
Archipelago:
A Coordination-Oriented

Measurement
Infrastructure

Young Hyun
CAIDA

UCSD Syslunch
Apr 11, 2007

Outline

• background
• goals
• architecture
• examples
• status

2

Background

• Macroscopic Topology Project at CAIDA
• represents our main effort in active network measurement
• more than 8 years of data collection
• running skitter on 20-25 “monitors” worldwide
• > 12.7 billion complete skitter traces (as of Apr 2007)
• CAIDA has used data for

• AS graph poster
• AS ranking
• Internet Topology Data Kit (ITDK)
• various topology analyses

3

skitter Measurement Infrastructure

4

central server
(CAIDA in San Diego)

monitor1
(London)

monitor2
(Tokyo)

skitter Measurement Infrastructure

5

central server
(CAIDA in San Diego)

monitor1
(London)

monitor2
(Tokyo)

1. download
destination

list (IP addresses)

skitter Measurement Infrastructure

6

central server
(CAIDA in San Diego)

monitor1
(London)

monitor2
(Tokyo)

2. perform
traceroute

measurement

host1
(US) host2

(Africa)

router
(Europe)

web server
(Oceania)

skitter Measurement Infrastructure

7

central server
(CAIDA in San Diego)

monitor1
(London)

monitor2
(Tokyo)

3. transfer
measurement

data

Introduction

• Archipelago (Ark) is CAIDA's next generation active
measurement infrastructure

• Ark is an upgrade to skitter infrastructure
• replacing software

• using scamper instead of skitter for taking measurements
• IPv4; IPv6; ICMP, UDP, and TCP traceroute and ping; Paris traceroute;

path MTU discovery
• using new Ark software for communication, management, security, etc.

• adding/upgrading hardware
• adding several dozen monitors to infrastructure
• deploying monitors in 20 countries that never had a monitor before

8

Introduction

• Ark is an infrastructure, not a tool
• concerned with system-level issues

• security, data management, software distribution, communication,
scheduling, ...

• accommodates open-ended set of tools
• traceroute, ping, one-way loss, bandwidth estimation, DNS performance,

router alias resolution, ...

• could be used for passive measurement but geared toward
active

• passive measurement: simple, few locations, high data volume
• active measurement: complex, highly distributed, low data volume

9

Goals

• a step toward a community-oriented measurement
infrastructure

• collaborators can run vetted measurements on security-
hardened platform

• general public can perform highly-restricted measurements
• tailored for network measurement -- not broad-scope

distributed experimental platform
• inspired by PlanetLab but not PlanetLab

10

Goals

• greater scalability and flexibility
• scalability in system management, monitor deployment,

measurement efficiency, resource utilization
• flexibility in measurement method, scheduling, data collection

• platform for measurement tool development,
experimentation, deployment

• raise level of abstraction with high-level API and scripting
language

• inspired by Scriptroute but not Scriptroute

• factor out security, software distribution, data collection, etc.
from tool development

11

Architecture

• topology
• security
• communication & coordination

12

Topology
• Ark is physically composed of measurement nodes

(machines) located in various networks worldwide
• measurement nodes connected to central server (at CAIDA)

over Internet, forming a logical star topology

13

Architecture

• topology
• security
• communication & coordination

14

Security Features

• secure communication
• process isolation via sandboxing (FreeBSD jail)
• rate & resource limiting
• packet filtering
• fine-grained access control of resources

15

Security Features

• multiple levels of trust:
• stranger (general public) -- no trust

• no direct access to infrastructure; must access through, say, a web form
• allow pre-defined set of restricted rate-limited measurements, similar to

public traceroute servers

• acquaintance -- low trust
• direct access to infrastructure, but confined to sandbox
• allow measurements based on granted privileges
• subject to system and network resource limits

• collaborator -- medium to high level of trust
• direct access to infrastructure with optional restrictions

