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Background

• Macroscopic Topology Project at CAIDA
• represents our main effort in active network measurement
• more than 8 years of data collection
• running skitter on 20-25 “monitors” worldwide
• > 12.7 billion complete skitter traces (as of Apr 2007)
• CAIDA has used data for

• AS graph poster
• AS ranking
• Internet Topology Data Kit (ITDK)
• various topology analyses
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Introduction

• Archipelago (Ark) is CAIDA's next generation active 
measurement infrastructure

• Ark is an upgrade to skitter infrastructure
• replacing software

• using scamper instead of skitter for taking measurements
• IPv4; IPv6; ICMP, UDP, and TCP traceroute and ping; Paris traceroute; 

path MTU discovery
• using new Ark software for communication, management, security, etc.

• adding/upgrading hardware
• adding several dozen monitors to infrastructure
• deploying monitors in 20 countries that never had a monitor before
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Introduction

• Ark is an infrastructure, not a tool
• concerned with system-level issues

• security, data management, software distribution, communication, 
scheduling, ...

• accommodates open-ended set of tools
• traceroute, ping, one-way loss, bandwidth estimation, DNS performance, 

router alias resolution, ...

• could be used for passive measurement but geared toward 
active

• passive measurement: simple, few locations, high data volume
• active measurement: complex, highly distributed, low data volume
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Goals

• a step toward a community-oriented measurement 
infrastructure

• collaborators can run vetted measurements on security-
hardened platform

• general public can perform highly-restricted measurements
• tailored for network measurement -- not broad-scope 

distributed experimental platform
• inspired by PlanetLab but not PlanetLab

10



Goals

• greater scalability and flexibility
• scalability in system management, monitor deployment, 

measurement efficiency, resource utilization
• flexibility in measurement method, scheduling, data collection

• platform for measurement tool development, 
experimentation, deployment

• raise level of abstraction with high-level API and scripting 
language

• inspired by Scriptroute but not Scriptroute

• factor out security, software distribution, data collection, etc. 
from tool development
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Architecture

• topology
• security
• communication & coordination
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Topology
• Ark is physically composed of measurement nodes 

(machines) located in various networks worldwide
• measurement nodes connected to central server (at CAIDA) 

over Internet, forming a logical star topology
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Architecture

• topology
• security
• communication & coordination
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Security Features

• secure communication
• process isolation via sandboxing (FreeBSD jail)
• rate & resource limiting
• packet filtering
• fine-grained access control of resources
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Security Features

• multiple levels of trust:
• stranger (general public) -- no trust

• no direct access to infrastructure; must access through, say, a web form
• allow pre-defined set of restricted rate-limited measurements, similar to 

public traceroute servers

• acquaintance -- low trust
• direct access to infrastructure, but confined to sandbox
• allow measurements based on granted privileges
• subject to system and network resource limits

• collaborator -- medium to high level of trust
• direct access to infrastructure with optional restrictions
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Security Model

• requirements
• fine-grained authorization mechanisms for

• reading and writing files
• transferring measurement data and other files between hosts
• accessing privileged or confidential resources (e.g., raw sockets, SNMP 

counters)
• opening communication channels
• installing, executing, and stopping measurement software

• scalability
• ability to delegate management

• delegate authorization duties for a subset of nodes
• allow hosting organization to set site-specific maximum privileges

• e.g., nothing beyond traceroute
• finer control than coarse configuration settings

17



Security Model

• chosen approach: capabilities
• a capability is an unforgeable object reference combined with 

list of rights
• possession of a capability is necessary and sufficient 

authorization
• access is granted by passing capabilities from one process to 

another
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Architecture

• topology
• security
• communication & coordination
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Communication & Coordination

a measurement infrastructure is a distributed system 
with many components that must work together in 
complex ways toward a common goal
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monitor1

central server

Communication & Coordination
• missing out on a world of possibilities in decentralized 

communication, interaction, and coordination
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Ark Vision

• empower researchers to use and build upon each 
other’s work

• similar to how the web allowed anyone to be a publisher, and 
changed everything

• allow anyone to run a server that provides a service
• decentralized -- no need to register; no need to install at 

central location
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Communication & Coordination

• ability to communicate is necessary but not 
sufficient

• must go beyond communication to coordination
• coordination is about ...

