PPV ≥ 50%.
The good and promising NCs are usable because they usually extract
a congruent ASN. Hoiho classified a NC as single if it extracted
congruent ASNs belonging to a single organization, as in figure 2.
The remaining NCs with a PPV < 50% are poor.

Figure 5 shows that Hoiho classified 12 – 55 NCs per ITDK
as good, with the number of good NCs growing over time. The
growth of good NCs is a combination of three factors: improvement
in heuristic methods, increasing numbers of suffixes that embed
ASNs, and an increasing number of VPs that provide visibility of
interfaces labeled with ASNs. Hoiho also inferred 55 good NCs
for the February 2020 PeeringDB snapshot. Hoiho inferred usable
NCs for 206 suffixes across all 19 sets of training data. We obtained
ground truth from operators for fiveNCswe inferred for the January
2020 ITDK. The operators confirmed the regexes reflected their NC,
though one (poor) NC was too specific because of stale hostnames.

Wemanually investigated the relationship between the extracted
ASNs and the suffixes for the 108 single NCs for the January 2020
ITDK, establishing that 79.5% of the suffixes belonged to the or-
ganization with the ASN (e.g. nts.ch in figure 2). 82.5% of the 40
single NCs for the February 2020 PeeringDB snapshot are for IXPs
that allow the member to assign the hostname for the IXP address,
using their own suffix. ≈12.5% of the suffixes matched a provider,
peer, or IXP used by the extracted ASN; for ≈7.5% the training ASN
appeared to coincidentally be the hostname.

201110
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Figure 6: Evaluation of usable NCs on training data. The
agreement between training and extracted ASNs increases
as methods to infer operators improve.

Usable Single
Simple – ^as(\d+)\.example\.com$ 17.7% 4.6%
Start – ^as(\d+)\.[a-z]+\.example\.com$ 50.8% 23.1%
End – ^[a-z\d]+\.as(\d+)\.example\.com$ 10.8% 43.1%
Bare – (\d+)\.[a-z]+\d+\.example\.com$ 5.4% 7.7%
Complex 15.4% 21.5%

Table 1: Taxonomy of how and where operators embedded
ASNs in hostnames. Operators that labeled the neighbor
ASN usually placed it at the start of the hostname.

Figure 6 shows the growing congruity between the training ASNs
that were heuristically inferred in the ITDK, and ASNs extracted
by the usable regexes; the PPV for ASNs inferred using Router-
ToAsAssignment is 74.8% – 80.7% and 83.7% – 87.4% for bdrmapIT.
Some extracted ASNs differ from their training ASN because the
training ASN is a sibling AS of the extracted ASN: including these
siblings increased the PPV for RouterToAsAssignment inferences
by ≈1%, and bdrmapIT inferences by ≈2%. The PPV for the ASNs
stored by operators in PeeringDB was 96.0%; we therefore hypothe-
size that while some hostnames were stale, more were correct, and
these heuristic methods inferred the wrong ASN. In §5, we describe
modifications we made to bdrmapIT to incorporate extracted ASNs.

The January 2020 ITDK and February 2020 PeeringDB training
sets were complementary: in total, we observed 130 usable NCs for
different suffixes, with 34 in common – i.e., IXPs observed in both
ITDK and PeeringDB, as well as 56 ISPs unique to the ITDK and
40 IXPs unique to PeeringDB. Of the 34 common suffixes, 24 had
exactly the same regexes; the 10 that differed varied in specificity,
with our method inferring a less specific regex for larger training
sets that captured the diversity present in the hostnames.