16

Security Model

• requirements
• fine-grained authorization mechanisms for

• reading and writing files
• transferring measurement data and other files between hosts
• accessing privileged or confidential resources (e.g., raw sockets, SNMP

counters)
• opening communication channels
• installing, executing, and stopping measurement software

• scalability
• ability to delegate management

• delegate authorization duties for a subset of nodes
• allow hosting organization to set site-specific maximum privileges

• e.g., nothing beyond traceroute
• finer control than coarse configuration settings

17

Security Model

• chosen approach: capabilities
• a capability is an unforgeable object reference combined with

list of rights
• possession of a capability is necessary and sufficient

authorization
• access is granted by passing capabilities from one process to

another

18

Architecture

• topology
• security
• communication & coordination

19

Communication & Coordination

a measurement infrastructure is a distributed system
with many components that must work together in
complex ways toward a common goal

20

monitor1

central server

Communication & Coordination
• however, a typical measurement infrastructure

focuses only on:
• software deployment
• measurement execution
• data collection

21

monitor2
monitor3

monitor1

central server

Communication & Coordination
• however, a typical measurement infrastructure

focuses only on:
• software deployment
• measurement execution
• data collection

22

monitor2
monitor3

monitor1

central server

Communication & Coordination
• however, a typical measurement infrastructure

focuses only on:
• software deployment
• measurement execution
• data collection

23

monitor2
monitor3

monitor1

central server

Communication & Coordination
• however, a typical measurement infrastructure

focuses only on:
• software deployment
• measurement execution
• data collection

24

monitor2
monitor3

monitor1

central server

Communication & Coordination
• missing out on a world of possibilities in decentralized

communication, interaction, and coordination

25

monitor2

monito
r3

monitor4 monitor5

Ark Vision

• empower researchers to use and build upon each
other’s work

• similar to how the web allowed anyone to be a publisher, and
changed everything

• allow anyone to run a server that provides a service
• decentralized -- no need to register; no need to install at

central location

26

Communication & Coordination

• ability to communicate is necessary but not
sufficient

• must go beyond communication to coordination
• coordination is about ...

• scheduling
• starting and stopping
• controlling and guiding
• satisfying dependencies and maintaining ordering
• preparing for and cleaning up
• distributing and collecting

• coordination is also important for collaborative use
• to share and build upon each other’s tools

27

Communication & Coordination

• ability to communicate is necessary but not
sufficient

• must go beyond communication to coordination
• coordination is about ...

• scheduling
• starting and stopping
• controlling and guiding
• satisfying dependencies and maintaining ordering
• preparing for and cleaning up
• distributing and collecting

• coordination is also important for collaborative use
• to share and build upon each other’s tools

28

Coordination Facility

• coordination is usually implemented in an ad-hoc
manner on top of a communication facility

• general facility for directly implementing coordination
is valuable

• abstracts away programming details
• lowers barrier to implementing remotely controllable

components
• easier to understand and verify correctness of coordinated

behavior
• easier to re-use or adapt coordination patterns

29

Coordination Facility
• Ark provides a tuple space for implementing

coordination
• tuple space is a distributed shared memory coupled with

certain operations
• tuple space originated in the Linda coordination language

created in the mid-1980's by David Gelernter
• further developed and refined over the years by researchers

• commercial implementations of the tuple space model:
• C-Linda from Scientific Computing Associates, Inc.
• TSpaces from IBM
• JavaSpaces from Sun

• many free software implementations
• simplistic, incomplete, non-scalable, research-oriented, etc.

• Ark contains a tuple space implemented from scratch and
tailored for a measurement infrastructure

• hope to release under GPL as a standalone piece of software

30

Coordination Facility
• Ark provides a tuple space for implementing

coordination
• tuple space is a distributed shared memory coupled with

certain operations
• tuple space originated in the Linda coordination language

created in the mid-1980's by David Gelernter
• further developed and refined over the years by researchers

• commercial implementations of the tuple space model:
• C-Linda from Scientific Computing Associates, Inc.
• TSpaces from IBM
• JavaSpaces from Sun

• many free software implementations
• simplistic, incomplete, non-scalable, research-oriented, etc.