• scheduling
• starting and stopping
• controlling and guiding
• satisfying dependencies and maintaining ordering
• preparing for and cleaning up
• distributing and collecting

• coordination is also important for collaborative use
• to share and build upon each other’s tools
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Coordination Facility

• coordination is usually implemented in an ad-hoc 
manner on top of a communication facility

• general facility for directly implementing coordination 
is valuable

• abstracts away programming details
• lowers barrier to implementing remotely controllable 

components
• easier to understand and verify correctness of coordinated 

behavior
• easier to re-use or adapt coordination patterns
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Coordination Facility
• Ark provides a tuple space for implementing 

coordination
• tuple space is a distributed shared memory coupled with 

certain operations
• tuple space originated in the Linda coordination language 

created in the mid-1980's by David Gelernter
• further developed and refined over the years by researchers

• commercial implementations of the tuple space model:
• C-Linda from Scientific Computing Associates, Inc.
• TSpaces from IBM
• JavaSpaces from Sun

• many free software implementations
• simplistic, incomplete, non-scalable, research-oriented, etc.

• Ark contains a tuple space implemented from scratch and 
tailored for a measurement infrastructure

• hope to release under GPL as a standalone piece of software
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Tuple Space
• before proceeding,

 it’s worth noting what a tuple space is not ...

• tuple space is not for coding measurement logic; only 
for coordinating measurement activity

• tuple space is a medium not an implementation language
• write measurement tools in Ruby, C/C++, etc.
• use tuple space to control, direct, and glue together 

measurement tools

• tuple space is not for transferring bulk data; only for 
low-volume coordination data

• transfer bulk data with a separate TCP, FTP, HTTP, SCP, etc. 
connection
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Tuple Space
• before proceeding,

 it’s worth noting what a tuple space is not ...

• not MPI, OpenMP, etc.
• not a distributed hash table (DHT)
• not a distributed database
• not a new routing system/protocol for IP packets

• not a new BGP or IGP; not a new overlay (RON, GENI)

• not a new DNS
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Tuple Space
• before proceeding,

 it’s worth noting what a tuple space is not ...

• not for coding measurement logic
• tuple space is a medium not an implementation language
• only for coordinating measurement activity
• write measurement tools in Ruby, C/C++, etc.
• hook up measurement tool to the tuple space
• use tuple space to control, direct, and glue together 

measurement tools

• not for transferring bulk data
• transfer only coordination (command/control) data/metadata
• transfer bulk data with a separate TCP, FTP, HTTP, SCP, etc. 

connection
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Tuple Space

• implementation-wise, a tuple space is closest in 
concept to a database

• similar client-server design
• e.g., global tuple space is a datastore hosted by a server 

process running at CAIDA

• superficial resemblance to publish/subscribe systems
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Tuple Space

• tuple space contains tuples
• multiset: can have any number of tuples with the same value

• tuples are an ordered collection of values of possibly 
mixed type (int, float, string, ...)

• can have any number of components
• up to users to define meaning of tuples

• meaning rests solely on implicit convention
• advantage: no formal (database-like) schema required or declared

• examples:
• ("composer", "Bach", 1685, 1750)
• ("Bach", 1011, "Cello Suite No. 5 in C minor")
• ("J.A. Bach", "J.S. Bach")
• ("J.S. Bach", "C.P.E. Bach")
• ("J.S. Bach", "W.F. Bach")
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Tuple Space

• tuple space is an associative memory
• match user-supplied template against all tuples
• template is like a tuple except it can have wildcards (*)

• (("J.S. Bach", "C.P.E. Bach"))
• (("J.S. Bach", *))

• template matches tuple if
• template and tuple have same number of components, and
• values at corresponding positions in template and tuple match:

• literal value only matches the same value
• wildcard always matches any value of any type

• examples of template matching:
• (("J.S. Bach", *)) matches ("J.S. Bach", "C.P.E. Bach")
• (("J.S. Bach", *)) does not match ("J.S. Bach", 1685, 1750)
• (("J.S. Bach", *, *)) matches ("J.S. Bach", 1685, 1750)
• ((*, 1685, *)) matches ("J.S. Bach", 1685, 1750)
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Tuple Space

• 3 fundamental tuple space operations:
• write(tuple)

• adds a tuple

• read(template)
• returns a copy of a matching tuple (tuple remains in tuple space)
• blocks until a matching tuple is added to the tuple space

• take(template)
• removes matching tuple from tuple space and returns it
• blocks until a matching tuple is added to the tuple space
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Tuple Space

• properties beneficial for coordination:
• designed explicitly for concurrency

• burden of locking shared space on system, not on user
• automatic mutual exclusion: system guarantees that only one process can 

remove a given tuple with take operation

• operations block waiting for matching tuple
• supports decoupling in time
• reader and writer processes may have different or non-overlapping 

lifetimes

• tuples are not addressed to an explicit recipient
• supports decoupling in space
• reader and writer processes don't need to know the identity or location or 

even existence of each other
• allows dynamically changing, open-ended set of participants

42



Coordination Patterns

• semaphores
• enforce mutual exclusion in resource access or use
• tuple == semaphore
• library book metaphor:

• book on shelves => available => semaphore free
• book missing => not available => semaphore locked

• e.g., to prevent concurrent probing into a given AS:
• setup: write(“AS701”)
• client 1: take(“AS701”); doit(); write(“AS701”)
• client 2: take(“AS701”); doit(); write(“AS701”)

• set allowed level of parallelism or concurrent access by 
initializing with multiple tuples:

• setup: write(“AS701”); write(“AS701”)
• client 1: take(“AS701”); doit(); write(“AS701”)
• client 2: take(“AS701”); doit(); write(“AS701”)
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Coordination Patterns
• barrier synchronization

• block fast-running tasks until all tasks reach a certain point in 
processing or execution, after which all tasks become 
unblocked

• e.g., want all measurement tasks to start at same time at beginning of 
each stage of a multistage measurement

• one implementation approach: for 3 processes, A, B, & C:
• A: write(“A-done”); read(“B-done”); read(“C-done”)
• B: write(“B-done”); read(“A-done”); read(“C-done”)
• C: write(“C-done”); read(“A-done”); read(“B-done”)

• another approach: for general n processes--use counter:
• global setup: write(“working”, n);
• each process:
    wait_for_all() {
       (x, n) = take(“working”, *);
       write(“working”, n-1);
       read(“working”, 0);
    }
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Coordination Patterns
• distributed data structures

• lists, queues, trees, graphs, ... can be built with tuples
• data structures exist on their own independently of processes
• processes concurrently manipulate these data structures
• provides a foundation for distributed processing and problem 

solving
• e.g., can implement producer-consumer pattern supporting 

arbitrary number of consumers and producers:
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consume() {
  (x, n) = take(“head”, *);
  write(“head”, n+1);
  (y, val) = take(n, *);
  return val;
}

produce(val) {
  (x, n) = take(“tail”, *);
  write(“tail”, n+1);
  write(n, val);
}

data structure: (1, “Bach”);(2, “Mozart”);(“head”, 1);(“tail”, 2)



Coordination Patterns
• Bag-of-Tasks (aka Master-Worker) scheduling

• decompose complex or repetitive jobs and parcel out pieces 
to workers

• automatic distribution: no central authority that assigns work
• automatic load balancing: each worker runs at its own pace 

and a slow worker doesn't cause faster workers to idle
• e.g., want to probe every routed /24, balancing load across 

team of 30 machines
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worker() {
  forever {
    (x, t) = take(“task”, *);
    doit(t);
  }
}

master(tasks) {
  for t in tasks {
    write(“task”, t);
  }
}

data structure: (“task”, “192.168.0.0/24”)