We characterized how and where operators embedded ASNs in
the 130 usable NCs, summarizing our results in table 1. An operator
with a simpleNC embedded only a neighbor ASN prefaced with “as”
in the hostname. The NCs we classified as start and end embedded
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Correct ASN Incorrect ASN
Used Not Used Used Not Used
(TP) (FN) (FP) (TN)

Transit Provider 6 0 0 0
European ISP 4 0 0 0
Large ISP 4 0 2 36
Regional US IXP 6 0 0 1
Asia-Pacific IXP 3 1 0 1
PeeringDB (23) 322 26 6 49
Total: 345 27 8 87

372 95
Table 2: Summary of validation. Our modifications to
bdrmapIT made the correct decision for 432 of 467 (92.5%)
of extracted ASNs that were incongruent with bdrmapIT’s
initial heuristic inference.

the neighbor ASN prefaced with “as” at the start or end of the
hostname, and embedded additional information in the hostname,
such as the bandwidth at which the neighbor is connected, or the
name of the neighbor. The NCs we classified as bare embedded the
neighbor ASN but did not preface the ASN with any alphabetic
characters. Finally, the NCs we classified as complex embedded the
neighbor ASNs in the middle of the hostname, or used a different
annotation other than “as”, or required multiple regexes to capture
the convention. Most operators (68.5%) placed the neighbor ASN at
the start of the hostname; in contrast, 43.1% of operators that only
embedded their own ASN placed it at the end of the hostname.

5 USING CONVENTIONS IN bdrmapIT
When processing a router-level graph, bdrmapIT [24] builds topo-
logical state for router nodes, annotating each router node with
subsequent ASNs for adjacent routers in traceroute paths, and desti-
nation ASNs for which the router was in a traceroute path. bdrmapIT
usually uses the subsequent ASNs to reason about which ASN op-
erates a given router. For routers where there were no subsequent
routers, bdrmapIT usually uses the destination ASNs to reason
about which ASN operates the router. We modified bdrmapIT to
evaluate ASNs extracted from hostnames as part of bdrmapIT’s
inference approach, to determine if the ASNs appeared reasonable;
i.e., were not typos or stale. Our modified bdrmapIT inferred an
extracted ASN was reasonable if it matched, or was a sibling of,
an ASN in either the subsequent or destination ASN sets, or the
extracted ASN is a provider of one of the ASes in these sets.

We supplied all of the good, promising, and poor NCs Hoiho
inferred from the January 2020 ITDK to our modified bdrmapIT,
and then re-processed that ITDK. Compared to the initial ITDK, the
agreement between the inferred and extracted ASNs for the routers
with ASN annotations increased from 87.4% to 97.1%. and the error
rate reduced from 1/7.9 to 1/34.5. Of the 723 router interfaces with
ASN mappings different from the ASNs extracted from hostnames,
our modified bdrmapIT used the extracted ASN for 526 (72.8%) and
was most likely to use ASNs extracted using good NCs than other
classes; it used 82.5% of 570 extracted ASNs from good NCs, 44.0%
of 109 from promising NCs, and 18.2% of 44 from poor NCs.

We obtained ground truth for which ASN operated a given router
from five operators, which we used to determine if the hostname

contained the correct ASN. We also cross-validated with ASNs
recorded by operators in PeeringDB for interface IP addresses with
hostnames in 23 different suffixes; we excluded nine router inter-
faces where the training ASN, extracted ASN, and ASN in Peer-
ingDB were all different, because it was not clear if any of the ASNs
were correct. In total, this validation data covered 467 of 723 (64.6%)
hostnames where the extracted ASN was different from the ASN
initially inferred by bdrmapIT. Our modified bdrmapIT made the
correct decision to use the ASN in 92.5% of these hostnames. Ta-
ble 2 shows that 372 hostnames in our validation data contained the
correct ASN, and our modified bdrmapIT used 345 (92.7%) of those
hostnames. There were also 95 interfaces with incorrect hostnames
in our validation data, and our modified bdrmapIT used eight (8.4%).
Five FPs were because the operator recorded their main ASN in
PeeringDB (e.g., Microsoft AS8075) but the IXP operator embedded
a sibling ASN in the hostname (e.g., Microsoft ASes 8069 or 12076).
The extracted ASNs were coincidentally providers of the actual
ASN for the remaining three.