• Ark contains a tuple space implemented from scratch and
tailored for a measurement infrastructure

• hope to release under GPL as a standalone piece of software

31

Tuple Space
• before proceeding,

 it’s worth noting what a tuple space is not ...

• tuple space is not for coding measurement logic; only
for coordinating measurement activity

• tuple space is a medium not an implementation language
• write measurement tools in Ruby, C/C++, etc.
• use tuple space to control, direct, and glue together

measurement tools

• tuple space is not for transferring bulk data; only for
low-volume coordination data

• transfer bulk data with a separate TCP, FTP, HTTP, SCP, etc.
connection

32

Tuple Space
• before proceeding,

 it’s worth noting what a tuple space is not ...

• not MPI, OpenMP, etc.
• not a distributed hash table (DHT)
• not a distributed database
• not a new routing system/protocol for IP packets

• not a new BGP or IGP; not a new overlay (RON, GENI)

• not a new DNS

33

Tuple Space
• before proceeding,

 it’s worth noting what a tuple space is not ...

• not for coding measurement logic
• tuple space is a medium not an implementation language
• only for coordinating measurement activity
• write measurement tools in Ruby, C/C++, etc.
• hook up measurement tool to the tuple space
• use tuple space to control, direct, and glue together

measurement tools

• not for transferring bulk data
• transfer only coordination (command/control) data/metadata
• transfer bulk data with a separate TCP, FTP, HTTP, SCP, etc.

connection

34

35

What is a tuple space, then?

Tuple Space

• implementation-wise, a tuple space is closest in
concept to a database

• similar client-server design
• e.g., global tuple space is a datastore hosted by a server

process running at CAIDA

• superficial resemblance to publish/subscribe systems

36

Tuple Space

• tuple space contains tuples
• multiset: can have any number of tuples with the same value

• tuples are an ordered collection of values of possibly
mixed type (int, float, string, ...)

• can have any number of components
• up to users to define meaning of tuples

• meaning rests solely on implicit convention
• advantage: no formal (database-like) schema required or declared

• examples:
• ("composer", "Bach", 1685, 1750)
• ("Bach", 1011, "Cello Suite No. 5 in C minor")
• ("J.A. Bach", "J.S. Bach")
• ("J.S. Bach", "C.P.E. Bach")
• ("J.S. Bach", "W.F. Bach")

37

Tuple Space

• tuple space contains tuples
• multiset: can have any number of tuples with the same value

• tuples are an ordered collection of values of possibly
mixed type (int, float, string, ...)

• can have any number of components
• up to users to define meaning of tuples

• meaning rests solely on implicit convention
• advantage: no formal (database-like) schema required or declared

• examples:
• ("composer", "Bach", 1685, 1750)
• ("Bach", 1011, "Cello Suite No. 5 in C minor")
• ("J.A. Bach", "J.S. Bach")
• ("J.S. Bach", "C.P.E. Bach")
• ("J.S. Bach", "W.F. Bach")

38

Tuple Space

• tuple space is an associative memory
• match user-supplied template against all tuples
• template is like a tuple except it can have wildcards (*)

• (("J.S. Bach", "C.P.E. Bach"))
• (("J.S. Bach", *))

• template matches tuple if
• template and tuple have same number of components, and
• values at corresponding positions in template and tuple match:

• literal value only matches the same value
• wildcard always matches any value of any type

• examples of template matching:
• (("J.S. Bach", *)) matches ("J.S. Bach", "C.P.E. Bach")
• (("J.S. Bach", *)) does not match ("J.S. Bach", 1685, 1750)
• (("J.S. Bach", *, *)) matches ("J.S. Bach", 1685, 1750)
• ((*, 1685, *)) matches ("J.S. Bach", 1685, 1750)