Tuple Space Features

• tuple space implementation in Ark is far more 
sophisticated than basic model described so far

• full list of features:
• multiple tuple space regions
• local & global scopes
• private one-to-one and group communication
• fine-grained per-region privileges
• many operations: non-blocking variants, iteration, ...
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Tuple Space Features

• multiple disjoint tuple space regions
• partition communication space for privacy and to prevent 

interference (cross talk)
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Tuple Space Features
• two scopes:

• local: tuple space regions local to given node
• only processes on node can access regions

• global: tuple space regions at central server, outside all nodes
• processes from all nodes can access regions
• all inter-node communication happens in global regions; no direct node-

to-node communications allowed
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Tuple Space Features
• communication patterns:

• (private) one-to-one communication
• group communication

• that is, many-to-many communication by subset of processes
• group communication implemented with regions

• having access to multiple regions = “belonging to multiple groups”

• all-to-all communication
• special case of group communication
• all processes have access to local and global commons regions
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Tuple Space Features

• can pass file descriptors over local tuple space
• for gaining access to ...

• open files
• services (accessed with sockets)
• tuple space regions (via sockets)

• for granting selective access to resources to sandboxed 
measurement processes
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Tuple Space Features

• operations:
• write(tuple)
• read(template); take(template)
• readp(template); takep(template)

• non-blocking versions of read and take
• if a matching tuple currently exists in tuple space, then return it; else 

return nil

• read_all(template)
• returns all existing tuples that match template

• monitor(template)
• returns all existing tuples that match template, and returns all future 

tuples that match
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Tuple Space Features

• operations (continued):
• p = remember_peer(); forget_peer(p);
• write_to(p, tuple); reply(tuple)

• send private one-to-one communication

• take_priv(template); takep_priv(template)
• receive private one-to-one communication

• forward_to(p, tuple)
• send private one-to-one communication with masquerading of sender

• pass_access_to(p, file_descriptor, tuple)
• pass arbitrary open file descriptor to another local process
• pass access to tuple space region to another local process

• one mechanism for granting group membership
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Tuple Space Features

• fine-grained per-region privileges:
• can read tuples
• can write tuples
• can write sticky tuples
• can take tuples
• can forward tuples
• can pass access rights (file descriptors)
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Examples

• 4 examples of using Ark’s tuple space in practice
• real source code in Ruby
• need only a few lines of initialization and the code for 

measurement logic to run
• in particular, not hand waving away critical details or complexity

• in sample code, ts is a connection to a tuple space region
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Example 1

• simple ping service:
• client supplies address to ping
• server performs ping and returns RTT
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Example 1: ping service

61

client:
req_id = ts.gen_id()    # globally unique ID
ts.write ["PINGv1", req_id, "192.168.0.5"]
result = ts.take ["PINGv1-RESULT", req_id, nil]
puts "RTT = " + result[2]

server:
loop do
   request = ts.take ["PINGv1", nil, nil]
   req_id, addr = request[1..2]
   rtt = ping(addr)
   ts.write ["PINGv1-RESULT", req_id, rtt]
end



Example 1: ping service

• beneficial properties:
• space decoupling: client does not need to know who or 

where the server is
• client only needs to know the request protocol to use the ping service
• server can be moved around without affecting clients

• time decoupling: client does not need to wait for the server 
to be running before making its request

• shields clients from planned or unexpected server shutdowns, restarts, 
and location migration; for example:

1. server dies, or is shut down and moved

2. client makes request, and blocks on take
3. server starts up, and performs request
4. client receives result, none the wiser
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Example 1: ping service

• beneficial properties (cont’d):
• automatic load balancing: simply launch multiple server 

processes with the same code
• fast servers will automatically service more requests than slower servers
• server instances can be started up on different hosts or at different 

locations

• no need to make any configuration changes to activate load 
balancing across machines or sites

• request-result decoupling: the client making the request 
need not be same client that processes the result

