Introduction to compact routing

Dmitri Krioukov UCSD/CAIDA dima@caida.org

IDRWS 2004

Initial interest: theoretical (fundamental) aspects of routing on graphs

Interest crystallization history:

- Scalability concerns
 - Convergence
 - Routing table size
- Immediate causes
 - Routing policies
 - Increasing topology density
 - Multihoming
 - Address allocation policies
 - Inbound traffic engineering, etc.
- Various short-term fixes
 - Let's consider one of them

Routing on AS#s (ISLAY,atoms)

Disregarding practical problems associated with it, this idea does not solve anything in the long run: small multihomed networks requiring O(1) IP addresses will lead to the situation with the total number of ASs being of the same order as the number of IP addresses.

Crystallization history (contd.)

Put aside routing policies (another interesting problem tackled by others⁽²⁾) **#** Level of abstraction: AS graph, which is a fat-tailed and scale-free small-world **#** Problem becomes: theoretical lower and upper bounds for routing on massive fattailed scale-free small-world graphs

Fat-tailed scale-free small-worlds

- "Small-world" = there is virtually no long paths ('remote' nodes), i.e. the distance distribution has small average and dispersion
- Image: "Fat tail" (e.g. power-law) of the node degree distribution = there is a noticeable amount of high-degree ('hubby') nodes ⇒ the graph has a 'core' ⇒ small-world
- "Scale-free" node degree distribution (e.g. powerlaw) = there is no 'hill' (characteristic scale) in it ⇒ there is a lot of low-degree ('edgy') nodes ⇒ the graph is 'hairy'
- Colloquially: scale-free = power-law

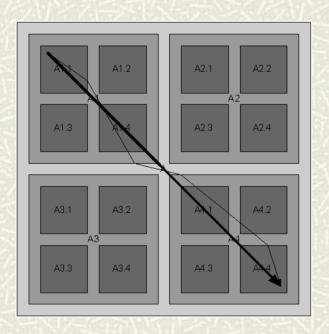
Assessment of known facts: networking community

Hierarchical aggregation, multiple level of abstraction, i.e. Nimrod, MLOSPF, ISLAY, i.e. Kleinrock-Kamoun's hierarchical routing scheme of 1977 (KK). But: there is a cost associated with KK routing table size reduction: path length increase. It depends strongly on a particular topology

KK path length increase

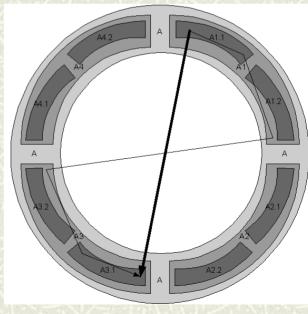
Sparse topology

- **#** There are remote points



Dense topology

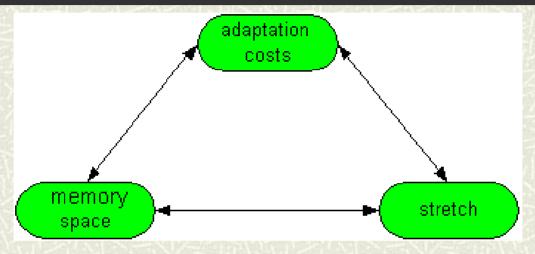
- $\begin{array}{ll} \blacksquare & <L(n)>=const. \ (<degree> \to \infty \ instead) \\ & but < L_{kk}> \to \infty \ so \ that < L_{kk}>/<L> \to \infty \end{array}$
- There are no remote points, so that one cannot usefully aggregate, abstract, etc., anything remote—everything is close



What does path length increase mean in practice?

- Consider a couple of peering ASs. Their peering link is the shortest path between them. Nonshortest path routing may not allow them to use it, which is unacceptable.
- BGP is shortest path if we 'subtract' policies (there is no view of global topology anyway).
 Distance and path vector algorithms are 'shortest path' algorithms by definition.
- Path length increase associated with routing table size decrease is a concern. On the AS topology, the KK scheme produces 15-times path length increase. Can anyone do better?

Assessment of known facts: distributed computation theory



Triangle of trade-offs:

- Adaptation costs = convergence measures (e.g. number of messages per topology change)
- **#** Memory space = routing table size

Crystallization history (contd.)

- Simplify the task: put adaptation costs aside, i.e. assume they are unbounded, i.e. consider the static case. Reasons include:
 - BGP adaptation costs are unbounded (persistent oscillations)
 - The negative answer (memory space and stretch cannot be made simultaneously small on scale-free graphs) was expected. Reasons:
 - KK stretch on the Internet
 - High stretch of other schemes on complete network and classical random graphs
- Question: what is the "best" static routing scheme? Answer: stretch-3 routing by Thorup and Zwick (TZ). Reasons:
 - Maximum stretch of 3 is the minimum value of maximum stretch allowing for sub-linear memory space lower bounds
 - TZ is the only known nearly optimal (memory space upper bound = lower bound) stretch-3 routing

TZ scheme

- Landmark set (LS) construction: iterations of random selections to guarantee the right balance between the cluster size and LS size (as opposed to the greedy set cover algorithm by Lovasz in the Cowen case)
- **Routing table**: shortest paths to the local cluster nodes and landmarks
- Labeling: original node ID, its closest landmark ID, the ID of the port at the closest landmark towards the node
- **Forwarding at node** *v* to destination *d*:
 - If v = d, done
 - If d is in the routing table (cluster or landmark), route appropriately
 - If v is d's landmark, the outgoing port is in the destination address in the packet
 - Default: d's landmark in the destination address in the packet and the route to this landmark is in the routing table

End of story

- Done: considered the "best" static routing scheme (TZ) and analyzed its average memory-stretch trade-offs on Internet-like topologies.
- **#** Found:
 - Both stretch and memory can be made extremely small simultaneously but only on scale-free graphs
 - A number of other unexpected interesting phenomena suggesting that there are some profound yet unknown laws of the Internet (and maybe some other networks) topology evolution

References

Presentation:

http://www.caida.org/~dima/pub/crig-ppt.pdf

Infocom version:

http://www.caida.org/~dima/pub/crig-infocom.pdf

Technical report version: <u>http://www.caida.org/~dima/pub/crig.pdf</u>