39

Tuple Space

• tuple space is an associative memory
• match user-supplied template against all tuples
• template is like a tuple except it can have wildcards (*)

• (("J.S. Bach", "C.P.E. Bach"))
• (("J.S. Bach", *))

• template matches tuple if
• template and tuple have same number of components, and
• values at corresponding positions in template and tuple match:

• literal value only matches the same value
• wildcard always matches any value of any type

• examples of template matching:
• (("J.S. Bach", *)) matches ("J.S. Bach", "C.P.E. Bach")
• (("J.S. Bach", *)) does not match ("J.S. Bach", 1685, 1750)
• (("J.S. Bach", *, *)) matches ("J.S. Bach", 1685, 1750)
• ((*, 1685, *)) matches ("J.S. Bach", 1685, 1750)

40

Tuple Space

• 3 fundamental tuple space operations:
• write(tuple)

• adds a tuple

• read(template)
• returns a copy of a matching tuple (tuple remains in tuple space)
• blocks until a matching tuple is added to the tuple space

• take(template)
• removes matching tuple from tuple space and returns it
• blocks until a matching tuple is added to the tuple space

41

Tuple Space

• properties beneficial for coordination:
• designed explicitly for concurrency

• burden of locking shared space on system, not on user
• automatic mutual exclusion: system guarantees that only one process can

remove a given tuple with take operation

• operations block waiting for matching tuple
• supports decoupling in time
• reader and writer processes may have different or non-overlapping

lifetimes

• tuples are not addressed to an explicit recipient
• supports decoupling in space
• reader and writer processes don't need to know the identity or location or

even existence of each other
• allows dynamically changing, open-ended set of participants

42

Coordination Patterns

• semaphores
• enforce mutual exclusion in resource access or use
• tuple == semaphore
• library book metaphor:

• book on shelves => available => semaphore free
• book missing => not available => semaphore locked

• e.g., to prevent concurrent probing into a given AS:
• setup: write(“AS701”)
• client 1: take(“AS701”); doit(); write(“AS701”)
• client 2: take(“AS701”); doit(); write(“AS701”)

• set allowed level of parallelism or concurrent access by
initializing with multiple tuples:

• setup: write(“AS701”); write(“AS701”)
• client 1: take(“AS701”); doit(); write(“AS701”)
• client 2: take(“AS701”); doit(); write(“AS701”)

43

Coordination Patterns

• semaphores
• enforce mutual exclusion in resource access or use
• tuple == semaphore
• library book metaphor:

• book on shelves => available => semaphore free
• book missing => not available => semaphore locked

• e.g., to prevent concurrent probing into a given AS:
• setup: write(“AS701”)
• client 1: take(“AS701”); doit(); write(“AS701”)
• client 2: take(“AS701”); doit(); write(“AS701”)

• set allowed level of parallelism or concurrent access by
initializing with multiple tuples:

• setup: write(“AS701”); write(“AS701”)
• client 1: take(“AS701”); doit(); write(“AS701”)
• client 2: take(“AS701”); doit(); write(“AS701”)

44

Coordination Patterns
• barrier synchronization

• block fast-running tasks until all tasks reach a certain point in
processing or execution, after which all tasks become
unblocked

• e.g., want all measurement tasks to start at same time at beginning of
each stage of a multistage measurement

• one implementation approach: for 3 processes, A, B, & C:
• A: write(“A-done”); read(“B-done”); read(“C-done”)
• B: write(“B-done”); read(“A-done”); read(“C-done”)
• C: write(“C-done”); read(“A-done”); read(“B-done”)

• another approach: for general n processes--use counter:
• global setup: write(“working”, n);
• each process:
 wait_for_all() {
 (x, n) = take(“working”, *);
 write(“working”, n-1);
 read(“working”, 0);
 }

45

Coordination Patterns
• barrier synchronization

• block fast-running tasks until all tasks reach a certain point in
processing or execution, after which all tasks become
unblocked