• can have one client issuing requests (based on, say, user interaction); 
another client can process, analyze, archive, or visualize the result

• analysis client can be a different thread, or a different process altogether 
on a different host at a different location
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Example 2

• geography-aware ping service:
• client supplies server geographic location and address to 

ping
• server performs ping and returns RTT
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Example 2: ping service (geo)
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client:
req_id = ts.gen_id()
ts.write ["PINGv2", req_id, "Europe", "192.168.0.5"]
result = ts.take ["PINGv2-RESULT", req_id, nil]
puts "RTT = " + result[2]

server in Europe:
loop do
   request = ts.take ["PINGv2", nil, "Europe", nil]
   req_id, addr = request.values_at(1, 3)
   rtt = ping(addr)
   ts.write ["PINGv2-RESULT", req_id, rtt]
end



Example 2: ping service (geo)
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server in Asia:
loop do
   request = ts.take ["PINGv2", nil, "Asia", nil]
   req_id, addr = request.values_at(1, 3)
   rtt = ping(addr)
   ts.write ["PINGv2-RESULT", req_id, rtt]
end



Example 2: ping service (geo)
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client:
req_id = ts.gen_id()
ts.write ["PINGv2", req_id, nil, "192.168.0.5"]
result = ts.take ["PINGv2-RESULT", req_id, nil]
puts "RTT = " + result[2]

• client can leave geo parameter unspecified to allow 
any server to fulfill request

• no change required in server code
• feature comes for free from the tuple matching algorithm

• normally, wildcards appear in the template, but they can also appear in 
the tuple, acting like “don’t cares”

• called inverse structured matching



Example 3

• geography- and AS-aware ping service:
• client supplies address to ping and two optional parameters:

• server geographic location
• server AS number

• server performs ping and returns RTT
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Example 3: ping service (geo+AS)
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client:
req_id = ts.gen_id()
ts.write ["PINGv3", req_id, "Europe", "AS3333",
          "192.168.0.5"]
result = ts.take ["PINGv3-RESULT", req_id, nil]
puts "RTT = " + result[2]

client:

client:

client:

ts.write ["PINGv3", req_id, "Europe", nil, 
          "192.168.0.5"]

ts.write ["PINGv3", req_id, nil, "AS3333",
          "192.168.0.5"]

ts.write ["PINGv3", req_id, nil, nil,
          "192.168.0.5"]



Example 3: ping service (geo+AS)
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server in Europe in AS3333:
loop do
   request = ts.take ["PINGv3", nil, "Europe",
                      "AS3333", nil]
   req_id, addr = request.values_at(1, 3)
   rtt = ping(addr)
   ts.write ["PINGv3-RESULT", req_id, rtt]
end

• This server can handle all of the previous client 
requests ....



Example 3: ping service (geo+AS)
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server in Europe in AS3333:
loop do
   request = ts.take ["PINGv3", nil, "Europe",
                      "AS3333", nil]
   req_id, addr = request.values_at(1, 3)
   rtt = ping(addr)
   ts.write ["PINGv3-RESULT", req_id, rtt]
end

• This server can handle all of the previous client 
requests, but what if the client requests AS776?
ts.write ["PINGv3", req_id, "Europe", "AS776", 
          "192.168.0.5"]

We’d like the same server to handle all requests 
for unknown ASes in Europe.  How?



Example 3: ping service (geo+AS)

• in this case, tuple matching is not powerful enough
• need service interposition:

74
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["PINGv3", req_id, "Europe", "AS776", "192.168.0.5"]



Example 3: ping service (geo+AS)

• in this case, tuple matching is not powerful enough
• need service interposition:
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intermediary

client

server

["PINGv3", req_id, "Europe", "AS776", "192.168.0.5"]

["PINGv3-REQ", req_id, "Europe", nil, "192.168.0.5"]



Example 3: ping service (geo+AS)

• in this case, tuple matching is not powerful enough
• need service interposition:
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client

server

["PINGv3-RESULT", req_id, 124.2]