6 LIMITATIONS
Zhang et al. established in 2006 that because operators do not
necessarily maintain hostnames in DNS, Internet topology mapping
efforts using hostnames can be distorted [37]. Errors in hostnames
can impact the accuracy of router ownership inferences using our
regexes. Therefore, we recommend that researchers use our regexes
in conjunction with topological checks as we did in §5.

Our method relies on training data that is usually correct for
routers with interfaces in a given suffix – i.e., the training ASNs
are usually correct and the hostnames are not stale. Outside of
IXPs, where some operators record their public peering interface
addresses in PeeringDB, we rely on heuristic-based methods to
infer training ASNs. Our method may not infer a usable NC if the
heuristic-based methods perform poorly for the routers covered by
a suffix, or the hostnames in a suffix are stale.

7 FUTURE DIRECTIONS
We have shown that it is possible to automatically learn regexes that
extract ASNs from hostnames, and that we can use these ASNs to
improve router ownership inferences that are critical for attribution.
A challenging direction for further work is to learn regexes that
extractAS names, such as those found in figure 1, without relying on
a dictionary of AS names. In our preliminary investigation, at least
3x more suffixes embed AS names than AS numbers in hostnames.
Obtaining this capability could result in a large, heterogeneous
source of validation data, showing exciting promise for evidence-
based router ownership inference techniques.

Our regexes have also value in identifying router and AS-level
interconnections that are not revealed by current measurement in-
frastructure. In our preliminary investigation using the OpenINTEL
PTR lookup of all delegated IP address space [30], we increased the
number of hostnames matching a regex inferred from the January
2020 ITDK from 5.4K to 22.5K. While some of these hostnames
could be stale [37], these hints could inform deployment of new
measurement infrastructure to determine which interdomain links
exist [3], improving our capability to measure the evolution of the
Internet interconnection ecosystem.
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^(?:p|s)?(\d+)\.[a-z\d]+\.equinix\.com$

^(\d+)-.+\.equinix\.com$
#7

^(?:p|s)?(\d+)(?:\.[a-z\d]+|-.+)\.equinix\.com$#7a

^(\d+)\.[a-z\d]+\.equinix\.com$

^p(\d+)\.[a-z]+\.equinix\.com$

^s(\d+)\.[a-z]+\.equinix\.com$

^(\d+)-.+\.equinix\.com$

#7b

Figure 7: Equivalent naming conventions (NCs) using the ex-
ample routers in figure 4. We argue that NC #7 captures the
diversity in thehostnameswithout unnecessary complexity.

A MERGING REGEXES VS. REGEX SETS
Themethod described in §3 contains two stages that are functionally
similar: merging individual regexes that differ by a single simple
string (§3.3) and building regex sets so that a NC contains multiple
regexes each of which match a subset of the hostnames (§3.5). For
example, NC #7 in figure 4, duplicated in figure 7, could have been
presented differently (e.g. #7a and #7b in figure 7). Our overall goal
with Hoiho is to infer regexes that a human might have built, rather
than regexes that are either overfitted to the training data, or so
complex that a human would have used multiple simpler regexes.

At one extreme, we might merge the two regexes that make up
NC #7, structuring the functionally different portion in a second or
statement, as in NC #7a in figure 7. It is our judgment that NC #7a
is one that an operator or user might find difficult to reason about,
and that a human building a regex would probably avoid using
multiple “or” statements. We suggest that this regex is over-fitted,
and in fact the NC is better expressed with two crisp regexes (NC
#7), rather than one. At the other extreme, we might present the
NC using four individual regexes, as in NC #7b in figure 7. The first
three regexes each individually make minor contributions to NC
#7b: using the hostnames in figure 4, the first regex extracts three
ASNs congruent with training data, while the second and third
extract two each. We suggest that the first three regexes in NC #7b
are so similar that a human building a regex would probably merge
these three regexes using a single “or” statement.
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