• e.g., want all measurement tasks to start at same time at beginning of
each stage of a multistage measurement

• one implementation approach: for 3 processes, A, B, & C:
• A: write(“A-done”); read(“B-done”); read(“C-done”)
• B: write(“B-done”); read(“A-done”); read(“C-done”)
• C: write(“C-done”); read(“A-done”); read(“B-done”)

• another approach: for general n processes--use counter:
• global setup: write(“working”, n);
• each process:
 wait_for_all() {
 (x, n) = take(“working”, *);
 write(“working”, n-1);
 read(“working”, 0);
 }

46

Coordination Patterns
• distributed data structures

• lists, queues, trees, graphs, ... can be built with tuples
• data structures exist on their own independently of processes
• processes concurrently manipulate these data structures
• provides a foundation for distributed processing and problem

solving
• e.g., can implement producer-consumer pattern supporting

arbitrary number of consumers and producers:

47

Coordination Patterns
• distributed data structures

• lists, queues, trees, graphs, ... can be built with tuples
• data structures exist on their own independently of processes
• processes concurrently manipulate these data structures
• provides a foundation for distributed processing and problem

solving
• e.g., can implement producer-consumer pattern supporting

arbitrary number of consumers and producers:

48

consume() {
 (x, n) = take(“head”, *);
 write(“head”, n+1);
 (y, val) = take(n, *);
 return val;
}

produce(val) {
 (x, n) = take(“tail”, *);
 write(“tail”, n+1);
 write(n, val);
}

data structure: (1, “Bach”);(2, “Mozart”);(“head”, 1);(“tail”, 2)

Coordination Patterns
• Bag-of-Tasks (aka Master-Worker) scheduling

• decompose complex or repetitive jobs and parcel out pieces
to workers

• automatic distribution: no central authority that assigns work
• automatic load balancing: each worker runs at its own pace

and a slow worker doesn't cause faster workers to idle
• e.g., want to probe every routed /24, balancing load across

team of 30 machines

49

Coordination Patterns
• Bag-of-Tasks (aka Master-Worker) scheduling

• decompose complex or repetitive jobs and parcel out pieces
to workers

• automatic distribution: no central authority that assigns work
• automatic load balancing: each worker runs at its own pace

and a slow worker doesn't cause faster workers to idle
• e.g., want to probe every routed /24, balancing load across

team of 30 machines

50

worker() {
 forever {
 (x, t) = take(“task”, *);
 doit(t);
 }
}

master(tasks) {
 for t in tasks {
 write(“task”, t);
 }
}

data structure: (“task”, “192.168.0.0/24”)

Tuple Space Features

• tuple space implementation in Ark is far more
sophisticated than basic model described so far

• full list of features:
• multiple tuple space regions
• local & global scopes
• private one-to-one and group communication
• fine-grained per-region privileges
• many operations: non-blocking variants, iteration, ...

51

Tuple Space Features

• multiple disjoint tuple space regions
• partition communication space for privacy and to prevent

interference (cross talk)

52

Tuple Space Features
• two scopes:

• local: tuple space regions local to given node
• only processes on node can access regions

• global: tuple space regions at central server, outside all nodes
• processes from all nodes can access regions
• all inter-node communication happens in global regions; no direct node-

to-node communications allowed

53

Tuple Space Features
• communication patterns:

• (private) one-to-one communication
• group communication

• that is, many-to-many communication by subset of processes
• group communication implemented with regions

• having access to multiple regions = “belonging to multiple groups”

• all-to-all communication
• special case of group communication
• all processes have access to local and global commons regions

54

Tuple Space Features

• can pass file descriptors over local tuple space
• for gaining access to ...