Example 3: ping service (geo+AS)
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revised server:
loop do
   request = ts.take ["PINGv3-REQ", nil, "Europe",
                      "AS3333", nil]
   req_id, addr = request.values_at(1, 3)
   rtt = ping(addr)
   ts.write ["PINGv3-RESULT", req_id, rtt]
end

client: unchanged



Example 3: ping service (geo+AS)
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revised server:
loop do
   request = ts.take ["PINGv3-REQ", nil, "Europe",
                      "AS3333", nil]
   req_id, addr = request.values_at(1, 3)
   rtt = ping(addr)
   ts.write ["PINGv3-RESULT", req_id, rtt]
end

intermediary:
loop do
   request = ts.take ["PINGv3", req_id, nil, nil, nil]
   req_id, addr = request.values_at(1, 4)
   geo, asnum = find_server(request)
   ts.write ["PINGv3-REQ", req_id, geo, asnum, addr]
end



Example 3: ping service (geo+AS)

• service interposition is a general technique useful for:
• providing a simplified interface to complex services
• implementing complex or expensive request dispatch
• translating / bridging disparate protocols

• supporting legacy protocols
• server only implements new protocol
• intermediary translates older protocols
• remove intermediary after all clients have been upgraded
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translator
protocol 1 protocol 2



Example 4

• ping service with private communication:
• client supplies address to ping
• server performs ping and returns RTT using private 1-to-1 

communication with client

81



private region1

public region

channel1

Example 4: ping service (private)

• each client is always connected to exactly two regions:
• a public region that might be shared with other clients
• a private region to which only the client has access

• impossible to share a private region even if the client wishes to
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client1 client2channel2

private region2



public region

Example 4: ping service (private)

• a client is identified by its private region
• each tuple contains a sender field which records the 

private region of the client that wrote the tuple
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private region1

channel1client1 tuple: sender=priv1,
       values=[...]

ts.write [...]



Example 4: ping service (private)
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client:
ts.write ["PINGv4", "192.168.0.5"]
result = ts.take_priv ["PINGv4-RESULT", nil]
puts "RTT = " + result[1]

take_priv => take tuple from per-client private region

server:
loop do
   request = ts.take ["PINGv4", nil]
   addr = request[1]
   rtt = ping(addr)
   ts.reply ["PINGv4-RESULT", rtt]
end

reply => insert tuple into private region of client that sent last retrieved tuple



Example 4: ping service (private)

• can remember sender to engage in dialogue:

• can pass file descriptor:
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tuple = ts.take [...]
peer = ts.remember_peer()
ts.write_to(peer, [...])
ts.take_priv [...]
ts.write_to(peer, [...])
ts.take_priv [...]

file = File.open(“abc”)
ts.pass_access_to(peer, file, [“FILE”, “abc”])



Example 4: ping service (private)

• private regions provide a concurrency model similar to 
Erlang’s asynchronous message passing

• client can call read_priv or take_priv with a template to pull 
out tuples in whatever order it wishes

• client can use a template of [ ] to pull out the first tuple

86



Status
• implemented:

• tuple space in Ruby
• also have (very) incomplete tuple space implementation in Erlang

• Ruby scripts to perform scamper-based global measurements
• data collection

• unimplemented:
• security subsystem

• not ready for use by non-trusted users

• subsystem for deploying arbitrary measurement software
• for now, manually deploy software

• scalable tuple matching algorithm
• very hard multikey matching problem

• handling failure of machine hosting global tuple space
• need logging of tuple operations, and replaying on restart
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Conclusions

• coordination is a common need in a measurement 
infrastructure

• hence, worth supporting directly

• Ark provides a tuple space for implementing 
coordination

• simple to use, and powerful enough for typical situations
• enables a highly decoupled system that is flexible and adapts 

to change
• e.g., handles addition, removal, or movement of clients and servers

• allows anyone to create and run servers
• allows users/researchers to build upon each other’s work
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Thanks!

ark-info@caida.org
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