• open files
• services (accessed with sockets)
• tuple space regions (via sockets)

• for granting selective access to resources to sandboxed
measurement processes

55

Tuple Space Features

• operations:
• write(tuple)
• read(template); take(template)
• readp(template); takep(template)

• non-blocking versions of read and take
• if a matching tuple currently exists in tuple space, then return it; else

return nil

• read_all(template)
• returns all existing tuples that match template

• monitor(template)
• returns all existing tuples that match template, and returns all future

tuples that match

56

Tuple Space Features

• operations (continued):
• p = remember_peer(); forget_peer(p);
• write_to(p, tuple); reply(tuple)

• send private one-to-one communication

• take_priv(template); takep_priv(template)
• receive private one-to-one communication

• forward_to(p, tuple)
• send private one-to-one communication with masquerading of sender

• pass_access_to(p, file_descriptor, tuple)
• pass arbitrary open file descriptor to another local process
• pass access to tuple space region to another local process

• one mechanism for granting group membership

57

Tuple Space Features

• fine-grained per-region privileges:
• can read tuples
• can write tuples
• can write sticky tuples
• can take tuples
• can forward tuples
• can pass access rights (file descriptors)

58

Examples

• 4 examples of using Ark’s tuple space in practice
• real source code in Ruby
• need only a few lines of initialization and the code for

measurement logic to run
• in particular, not hand waving away critical details or complexity

• in sample code, ts is a connection to a tuple space region

59

Example 1

• simple ping service:
• client supplies address to ping
• server performs ping and returns RTT

60

Example 1: ping service

61

client:
req_id = ts.gen_id() # globally unique ID
ts.write ["PINGv1", req_id, "192.168.0.5"]
result = ts.take ["PINGv1-RESULT", req_id, nil]
puts "RTT = " + result[2]

server:
loop do
 request = ts.take ["PINGv1", nil, nil]
 req_id, addr = request[1..2]
 rtt = ping(addr)
 ts.write ["PINGv1-RESULT", req_id, rtt]
end

Example 1: ping service

• beneficial properties:
• space decoupling: client does not need to know who or

where the server is
• client only needs to know the request protocol to use the ping service
• server can be moved around without affecting clients

• time decoupling: client does not need to wait for the server
to be running before making its request

• shields clients from planned or unexpected server shutdowns, restarts,
and location migration; for example:

1. server dies, or is shut down and moved

2. client makes request, and blocks on take
3. server starts up, and performs request
4. client receives result, none the wiser

62

Example 1: ping service

• beneficial properties:
• space decoupling: client does not need to know who or

where the server is
• client only needs to know the request protocol to use the ping service
• server can be moved around without affecting clients

• time decoupling: client does not need to wait for the server
to be running before making its request

• shields clients from planned or unexpected server shutdowns, restarts,
and location migration; for example:

1. server dies, or is shut down and moved

2. client makes request, and blocks on take
3. server starts up, and performs request
4. client receives result, none the wiser

63

Example 1: ping service

• beneficial properties (cont’d):
• automatic load balancing: simply launch multiple server

processes with the same code
• fast servers will automatically service more requests than slower servers
• server instances can be started up on different hosts or at different

locations

• no need to make any configuration changes to activate load
balancing across machines or sites

• request-result decoupling: the client making the request
need not be same client that processes the result

• can have one client issuing requests (based on, say, user interaction);
another client can process, analyze, archive, or visualize the result

• analysis client can be a different thread, or a different process altogether
on a different host at a different location

64

Example 1: ping service

• beneficial properties (cont’d):
• automatic load balancing: simply launch multiple server

processes with the same code
• fast servers will automatically service more requests than slower servers
• server instances can be started up on different hosts or at different

locations

• no need to make any configuration changes to activate load
balancing across machines or sites

• request-result decoupling: the client making the request
need not be same client that processes the result

• can have one client issuing requests (based on, say, user interaction);
another client can process, analyze, archive, or visualize the result

• analysis client can be a different thread, or a different process altogether
on a different host at a different location

65

Example 2

• geography-aware ping service:
• client supplies server geographic location and address to

ping
• server performs ping and returns RTT

66

Example 2: ping service (geo)

67

client:
req_id = ts.gen_id()
ts.write ["PINGv2", req_id, "Europe", "192.168.0.5"]
result = ts.take ["PINGv2-RESULT", req_id, nil]
puts "RTT = " + result[2]

server in Europe:
loop do
 request = ts.take ["PINGv2", nil, "Europe", nil]
 req_id, addr = request.values_at(1, 3)
 rtt = ping(addr)
 ts.write ["PINGv2-RESULT", req_id, rtt]
end

Example 2: ping service (geo)

68

server in Asia:
loop do
 request = ts.take ["PINGv2", nil, "Asia", nil]
 req_id, addr = request.values_at(1, 3)
 rtt = ping(addr)
 ts.write ["PINGv2-RESULT", req_id, rtt]
end

Example 2: ping service (geo)

69

client:
req_id = ts.gen_id()
ts.write ["PINGv2", req_id, nil, "192.168.0.5"]
result = ts.take ["PINGv2-RESULT", req_id, nil]
puts "RTT = " + result[2]

• client can leave geo parameter unspecified to allow
any server to fulfill request

• no change required in server code
• feature comes for free from the tuple matching algorithm

• normally, wildcards appear in the template, but they can also appear in
the tuple, acting like “don’t cares”

• called inverse structured matching

Example 3

• geography- and AS-aware ping service:
• client supplies address to ping and two optional parameters:

• server geographic location
• server AS number

• server performs ping and returns RTT

70

Example 3: ping service (geo+AS)

71

client:
req_id = ts.gen_id()
ts.write ["PINGv3", req_id, "Europe", "AS3333",
 "192.168.0.5"]
result = ts.take ["PINGv3-RESULT", req_id, nil]
puts "RTT = " + result[2]

client:

client:

client:

ts.write ["PINGv3", req_id, "Europe", nil,
 "192.168.0.5"]

ts.write ["PINGv3", req_id, nil, "AS3333",
 "192.168.0.5"]

ts.write ["PINGv3", req_id, nil, nil,
 "192.168.0.5"]

Example 3: ping service (geo+AS)

72

server in Europe in AS3333:
loop do
 request = ts.take ["PINGv3", nil, "Europe",
 "AS3333", nil]
 req_id, addr = request.values_at(1, 3)
 rtt = ping(addr)
 ts.write ["PINGv3-RESULT", req_id, rtt]
end

• This server can handle all of the previous client
requests

Example 3: ping service (geo+AS)

73

server in Europe in AS3333:
loop do
 request = ts.take ["PINGv3", nil, "Europe",
 "AS3333", nil]
 req_id, addr = request.values_at(1, 3)
 rtt = ping(addr)
 ts.write ["PINGv3-RESULT", req_id, rtt]
end

• This server can handle all of the previous client
requests, but what if the client requests AS776?
ts.write ["PINGv3", req_id, "Europe", "AS776",
 "192.168.0.5"]

We’d like the same server to handle all requests
for unknown ASes in Europe. How?

Example 3: ping service (geo+AS)

• in this case, tuple matching is not powerful enough
• need service interposition:

74

intermediary

client

server

Example 3: ping service (geo+AS)

• in this case, tuple matching is not powerful enough
• need service interposition:

75

intermediary

client

server

["PINGv3", req_id, "Europe", "AS776", "192.168.0.5"]

Example 3: ping service (geo+AS)

• in this case, tuple matching is not powerful enough
• need service interposition:

76

intermediary

client

server

["PINGv3", req_id, "Europe", "AS776", "192.168.0.5"]

["PINGv3-REQ", req_id, "Europe", nil, "192.168.0.5"]

Example 3: ping service (geo+AS)

• in this case, tuple matching is not powerful enough
• need service interposition:

77

client

server

["PINGv3-RESULT", req_id, 124.2]

Example 3: ping service (geo+AS)

78

revised server:
loop do
 request = ts.take ["PINGv3-REQ", nil, "Europe",
 "AS3333", nil]
 req_id, addr = request.values_at(1, 3)
 rtt = ping(addr)
 ts.write ["PINGv3-RESULT", req_id, rtt]
end

client: unchanged

Example 3: ping service (geo+AS)

79

revised server:
loop do
 request = ts.take ["PINGv3-REQ", nil, "Europe",
 "AS3333", nil]
 req_id, addr = request.values_at(1, 3)
 rtt = ping(addr)
 ts.write ["PINGv3-RESULT", req_id, rtt]
end

intermediary:
loop do
 request = ts.take ["PINGv3", req_id, nil, nil, nil]
 req_id, addr = request.values_at(1, 4)
 geo, asnum = find_server(request)
 ts.write ["PINGv3-REQ", req_id, geo, asnum, addr]
end

Example 3: ping service (geo+AS)

• service interposition is a general technique useful for:
• providing a simplified interface to complex services
• implementing complex or expensive request dispatch
• translating / bridging disparate protocols

• supporting legacy protocols
• server only implements new protocol
• intermediary translates older protocols
• remove intermediary after all clients have been upgraded

80

translator
protocol 1 protocol 2

Example 4

• ping service with private communication:
• client supplies address to ping
• server performs ping and returns RTT using private 1-to-1

communication with client

81

private region1

public region

channel1

Example 4: ping service (private)

• each client is always connected to exactly two regions:
• a public region that might be shared with other clients
• a private region to which only the client has access

• impossible to share a private region even if the client wishes to

82

client1 client2channel2

private region2

public region

Example 4: ping service (private)

• a client is identified by its private region
• each tuple contains a sender field which records the

private region of the client that wrote the tuple

83

private region1

channel1client1 tuple: sender=priv1,
 values=[...]

ts.write [...]

Example 4: ping service (private)

84

client:
ts.write ["PINGv4", "192.168.0.5"]
result = ts.take_priv ["PINGv4-RESULT", nil]
puts "RTT = " + result[1]

take_priv => take tuple from per-client private region

server:
loop do
 request = ts.take ["PINGv4", nil]
 addr = request[1]
 rtt = ping(addr)
 ts.reply ["PINGv4-RESULT", rtt]
end

reply => insert tuple into private region of client that sent last retrieved tuple

Example 4: ping service (private)

• can remember sender to engage in dialogue:

• can pass file descriptor:

85

tuple = ts.take [...]
peer = ts.remember_peer()
ts.write_to(peer, [...])
ts.take_priv [...]
ts.write_to(peer, [...])
ts.take_priv [...]

file = File.open(“abc”)
ts.pass_access_to(peer, file, [“FILE”, “abc”])

Example 4: ping service (private)

• private regions provide a concurrency model similar to
Erlang’s asynchronous message passing

• client can call read_priv or take_priv with a template to pull
out tuples in whatever order it wishes

• client can use a template of [] to pull out the first tuple

86

Status
• implemented:

• tuple space in Ruby
• also have (very) incomplete tuple space implementation in Erlang

• Ruby scripts to perform scamper-based global measurements
• data collection

• unimplemented:
• security subsystem

• not ready for use by non-trusted users

• subsystem for deploying arbitrary measurement software
• for now, manually deploy software

• scalable tuple matching algorithm
• very hard multikey matching problem

• handling failure of machine hosting global tuple space
• need logging of tuple operations, and replaying on restart

87

Conclusions

• coordination is a common need in a measurement
infrastructure

• hence, worth supporting directly

• Ark provides a tuple space for implementing
coordination

• simple to use, and powerful enough for typical situations
• enables a highly decoupled system that is flexible and adapts

to change
• e.g., handles addition, removal, or movement of clients and servers

• allows anyone to create and run servers
• allows users/researchers to build upon each other’s work

88

Thanks!

ark-info@caida.org

89

